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ELASTIC-PLASTIC BOUNDARIES IN THE PROPAGATION OF PLANE AND
CYLINDRICAL WAVES OF COMBINED STRESS*

BY

T. C. T. TING
University of Illinois at Chicago Circle

Abstract. A general study is given of plane and cylindrical wave propagation of
combined stress in an elastic-plastic medium. The coefficients of the governing differ-
ential equations, when written in matrix notation, are symmetric matrices and can be
divided into submatrices each of which has a special form. The relations between the
stresses on both sides of an elastic-plastic boundary are derived. Also presented are the
restrictions on the speed of an elastic-plastic boundary.

1. Introduction. The equations of motion for a continuum body are

(hij/dXj = p dVi/dt (i, j = 1, 2, 3) (1)

where <ris the stress, v,• the velocity and p is the mass density of the body, and sum-
mation is implied by repeated indices. The relation between the strain and the ve-
locity Vi is

dtij/dt = !(dVi/dXj + dVj/dXi), (2)

while the stress-strain relation for an elastic, isotropic work-hardening material is
(see [1])

de,,- 1 + v d<T,-j v „ d<rkk , 3/ df d<rH /ON
~dt ~ ~~E~ dt ~E Sii dt + G{k) da~i ̂  dt ' (3)

E is Young's modulus, v is Poisson's ratio, k is the yield stress and the yield condition
can be written as

K<tu) = k2. (4)

G(k) in Eq. (3) is a given function of k which characterizes the work-hardening property.
Eqs. (l)-(4) give a complete description of wave propagation in three-dimensional
elastic-plastic media.

In this paper, we will restrict our attention to special cases in which the governing
equations depend on only one space variable. Plane wave propagation and cylindrical
wave propagation are such special cases. The most general plane wave propagation
is the one in which vx , v2 , and v3 are functions of xy and t only. Using x instead of Xi
for simplicity, <ri , r2 , r3 for cru , a2l , <rSi respectively, Eq. (1) gives

o-i,x = pv 1., , (5)

t2,x ~ f>V 2.f , (6)

T3,x = PVZ,t , (7)

where the subscripts x and t denote partial differentiation with respect to these variables.
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If we use von Mises' yield condition

/ = = k
where

s.'i = Cij ~ \$ii<7kk i

Eq. (3) gives, making use of Eq. (2) and the fact that t22 = e33 = 0 leads to <j22 = <r33
in the present case,

1 2i>
Vi.i = <71,« C2,i "h SiGQ, (8)

2„ 9(1 _
0 = -g <rllt + V} a,., + 2s2GQ, (9)

V2.x = r2,t/n + 2 t2GQ, (10)

v3.x = + 2 t3(7Q, (11)

where sx , s2 and o-2 stand for su , s22 , and o-22 respectively, ju is the shear modulus and

Q ~ 2s2cT2 t -f- 2r2r2il -j- 2t3t3>( . (12)

Eqs. (5)—(11) give a complete description of a general plane wave propagation in an
elastic-plastic medium.

When v2 = 0, and hence r2 = 0, Eqs. (5), (7), (8), (9), and (11) reduce to the case
of pressure-shear wave propagation considered in [2], [3], [4], If v2 , v3 are the only non-
zero velocity components, then r2 and r3 are the only nonzero stresses and Eqs. (6),
(7), (10) and (11) reduce to the case of two-shear waves studied in [3], [5], [6], The
equations derived in [7] for combined longitudinal and torsional waves in a thin-walled
tube may also be reduced from Eqs. (5), (6), (8) and (10) by letting a2 = 0.

If vr , ve , v, are the velocity components of a particle in cylindrical coordinates
(■r, 6, z), the most general cylindrical wave propagation is the one in which Vr , Vo and
vz are functions of r and t only. Then, the only nonzero strains are er , ee , y# , yz where
7s , yz stand for trS , erz respectively. Consequently <rr , o> , <yz , re , tz are the nonzero
stresses where t9 = <xre , t2 = <jtz ■ Now, instead of writing the governing equations
for cylindrical wave propagation in the form shown in Eqs. (5)-(ll), we will use matrix
notation and write the governing equations, Eqs. (1)—(3), in a matrix differential equa-
tion which can be applied to both plane and cylindrical wave propagation.

2. The matrix differential equation. For wave propagation which involves only
one space variable x or r, the equations of motion (1) can be written in matrix notation
as

Md, + b, = pv, (13)

where d and v are column vectors whose elements are stress and velocity components
respectively, b! is also a column vector whose elements are functions of stress d and
space variable x only. (In cylindrical waves, x becomes r.) If 6 has m elements and v
has n elements, then M is an n X m matrix whose elements are constants. The continuity
condition Eq. (2) can be written as

e, = NVj + b2 (14)
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where e is a column vector with strains as its elements while b2 is a column vector whose
elements are functions of velocity v and space variable x only. N is an to X n matrix
whose elements are constants. Finally, the stress-strain relation, Eq. (3), can be written

e, = Sti, (15)

where S is an m X m square matrix. In the plastic region, S can be written more pre-
cisely as

S" = S* + G(k)(Vf)(Vf)T. (16)
S" is also an to X to square matrix whose elements are functions of elastic constants
only. Thus

e« = Sed, (17)

gives the elastic stress-strain relation. V/ is the gradient of /(d) with respect to the
components of <i. Hence, by (4),

(V/)rd« = 2kk, . (18)

Now, by eliminating t, between Eqs. (14) and (15), we can write Eqs. (13)—(15) in
one matrix equation

Aw, + Bwx = b (19)

where

A =

B =

pi 0
0 s

0 -M
-N 0

w =

b =

v

d

b,
b2.

(20)

and I is a unit square matrix. It can be checked easily that the governing equations
for general plane wave propagation derived in Eqs. (5)—(11) as well as the equations
for other plane wave propagation reduced from Eqs. (5)—(11) can be written in the
form of Eq. (19). Moreover, A and B are both symmetric in all cases. In particular,
N = Mr and the elements of N and M are either one or zero. The same is true for all
cylindrical waves. For the most general cylindrical wave propagation, it can be shown,
using von Mises' yield condition, that

v =

d =

b, =

b, =

Te

(o-i — <r2)/r

2 Te/r

t,/t

0

v,/r

0

-ve/r

0

M =

rl 0 0 0 0"

0 0 0 1 0

0 0 0 0 1

N = Mr, (21)
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l/E -v/E -v/E 0 0

-v/E l/E -v/E 0 0

S< = -v/E -v/E l/E 0 0

0 0 0 1/m 0
l
L 0 0 0 0 1/m

V/ =

Sr

Se

s,

2 Te

J
Cristescu [S] has studied an axially symmetric wave propagation in which vT and v„
are the only nonvanishing velocities. The governing equations can be obtained from
Eq. (21) by letting vz = r2 = 0. The particular cases of two-shear cylindrical waves
and pressure-shear cylindrical waves have also been derived earlier in [5] but the re-
sulting coefficient matrices were not symmetric. The formulation presented here yields
symmetric coefficient matrices for all cylindrical waves.

The analyses in the rest of this paper will be based on the matrix differential equation
(19). Although for all plane waves and cylindrical waves the matrices A and B are
symmetric, the analyses presented in the following do not require the symmetry property
of A and B. The yield condition / of Eq. (4) is not restricted to von Mises' yield con-
dition.

3. An identity. In this section, we will derive an identity which is useful in the
analyses of the present problem.

Let P be an r X r matrix and g and h be column vectors with r components. Then,
if a is a scalar,

||P + ahgT|| = ||P|| + ahrP*g (22)

where ||P|| is the determinant of P. P* is the adjoint matrix of P, i.e. the element
]'* in P* is the cofactor of the element I',, in P. Hence P* has the property

(P*)'P = | |P| | I. (23)
To prove Eq. (22), we write P in terms of its columns as

P = [pi , P2 , • • • , Pr] (24)

where pi , p2 , • • • are column vectors. If gx , g2 , ■ ■ ■ , gr denote the components of g,
the left-hand side of Eq. (22) can be written as

||P + ahgT|| = [|pj. + a<7ih, p2 + ag2h, ■■■ , pr + a<7rh||. (25)

Now, by the theory of determinants, it is known that

||p, + ah, p2 , p3 , • • • , pr 11 = I |P| I + a ||h, p2 , p3 , • • • , pr||, (26)

||h, ah, p3 , p4 , •• • , p,|| = 0. (27)

By repeatedly applying Eqs. (26) and (27) to the right-hand side of Eq. (25), we obtain

||P + «hgT|| = IIpl , p2 , • • • , Pr11 + ag, ||h, p2 , p3 , • • • , pr||

+ ag2 ||px , h, p3 , • • • , pr|| + ■ ■ ■ + agr Hp, , p2 , • • • , h||. (28)

With this, it is not difficult to see that Eq. (28) can be written in the form of Eq. (22).
This completes the proof.
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For the particular case in which P is a unit matrix, Eq. (22) reduces to

||I + ahgr|| = 1 + ahrg. (29)

4. The characteristic equation. The characteristics c of Eq. (19) are the roots of
the equation (see [9])

||cA — B11 = 0. (30)
Since

cA - B =

where

rPcI M pel 0

N Dj
I M/pc

0 l/pcN cSj

D = pc'S - NM, (31)

we have

\\eA - B|| = (pc)~ ||D11. (32)
Thus, instead of expanding the determinant ||cA — B|| which is of order m + n, we
can expand the determinant | |D 11 which is of order m.

If we define

D" = pc2S" - NM, (33)

then by Eqs. (16) and (31), we have

D" = D< + Pc2G(fc)(V/)(V/)r. (34)

Using the identity derived in the previous section, we obtain

IID'H = ||D*|| + pc2(7(/c)(V/)r(De)*(V/). (35)

Eq. (35) can be used to study the relative positions of the roots of | |DP| | = 0 and | |De| | = 0
(see [4], [14]).

5. The elastic-plastic boundary. If c is the speed of an elastic-plastic boundary,
then

clw/dt = wxc + w, (36)

is the total derivative of w along the boundary. Elimination of between Eqs. (19)
and (36) yields

(cA — B)w, = cb — B dw/dt. (37)

Since w is continuous across an elastic-plastic boundary, Eq. (37) gives

(cAp - B)w? = (ck' - B)w; (38)

where the superscripts e and p denote the values in elastic and plastic regions respectively.
With Eq. (20), Eq. (38) is equivalent to

pcvvt -f- Md' = pev' + M (j* , (39)

Nvp + cSX = NvJ + cS*<j; . (40)
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It is more convenient to write Eqs. (39) and (40) in the following forms, using Eqs. (16)
and (18):

Pc(y', - v?) + M(tf - d?) = 0, (41)

N(vl - v?) + cS'(d; - tf) = 2cG(k)W,(yf), (42a)

N(vJ - v?) + cS"(6't - 6"t) = 2cG(k)kk"t(V/). (42b)
Eqs. (41) and (42a) yield

D'(dl - d?) = 2Pc2G(k)kkv,(V1) (43a)

while Eqs. (41) and (42b) yield

Dp(d! - d?) = 2Pc2G(k)kk't(Vf). (43b)

Equation (43a) or (43b) gives a relation between d^ and d® on both sides of an elastic-
plastic boundary. For the case of combined longitudinal and torsional stresses in a tube,

De = pc/E - 1 0

0 pc2 / n — 1.

and Eq. (43 a) reduces to the result obtained in [10].
Equation (43a) can be solved for (d* — d") by premultiplying both sides of equation

by (De)*r and making use of Eq. (23). Hence

dl - dj = 2pc2G(k)kk"l(D')*T(Vi)/\\T>'\\. (44)

Premultiplying once more both sides of Eq. (44) by (V])T and making use of Eq. (18),
we obtain

K - K = pc2G(l:)kvt(^j)T(X>')*T(^7j)/\\D' 11. (45)

Since the right-hand side of the equation is a scalar,

(V/)r(DTr(V/) = (V/)r(DT(V/),

and by virtue of Eq. (35) we have finally

« = M. m7cf j |D'| | 1
Eq. (46) gives the ranges of possible speeds for loading and unloading waves provided
that k' and kvt are not both zero. A simplest particular case of Eq. (46) is the case of
longitudinal wave propagation in a thin rod studied in [13]. As an illustration, consider
the case of combined longitudinal and torsional stresses in a thin-walled tube studied
in [10]. Equation (46) becomes, for this case,

K = (c2/c; - 1 )(c2/d - 1)
K (c2/co - l){c/ci - l)

where c„ = E/p, c\ = n/p, and c,, c, are the roots of ||DB!| = 0. For a loading wave k\ ^ 0
and kvt ̂  0, and the left-hand side of the above equation is nonnegative. In order that



1970] ELASTIC-PLASTIC BOUNDARIES 447

the right-hand side of the equation remain nonnegative, c can have only one of the
following values:

c ^ c, , c2 c iS cf , c0 ^ c,

where use has been made of the fact that c, 5= c2 ^ cf g c0 ■ On the other hand, k't g 0,
K ^ 0, for an unloading wave, and a similar argument shows that c must satisfy one of
the following two conditions:

C, ^ C ^ C2 , Cf ^ C ^ Co .

These are the results obtained in [10] and agree with the more general results obtained in
[14] for three-dimensional elastic-plastic wave propagation.

The case when both k't and kvt are zero is discussed next.
First notice that d^ = <S"t implies k't = kvt = 0. This follows from Eqs. (41) and (42).

The converse, however, is not necessarily true. In other words, k't = k"t = 0 does not
necessarily imply = d®. When kvt = 0, we have, by Eq. (43a), either d* = d® or ||DC||
= 0. Similarly, when k\ = 0, we have, by Eq. (43b), either d" = d" or ||DE|| = 0. Con-
sequently, if k\ = kvt = 0 we have either d° = d? or ||DP|| = ||D'|| = 0. The latter can
happen only when the stress state is such that there exists a characteristic which belongs
to both elastic and plastic regions and the elastic-plastic boundary is tangential to this
common characteristic. For example, in the case of combined longitudinal and torsional
waves in a thin-walled tube, c0 is a common characteristic for the stress state in which
a = 0 while r is arbitrary. Then if k\ = kvt = 0 but 6] ^ d®, c = c0 .

When d' = d" , we also have v® = v? by Eq. (41). Hence w, is continuous across an
elastic-plastic boundary. The total derivative of w, along the boundary is

dw,
~dt = W"C + W" •

If we differentiate Eq. (19) with respect to t, and eliminate wix from the above equation,
we obtain, after applying the resulting equation to both sides of an elastic-plastic bound-
ary and noticing that wet = w* :

(cAp — B)w?( + cA*w* = (cAe — B)w*( .

Since this equation is identical to the equation obtained by differentiating Eq. (38)
with respect to t, the rest of the analysis can be simplified by differentiating Eqs. (39)-(45)
with respect to t. In particular, differentiation of Eqs. (43) yields, using the fact that
d; = d?, k\ = k\ = o,

D'K, - d?,) = 2pcG(k)kku(Vf) (47a)

D"K, - d?,) = 2pc2G(k)kk'u(Vj). (47b)

Similarly, if we differentiate both sides of Eq. (45), we obtain, after using Eq. (35),

k'u ||D'!l
k"tt | |De (48)

Equations (47) and (48) are identical to Eqs. (43) and (46) respectively with the excep-
tion that the order of derivatives is changed.
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From the above derivations we can generalize the results and state them as follows:
If <3V/df = dnd*/dtn for n = 1, 2, • ■ ■ , a — 1 but da6'/dta ^ dW/dt", we have

™ = = 0. n- 1,2, (49)

Hw-JF)'2fC'Gm7F(vn (50a)
or

and

D'( — - —) = 2pc'G(k)k — (V/) (50b)W dt" / dt"

dak'/df | |D"
dTyar ll11'

(51a)

if dak'/dt° and d°k"/dta are not both zero. If dake/dta = d"kp/dta = 0, it is clear from
Eqs. (50) and the assumption that da6e/dt" ^ dadv/dta,

| |D" 11 = UD'II = 0. (51b)
For a loading wave,

d"k'/dt" I > 0 if a is an odd integer
d"kv/dta l< 0 if a is an even integer (j2a)

while for an unloading wave,

d"k'/dt" J < 0 if a is an odd integer
dakv/dta 0 if a is an even integer

(52b)

With this, Eq. (51a) furnishes a restriction on the speed of an elastic-plastic boundary
as in the particular cases considered in [10, 11, 13]. It should be noticed that Eq. (51a)
applies if dn6/dt" (n = 1, 2, • • • , a — 1) are continuous across an elastic-plastic boundary
for a finite segment along the boundary. If dnd/dtn (n = 1, 2, • • • , a — 1) are continuous
across the boundary only at the point concerned but not at other points on the boundary,
the left-hand side of Eq. (51a) should be modified. An example of this modification for the
particular problem of wave propagation in a rod was given in [12].

6. Discussion. The analyses presented here can be modified to include materials
other than isotropic work-hardening. For instance, if the yield function / as expressed
by Eq. (4) depends on a,,- as well as on e<;- and other parameters, Eq. (IS) should be
replaced by

(V/)rd, + (V'/)rs? = 2 kkt (53)

where V/ and V'/ are respectively the gradient of / with respect to the components of
d and t. Since tvt = G(k)(Vf)(Vj)Tdt , we have

(V/)T<i, = 2 kkJH (54)
where H = 1 + G(k)(V'j)T(V/). With Eq. (IS) replaced by Eq. (54), the rest of the
analyses remain essentially the same with minor modifications whenever necessary. In
particular, the results obtained in Eqs. (35), (46), (48), (51) and (52) remain unchanged.
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