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1. Introduction. Universal solutions and universal relations for a fixed type1 of

materials are important results in the theory of elasticity. Until recently, results belonging

to those two categories concerned almost exclusively isotropic solids, fluids, and some

types of solid crystals. In this paper, I present some universal solutions and universal

relations for two types of simple fluid crystals, called subfluids, which I introduced

in my earlier paper [1],

Specifically, I consider in this paper the type of subfluids possessing one preferred

line and the type of subfluids possessing one preferred plane. Let {ei , e2 , e3} be an

orthonormal basis in a reference configuration such that e3 is in the direction of the

preferred line, and let {et , e2} span the preferred plane. Then the component matrix

of a tensor P belonging to the isotropy group of the first type is

[P.-,] =

while that of the second type is

[P =

a b 0

c d 0

e 1 9-

(l.D

a b c

de], (1.2)

LO 0 g_

where for both types a, ■ ■ • , g are arbitrary real numbers such that

|det [P,.,]| = 1. (1.3)

In a deformed configuration with deformation gradient F relative to the reference

configuration, the preferred line, of course, is in the direction of the unit vector

i = Fe3/|Fe3| , (1.4)

and the preferred plane is spanned by the set {Fet , Fe2}, so that unit normal of the

preferred plane is

n = Fe! X Fe2/|Fe! X Fe2| . (1.5)

•Received February 15, 1969; revised version received March 20, 1969.

xWe use the term type strictly in the following sense: A type of materials is a class of materials pos-

sessing a fixed material symmetry; the material symmetry is characterized by the isotropy group of the

constitutive relation.
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In my paper [1], I proved that the stress tensor T in the deformed configuration for the

two types of subfluids is given by

T = /0(p)I + /i(p)i® i. (1.6)

and

T = /0(p)I + /1(p)n®n, (1.7)

respectively, where /0 and /t are functions of the density p provided that the materials

are not subjected to any internal constraint nor required to have a stored-energy function.

Now suppose that the subfluids are hyper-elastic, so that they possess a stored-energy

function. Then I proved in my paper [1] that the constitutive equations become

T = /0(p)I + /pi <g) i, (1.8)

and

T = /o(p)I + fpn (x)n, (1.9)

respectively, where /0 is a function of p and where / is a (material) constant.

Finally, suppose that the subfluids are incompressible. Then the constitutive equa-

tions are

T = —pi + /i (x) i, (1.10)

and

T = -pl + /n<g)n, (1.11)

respectively, where p is an undetermined hydrostatic stress, and where / is a (material)

constant. In this case, the deformation gradient must satisfy the incompressibility

condition:

|det F| = 1, (1.12)

where det F denotes the determinant of F.

Some universal solutions and universal relations based on the constitutive equations

(1-6)—(1.11) are obtained in this paper. Specifically, statical universal solutions for the

compressible subfluids are considered in Sec. 2; an example of the statical universal

solutions, for which a complete set of universal relations is worked out, is treated in

Sec. 3. Statical universal solutions for the incompressible subfluids are considered in

Sec. 4, and finally, some dynamical universal solutions are given in Sec. 5.

2. Statical universal solutions (for the compressible subfluids). Since the constitu-

tive equations (1.6) and (1.7) are formally the same, we can analyze the field equations

for the two types of subfluids within one scheme. For definiteness, we denote the consti-

tutive equation as

T = /0(p)I + /i(p)e (x) e, (2.1)

and we assume that the reference configuration is a homogeneous configuration, so

that /o and /i do not depend on the material particle. Further, we assume that no body

force is acting on the subfluid. Then the equation of equilibrium is

div T = 0. (2.2)
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Substituting T from (2.1) into this equation, we obtain

grad /0(p) + div (/i(p)e ® e) = 0, (2.3)

which can be expressed by the chain rule as

grad P + (e-grad p)e + jx {[grad e]e + e(div e)} =0. (2.4)

Since we seek universal solutions for a whole type of subfluids, the functions J0 and fi are

arbitrary. Consequently, equation (2.4) is satisfied if and only if

grad p = 0, (2.5)

and

[grad e]e + e(div e) = 0. (2.6)

We pause to remark that (2.5) and (2.6) are also the governing equations for the

universal solutions of the hyperelastic subfluids. This fact is more or less obvious. Had

we used the constitutive equation

T = /0(p)I + /pe (x) e (2.7)

for the hyperelastic subfluids, we would obtain, instead of (2.4), the equation

j— grad p + /(e-grad p)e + /p[[grad e]e + e(div e)j =0. (2.8)
dp

But since /„ and / are arbitrary, a necessary and sufficient condition for (2.8) is again

the system (2.5) and (2.6). Thus we have proved that the universal solutions for the

elastic subfluids coincide with those for the hyperelastic subfluids.

Now we consider the governing equations (2.5) and (2.6). Equation (2.5), of course,

has the trivial solution:

p = constant, (2.9)

or equivalently

[det F| = constant. (2.10)

The crucial governing condition for a universal solution is equation (2.6), together

with the intrinsic restriction that e is a unit vector,

e-e = 1. (2.11)

Taking the gradient of (2.11), we obtain

[grad e]re = 0, (2.12)

where the superscript T denotes the transposition. This equation implies that the quad-

ratic form of the tensor [grad e] vanishes at e,

e*[grad e]e = 0. (2.13)

Now taking the dot product of (2.6) with e, and using (2.11) and (2.13), we obtain

div e = 0. (2.14)

Thus e must be a solenoidal field.
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We can substitute (2.14) into (2.6), obtaining

[grad e]e = 0. (2.15)

This equation means that the value of e does not change along any integral curve of

the vector field e, so that the integral curves of e are all straight lines.

Finally, combining (2.12) and (2.15), we see that

e X curl e = 0. (2.16)

Thus e is a screw field provided that curl e does not vanish.

We now consider the two types of subfluids separately.

Case 1. e = n.

In this case the vector field n satisfies one more restriction:

n-curl n = 0, (2.17)

since n is the normal field of a family of surfaces—which are the deformed configurations

of the parallel preferred planes. Combining (2.17) and (2.16), and using the fact that

n does not vanish, we obtain

curl n = 0. (2.18)

Thus n is a lamellar field.

Now taking the gradient of (2.12), and using the condition (2.14), we obtain

tr ([grad n]2) = 0, (2.19)

where tr denotes the trace. But from (2.18) we have also

tr {([grad n] - [grad n]r)2} = 0. (2.20)

Substituting (2.19) into (2.20), we obtain

tr ([grad n][grad n]r) = 0, (2.21)

which means that

grad n = 0. (2.22)

Consequently, n is a constant vector in the deformed configuration. This result means

that the deformed configuration is also a homogeneous configuration.

The deformation from one homogeneous configuration onto another one, however,

need not be a homogeneous deformation. For example, any shear deformation preserving

the preferred planes in the reference configuration is a universal solution.

Case 2. e = i.

In this case the vector field i need not be lamellar or complex lamellar. The governing

equations for i are

i-i = 1, (2.23)

div i = 0, (2.24)

and

i X curl i = 0. (2.25)
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A general solution for this system has not been found. Under condition (2.23), a necessary

and sufficient condition for (2.25) is that the integral curves of i be straight lines. This

result is a theorem of Nemcriyi and Prim [2], the necessity part of which we have proved

in (2.15). Under condition (2.25), a necessary and sufficient condition for (2.24) is

i-grad (|curl i|) = 0, (2.26)

which means that the surfaces of constant abnormality are vector sheets of i. This

result is a theorem of Ballabh [3], Combining these two results, we see that the surfaces

| curl i| = constant (2.27)

are ruled surfaces.

We can visualize the vector field i as the velocity field of a steady flow. Then condition

(2.23) says that the flow is of constant and uniform speed, condition (2.24) says that

t 'le flow is incompressible, and finally, the theorem of Nemenyi and Prim says that the

streamlines of the flow are straight lines. Intuitively, we know that besides the uniform

solution obtained in the previous case, there is a family of nonuniform solutions having

the components

i1 = 0, i = cos 6{xl), i3 = sin ^(x1) (2.28)

relative to a rectangular Cartesian coordinate system (x1, x, x3). Here the angle 8 is an

arbitrary function of xl. For this family of solutions, the surfaces of constant abnormality

are the coordinate planes perpendicular to the z'-axis, and the integral curves of i are

parallel straight lines on each of those parallel coordinate planes.

It is not known whether or not any further solutions for the system (2.23)-(2.25)

exist.

3. Universal relations in simple shears. A simple shear is a homogeneous deforma-

tion whose deformation gradient has the component matrix

[/'„•] =

1 0 0

lc 1 0

0 0 1

(3.1)

relative to an orthonormal basis {ei , e2 , e3J; k is an arbitrary real number, called the

amount of shear. We consider the following two cases:

Case 1. Subfluids whose preferred -plane is spanned by {ei , e3j in the reference

configuration.

In this case the unit normal n in the deformed configuration has the components

n1 = sin 6, n2 = —cos 6, n3 = 0, (3.2)

where 6 is the angle of shear given by

tan 6 — k. (3.3)

Substituting (3.2) into (1.7), we see that the stress tensor has the components

Tu = F0 + Fi sin2 6,

T22 = Fa + Fi cos2 6,
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T37= F0 , (3.4)

T12 = — Fx sin 6 cos 6,

and

T13 = T23 — 0)

where F0 and F1 are the values of f0 and /1 in the reference configuration. From (3.4),

we have the following universal relations:

Tl1 ~ r33 = k (3.5)
*- 12

and

Til Tm. _ _1 gx
t12 ~ k

We claim that these are the only nontrivial universal relations in this deformation.

Specifically, we have the following

Proposition. A symmetric tensor K has the jorm

K = K0l + (x) n (3.7)

if and only if the components of K relative to {ex , e2 , e3} satisfy the conditions

K13 = K23 = 0, (3.8)

Kl1 ~ K[Vi = -k, (3.9)
^12

and

K°3 = -j- (3.10)

XV12 /C

Further, if these conditions are satisfied, then

K0 = K33 (3.11)

and

Ki = Kn + K,2 - 2K33 . (3.12)

Thus K0 and K, are constants if and only if

K33 = constant (3.13)

and

Kn + K22 = constant. (3.14)

The proof of this proposition is obvious. We have shown the necessity part in (3.4) 5,

(3.5), and (3.6). Conversely, if (3.8)-(3.10) hold, then it can be shown easily that n and

any vector perpendicular to n are proper vectors of K. Thus K has the form (3.7). The

conditions (3.11) and (3.12) are direct consequences of (3.4).
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From this proposition, we see that (3.4)5 , (3.5), (3.6), and the conditions

T33 = constant (3.15)

and

Tn + T22 = constant (3.16)

form a complete set of universal relations in this case, since the form

T = FJ + F:n (x) n (3.17)

gives completely the restriction on the stress tensor due to the material symmetry.

Case 2. Subfluids whose preferred line is spanned by e2 in the reference configuration.

In this case the unit vector i in the deformed configuration has the components

i1 = cos 6, i2 = sin 6, i3 = 0. (3.18)

Substituting (3.18) into (1.6), we obtain

Tn = F0-\-F1 cos2 6,

T22 = F0 + F, sin2 0,

T33 = F0 , (3.19)

T12 = Fi sin 0 cos 0,

and

Tl3 = T23 = 0.

By the same argument as before, we see that a complete set of universal relations for

this case is (3.19)5 , (3.15), (3.16), together with

Tll~ T33 = | (3.20)

and

T 22 T3

T,
= k. (3.21)

Remark. Since simple shears constitute only a special class of deformations, the

behavior of a material in simple shear does not determine the response function com-

pletely. Thus universal relations in simple shear are necessary but not sufficient conditions

for a fixed type of material. There may be many other types of materials whose complete

sets of universal relations in simple shears are the same as those for Case 1 or those for

Case 2.

4. Statical universal solutions (for incompressible subfluids). As before, we write

the constitutive equations (1.10) and (1.11) for the two types of subfluids in a common

form

T = -pi+ /e(g>e, (4.1)

where p is an undetermined pressure, and where / is a constant. Substituting (4.1) into

the equation of equilibrium (2.2), we obtain

/ div (e 0 e) = grad p. (4.2)
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Now since we seek universal solutions, the constant / in this equation is arbitrary.

Hence the governing equation for e is

curl (div (e (x) e)) = 0. (4.3)

Of course, e must satisfy condition (2.11) also.

A general solution for the system (4.3) and (2.11) has not been found. Besides the

previous uniform solution (2.22) and the particular solution (2.28) for the compressible

subfluids, we can exhibit three new families of nonuniform solutions. Again we consider

the following two cases:

Case 1. e = i. The solutions are

Family 1. The physical components of i relative to a cylindrical coordinate system

(r, 6, z) have the form

i(r) = cos a, i(d) = sin a, i{z) = 0, (4.4)

where a is a constant angle. The pressure field for this family is given by

p = /(cos 2a log 7 + 0 sin 2a) + p0 , (4.5)

where pa is an arbitrary constant.

Two special cases of (4.4) are

(I) Plane radial distribution, with a = 0.

i(r) = 1, i(d) = i{z) = 0. (4.6)

This field is lamellar but is not solenoidal.

(II) Plane circular distribution, with a = x /2.

i(r) = i{z) = 0, i(6) = 1. (4.7)

This field is complex-lamellar and solenoidal but is not a screw field.

Family 2. The physical components of i relative to a spherical coordinate system

(r, 6, ip) have the form

i(r) — 1, i(8) = i{ip) = 0. (4.8)

This field forms a central radial distribution, which is lamellar but is not solenoidal.

The pressure field for this family is given by

p = 2/ log r + p0 (4.9)

where p0 is a constant.

Family 3. The physical components of i relative to a cylindrical coordinate system

(r, 8, z) have the form

i(r) = 0, i(6) = cos a(r), i{z) — sin a(r), (4.10)

where a(r) is an arbitrary function of r. This field is solenoidal but is not a screw field.

The pressure field for this family is given by

V
, l" cos2 a(r) , , ,, ,,,

= -/ /  —— dr + p0 (4.11)
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where p0 is a constant. The plane radial distribution (4.7) is also a special case of this

family, with a(r) equal to zero.

Case 2. e = n. In this case restriction (2.17) must also be satisfied. The reader

will verify easily that the first two families in the previous case satisfy this additional

condition, and hence they remain universal solutions with i replaced by n. The third

family, however, does not satisfy (2.17) in general. Those belonging to Family 3 and

satisfying (2.17) are given by the following

Family 3'. The physical components of n relative to a cylindrical coordinate

system (r, 9, z) have the form

7i(r) = 0, n{6) = cos a{r), n{z) = sin a(r)r (4.12)

with

sin 2a(r) = a0/r2, (4.13)

where a0 is a constant. To prove this we compute the components of the curl on n:

(curln)(r) = 0,

(curln)(0) = —a' cos a, (4.14)

and

(curl n)(z) = (cos a — ra' sin a)r~].

Substituting (4.12) and (4.14) into (2.17), we see that a must satisfy the condition

2ra' cos 2a + sin 2a = 0. (4.15)

(4.13) is an integral of this equation.

Note. In order that the angle a be real, r2 must be greater than the absolute value

of the constant a0 . When a0 is equal to zero, the solution (4.12) reduces to the plane

circular distribution with a = 0, or to the uniform field with a = tt/2.

5. Dynamical universal solutions (for the incompressible subfluids). For incom-

pressible elastic bodies, Truesdell [4] has considered a class of exact dynamical solutions

satisfying the following condition: At each time t, the instantaneous configuration is a

possible configuration of static equilibrium under surface forces exerted on the boundary

of the body. Such solutions are called quasi-equilibrated motions. In general, a quasi-

equilibrated motion is dynamically possible if and only if the acceleration field is a

conservative field with a single-valued acceleration potential viz.

a = grad f. (5.1)

Then the dynamical pressure field p is related to the static equilibrium pressure field P by

P = P ~ Pf, (5.2)

where p denotes the density.

We proceed to set forth some families of quasi-equilibrated motions for the two

types of incompressible subfluids. Again we write the constitutive equation in general

as (4.1). Then we consider

Case 1. e = i.
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We consider the following families of motions:

Family 1. Flow between coaxial circular cylinders.

The deformation functions are

r = R, 0=0 + f(R, t), z = Z + g(R, t), (5.3)

where ](R, t) and g(R, t) are two unknown functions whose forms must be determined

by the condition (5.1). For this family, we assume that the initial distribution of the

preferred axis i is given by (4.10). From (5.3), the physical components of the deformation

gradient F are given by

1 0 (f

[F{iA)] = R df/dR 1 0 • (5.4)

_dg/dR 0 1_

Then

det F = 1 (5.5)

and

Fi = i. (5.6)

Thus the motion is a volume-preserving quasi-equilibrated motion.

Now we consider the restriction on the motions due to the condition (5.1). First,

we determine the covariant components of the acceleration field a in (r, 6, z):

aT = — r/'2, ae = r2]", aa = g", (5.7)

where the prime denotes partial derivative with respect to the time t. From (5.7), condi-

tion (5.1) is satisfied if and only if

dr2f"/dr = 0, dg"/dr = 0. (5.8)

These two differential equations can be integrated at once, yielding the complete solution

f(R, t) = A{t)/R2 + B(R)t + C(R) (5.9)

and

g(R, t) = D(t) + E(R)t + F(R), (5.10)

where A, ■ ■ ■ , F are arbitrary functions. For this solution the velocity field v has the

physical components

v(r) = 0, v(8) = A'(t)/r + rB(f), v(z) = D'(t) + E(r). (5.11)

Thus the flow is steady if and only if A' and D' are constants.

Family 2. Twisting and radial expansion flow.

The deformation functions are

r = (A(f)R2 + B(t))1/2, 5=0+ g(R, t), z = Z/A(t) + C{t), (5.12)

where A, B, C, and g are arbitrary functions, with A 0. We assume again that the
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initial distribution of the preferred axis i is given by (4.9). However, unlike the previous

family, this family of motions does not preserve the field i. Indeed, from (5.12), the

physical components of the deformation gradient F form the matrix

AR/r 0 0

[F(iA)\ = rdg/dR r/R 0

L 0 0 1 /A_

(5.13)

Thus F preserves the form (4.9) but not the angle a; i.e., in the motion (5.12) the preferred

axis i has the components

i(r) = 0, i(6) = cos a(r, t), i(z) = sin a(r, t). (5.14)

Since each instantaneous configuration is a possible statical equilibrium configuration,

the motion given by (5.12) is quasi-equilibrated.

Next we determine the restrictions on the functions A, B, C, and g due to condition

(5.1). From (5.12), ar and ae are functions of r and t, while az is a function of z and t.

Hence the restriction due to (5.1) is

dae/dr = 0. (5.15)

The reader will verify easily that, in terms of A, B, C, and g, this condition takes the form

(AR2 + B)g" + (A'R2 + B')g' = a function of t. (5.16)

The complete solution of this equation is given by

A, B, C, = arbitrary functions of t, with A ^ 0,

and

m a - I"9(-R' l) I A(t)R2 + B(t) d + 1 ( }A(t)R2 + B(t)

where D, E, and F are arbitrary functions.

Family 3.

r = AR, 9 = B log R + C0, z = DZ, (5.17)

where A, ■ ■ ■ , D are functions of t such that

A2 CD = 1. (5.18)

This is a known family of quasi-equilibrated motions for incompressible isotropic solids

(cf. Carroll [5]). We claim that this family is quasi-equilibrated for the subfluids if the

initial distribution of the preferred axis i is given by (4.3). This fact is more or less

obvious, since the motion (5.17) preserves the form of (4.3); i.e., in the motion (5.17) the

preferred axis i has the components

i(r) = cos a(<), i(9) = sin a(t), i(z) = 0, (5.19)

where a(t) is a function of t. Since the instantaneous configurations of this family are all

possible static equilibrium configurations, the motions are quasi-equilibrated for the

subfluid.
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The analysis for the restriction on the functions A, ■ ■ ■ , D due to the condition (5.1)

is, of course, the same as that for the isotropic solids, since (5.1) is a condition on the

acceleration field, which is independent of the material.

Family 4.

r3 = ±R3 + A, 6 = ±0, <p = $, (5.20)

where A is a function of t. This is again a known family of quasi-equilibrated motions for

incompressible isotropic solids (cf. Truesdell [4]). We claim that this family is quasi-

equilibrated for the subfluids if the initial distribution of the preferred axis i is given by

(4.7). This fact is again obvious, since the motion preserves the field i.

Case 2. e = n.

The previous four families of motions remain universal solutions with respect to the

following distributions of n:

Family 1.

Family 2.

n(r) — 1, n{6) = n(z) = 0. (5.21)

n(r) = n{6) = 0, n(z) = 1, (5.22)

or the distribution (5.21).

Family 3.

n(r) = cos a(t), n(6) = sin a(t), n(z) = 0, (5.23)

or the distribution (5.22).

Family 4.

n(r) = 1, n(d) = n(<p) = 0. (5.24)
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