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UPPER AND LOWER BOUNDS OF EIGENVALUES: MODE-CLAMPING
THEOREMS*

BY

M.SPARKS

Science Center, North American Rockwell Corporation, Thousand Oaks, California

Abstract. Upper and lower bounds for the eigenvalues of three types of matrices M

are established. If M is written as the sum of a diagonal matrix D plus a matrix A, the

real parts of the eigenvalues of M must lie between the real parts of the neighboring

diagonal elements of D, no matter how large the elements of A or how closely spaced

the diagonal elements of D.

One of the types—that representing one state coupled to possibly all other states of

either a quantum-mechanical or classical system—-arises in the approximation which

gives the golden-rule result that the rate of decay of a state coupled to many other states

is linear in time under certain conditions. Another of the types of matrices arises in

systems having equal coupling between all states.

1. Introduction. In this paper upper and lower bounds on the eigenvalues of three

types of matrices are derived. These matrices arise in many physical problems. For

example, they could be the time development matrices for a classical system of coupled

oscillators [1], a matrix representation of the quantum mechanical Hamiltonian operator

in a discrete basis, etc. The "single-mode-coupling" matrices of Sec. 2 arise [2] in the

approximation which gives the golden-rule result that the rate of decay of one state

coupled to many other states is linear in time under certain conditions.

The central results are given as three "mode-clamping theorems." In all three cases

a matrix M can be written as the sum of a diagonal matrix D plus a matrix a A. For

a = 0 the eigenvalues A,- of M are equal to the diagonal elements ri,- of D. As a is increased

from zero to a finite value, the values of the A,- change. The theorems indicate that for

the matrices considered these changes are severely restricted. No matter how large a

and the elements of A and no matter how closely spaced the dt , the real parts of the X,-

cannot be shifted past the neighboring real parts of the "unperturbed eigenvalues" <2,-

(if certain trivial dj are neglected). The results of the first two theorems, which are not

restricted to symmetric matrices, reduce to well-known results [3] in the symmetric case.

The mode-clamping theorems presented here are somewhat similar to Rayleigh's

theorem1 concerning bounds on the shifts in the phonon frequencies of a system when a

single mass is changed. But the theorems here are concerned with a direct perturbation

of a matrix, while Rayleigh's theorem concerns a perturbation of a weight operator W

in the generalized eigenvector equation L |F) = AIF|F).
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Other related results, which may be found in Wilkinson's book [3] in Ch. 2, particu-

larly Sees. 13 and 40-48, apply to more general types of matrices than those considered

here. While the matrices considered in the present paper are less general, the bounds are

much closer than those obtained for the more general matrices. For example, for the

Gerschgorin circle limit theorems (Ch. 2, Sec. 13 of [3]) the bounds become larger as

the perturbation becomes larger, while the bounds are independent of the size of the

perturbation for the matrices considered here.

The single-mode-coupling theorems 1 and 2 have been used [1] in discussing the rela-

tions between the energy eigenvalues and other frequencies of interest in physical systems

and in discussing the Clogston-Suhl-Walker-Anderson approximation [5] of replacing an

actual coupling between magnons by a single-mode coupling.

2. Single-mode-coupling theorems. Consider the N by N matrix D + P, where

D has only real diagonal elements d, and P has only elements in the Zth row and Zth

column:

"dl 0 ••• Pu ■■■ 0 0

0 d2 P2i ■ ■ ■ 0 0

D + P = Pn Pl2 ••• d, P,.^ Pl

0 0 P N—i,i ••• dfi-i 0

0 0 PN i • • • 0 df.

This perturbation P, which will be called a single-mode-coupling perturbation, arises in

physical problems in which one I mode (either a state of quantum-mechanical system

or a normal mode of a classical system) is coupled to possibly all others. The coupling

is represented by P.

If Pu = 0 (or Pkl = 0) then d, (or dk) is an eigenvalue X of D + P, as seen by ex-

panding the determinant of D + P — X/ (where I is the identity matrix) around the

jth column (or fcth row). When PijP,i = 0, the corresponding eigenvalue XUI- = d,- of

D + P will be called an uncoupled eigenvalue. The eigenvalues of I) + P corresponding

to PijP,i 9^ 0 will be called coupled eigenvalues. In solving for the coupled eigenvalues

one can omit all rows and columns for which PijPn = 0 since these merely give the

uncoupled eigenvalues. In the remaining Nr by Nr reduced matrix Dr + Pr , which has

no uncoupled eigenvalues, it is assumed that a permutation similarity transformation

has been applied so that dx < d2 < • ■ • < dNr . Multiple dj and complex dj are considered

in Sec. 4.

Expanding the secular determinant det \Dr + Pr — X/| == 0 around the Zth column

gives

II (d, ~ X) - ZPnPu II idi ~ X)- (1)

Dividing by JI>vi — X) gives2

2Eq. (2) is the Brillouin-Wigner perturbation expansion, which truncates after the first term in the

sum for single-mode coupling.
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(2)

First consider the case of PuP,i > 0 for all j ^ I. Eq. (2) can be solved for X graphically

by plotting the left-hand side of (2) as a heavy dashed line and the right-hand side as a

heavy solid line, as sketched in Fig. 1. The solutions correspond to the intersections of

these two sets of curves, which are marked with circles in the figure. Fig. 1 was sketched

specifically for the matrix

"l 0 103 0 0 0 0 0

0 2 104 0 0 0 0 0

D + P = (3)

10 102 3 103 t'102 10 0 102

00 0 40 000

0 0 -ilO4 0 5 0 0 0

0 0 104 0 0 5 + e 0 0

0 0 106 0 0 0 7 0

0 0 103 0 0 0 0 8 _

where 0 < e < 2. The uncoupled eigenvalues are Xul = 4 (since Pi3 = 0) and Xul = 7

(since P37 = 0). For the reduced matrix Dr + Pr, Nr = 6 and I = 3. The general results

can be stated as the theorem:

Theorem 1. The coupled eigenvalues of the matrix D + P+, where D is defined above

and P+ is a single-mode-coupling matrix satisfying P^P,* > 0 for all j, satisfy the in-

equalities

Xj < dl

dj-t < X,- < dj for dj < dt

Fig. 1. Construction giving bounds on the eigenvalues X,- for nonnegative definite single-mode coupling.

Notice the clamping of the eigenvalues between the unperturbed coupled eigenvalues dj.
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\i_i di+1 (4)

dj < \j < di+l jor d, > di

Xivr > djvr

The uncoupled eigenvalues are Xu, = duj .

As an example, for the matrix in (3) the relations (4) give

< 1 I < \2 < 2

2 <C X3 5 Xul — 4

5 < X4 < 5 + e 5 + e < X5 < 8

X„2 = 7 X6 > 8

Next consider the P matrix, denoted by P~, whose elements satisfy Pi ,P,i < 0

for all j 9^ I. The right- and left-hand sides of (2) are sketched in Fig. 2 as heavy-dashed

and heavy-solid lines, respectively. From this construction it is seen that the coupled

eigenvalues of D + P' satisfy all of the equations (4) except Xmin < dmin and Xmax > dmal,

where min and max denote the minimum and maximum values, respectively, of the

coupled eigenvalues excluding I. If dmia < dt < rfmax , as in Fig. 2, the other two coupled

eigenvalues are complex. If rf, < dmin there are either 0 or 2 eigenvalues of D + P~

between dt and dmin , as illustrated in Fig. 3. If di > dmax there are either 0 or 2 eigenvalues

of D + P~ between dmax and di , as illustrated in Fig. 4. These results are summarized as

Fig. 2. Construction giving bounds on the eigenvalues X,- for nonpositive definite single-mode coupling.

Notice the clamping of the eigenvalues between the unperturbed coupled eigenvalues dj.
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I

Fig. 3. Clamping of the extra two eigenvalues of D + P~ when <h lies below the manifold of coupled

eigenvalues. The heavy solid curve does not intersect the heavy dashed curve, indicating that the two

extra eigenvalues are complex for this "strong coupling" case. The intersections of the heavy dotted

curve and the heavy dashed curve give the values of the two extra roots in this "weak coupling" case.

When the two curves touch at one point, the two extra eigenvalues are real and degenerate.

Theorem 2. The coupled eigenvalues of the matrix D + P~ defined above satisfy all

of the equations (4) with the exception of the two eigenvalues for which Xmin < dmin and

Xmai > dmax . The remaining two eigenvalues can be real or complex. If they are real, then

they are bounded as discussed above. The uncoupled eigenvalue are X„, = duj .

As an example of di < dmin and dt > cZmaI , consider the matrix

1 a

-a* 2_

If we choose dt = 1 (or dt = 2), then dmiD = 2 (or d„„., = 1). The eigenvalues are

X± = f ± [| - |a|2]l/2

For |a|3 < J, the two eigenvalues are real. For |a|2 = J, the eigenvalues are real and

degenerate (Xi = X2 = |). For \a\2 > J, the two eigenvalues are complex.

3. Equal-mode-coupling theorem. Now consider the N by N matrix D + y U,

where D and I have been defined, U is the matrix having all elements equal to one, and
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dmin

Fig. 4. Clamping of the extra two eigenvalues of D + P~ when di lies above the manifold of coupled

eigenvalues. The heavy solid curve does not intersect the heavy dashed curve, indicating that the two

extra eigenvalues are complex for this "strong coupling" case. The intersection of the heavy dotted curve

and the heavy dashed curve give the values of the two extra roots in this "weak coupling" case. When the

two curves touch at one point, the two extra eigenvalues are real and degenerate.

7 is real:

+ y y y ■ ■ ■ y

7 d2 + y y ■ ■ ■ y

D + yU = y y d3 + y ■ ■ • y

y y y ■ ■ ■ dN + 7.

The perturbation y U will be called an equal-mode-coupling perturbation. As in Sec. 2, it is

assumed without loss of generality that di<d2< ■ ■ • <dN . Expanding det \D-\-yU — \I\

as the sum of 2N determinants gives

n (d, - X) + 7 E II (dt - X) = o (6)
i j i

since all but N + 1 of the determinants vanish and the remaining N + 1 are trivial.

This gives

(7)
7 i A - d,-
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y - negative

Fig. 5. Construction giving bounds on the eigenvalues X,- of D + yU for equal mode coupling. The top

set of circles correspond to solutions for X, for the case of y > 0, and the bottom set for y < 0.

The final theorem is obtained from the construction in Fig. 5.

Theorem 3. For the N by N matrix D + yU defined above, N — 1 of the eigenvalues

are clamped between the neighboring values of dj :

dj < \j < dj + i for j = 1, 2, • • • N — 1.

For positive y the other eigenvalue satisfies \N > dN , and for y negative it satisfies \N < d1 .

4. Multiple and complex dj. The case of multiple d,- , corresponding to degeneracy

in the unperturbed system represented by D, is trivial. The characteristic equation

((1) for D + P or (6) for D + yU) contains the factor (d,- — X)r_1 if the multiplicity of

di{r^di for P + I)) is r; thus the multiplicity of X = d{ is r — 1. For example, in the

limit e —> 0 in (5), it is seen that X4 = d4 = d5 = 5. For the extreme case of df = dh = d

for all j and k ^ I, the value of r is N — 1; thus D + P has N — 2 eigenvalues equal to d.

The other two eigenvalues are easily obtained from (1):

d + di
a± — ^ .(VT+ £p"p«I

For the extreme degeneracy case of cZ, = d for all j in D + yU, the value of r is N;

thus there are N — 1 eigenvalues equal to d. From (6) the other eigenvalue is X.v =

d -f- yN.
Finally, it is obvious in all cases considered that if all dt are replaced by dt — ir\,

then all X are replaced by X — i-q. This trivial mathematical fact has the important

physical consequence that if all unperturbed modes have equal losses >?, then all of the

modes of the coupled system will also have the same loss tj for single-mode-coupling and

for equal-mode-coupling.
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