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VARIATIONAL PRINCIPLES IN THE LINEAR THEORY OF VISCOELASTIC
MEDIA WITH MICROSTRUCTURE*

By

KENNETH A. KLINE

Wayne State University

1. Introduction. In 1963 Gurtin [1] gave variational principles for problems of both

the creep and relaxation type in the linear quasi-static theory of inhomogeneous and

anisotropic viscoelastic solids. His work unified and extended certain variational prin-

ciples of classical elastostatics. In particular, Gurtin's first variational principle gen-

eralized the theorem of Hu Hai-Chang [2] and Washizu [3], while his second variational

principle provided a generalization of the principle of stationary potential energy in

elastostatics.

In this work we give variational principles which are analogous to the first and second

of Gurtin's and which provide a unified development of the linear quasi-static theory

of (inhomogeneous and anisotropic) viscoelastic solids with microstructure.

The subject of materials with microstructure has received considerable attention

lately. As examples of recent investigations of theories of elastic materials with micro-

structure we cite the papers by Mindlin [4], Toupin [5], Suhubi and Eringen [6] and

Fox [7]. Furthermore, Green, Naghdi and Rivlin [8] have developed a general theory

of multipolar continuum mechanics in which alternative definitions of multipolar dis-

placements are utilized. These recent researches are, of course, rooted to earlier works:

for an excellent historical discussion see Toupin [5].

Our development of the theory of viscoelastic solids with microstructure will be

guided by the work of Mindlin [4] and Toupin [5] on microstructure in elasticity, and

will use the Stieltjes convolution. In this latter regard we follow the study of linear

viscoelasticity theory by Gurtin and Sternberg [9].

Sec. 2 deals with certain kinematical aspects of theories of solids with microstructure.

We record some results due to Toupin [5] and give his reduction of the basic kinematical

measures for the nonlinear theory of microstructure in elasticity to the kinematical

measures used in Mindlin's linear theory [4], We also discuss the kinematical measures

arising in the nonlinear theory of microstructure in viscoelasticity as given by DeSilva

and Kline [10] and Kline [11], and, following [5], obtain appropriate measures for a

linear theory of viscoelastic solids with microstructure.

In Sec. 3 we adopt and extend where necessary the definitions given by Gurtin [1]

concerning variational principles in linear viscoelasticity. Sec. 4 is devoted to the der-

ivation of variational principles appropriate to the linear quasi-static theory of visco-

elastic solids with microstructure.

Before closing this section we would like to discuss briefly some variational theorems

which have been developed for theories of couple stresses and generalized continua.1
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The essential difference between these earlier works and the present paper is best de-

scribed by considering the kinematics of deformation of continuous media with micro-

structure. In this paper we follow Ericksen and Truesdell [12] and Toupin [5] and

associate a triad of directors with each material particle of the medium. The directors

are intended to describe the microstructure of the continuum and are allowed to deform

and rotate completely independently of the displacement field associated with the

material particles. Theories involving less general concepts of deformable continua

have been extensively developed in the literature and have provided interesting and

important results. The common feature of such theories is that couple stresses arise

naturally. However the notion of a double force (a symmetric second-order tensor whose

presence was first deduced by Mindlin [4]) does not enter naturally unless the director

triad is allowed to deform as well as rotate. The variational principles given here include

the double force and appear to be the first general principles accounting for deformation

and rotation of the directors.

Presently available variational principles, to which we now turn our attention, may

be separated into two categories. Such classification is made not to imply degrees of

utility or importance of the various variational theorems, but rather to facilitate dis-

cussion of the kinematical structure with which they are concerned. As examples of

one class we cite the works of Ivoiter [13], Naghdi [14], Nowacki [15], and E. Reissner [16],

These authors consider a dynamic generalization of the classical theory of elasticity;

they introduce couple stresses but relate the rotation field to the displacement gradients.

Such theories do not, therefore, modify the kinematic structure of the continuous

medium, but rather they retain the concept of a deformable continuum in the classical

sense. However, a modification of the kinematic structure was not the purpose of these

works, and the theories presented have been very useful in shell theory [12], [14], [1G],

and appear to provide insight for the study of elastic fatigue [13] and thermal stresses [15].

For representative papers dealing with a second class of variational theorems we

refer the reader to the works of Giinther [17], Nowacki [18] and E. Reissner and Wan [19].

These authors consider a rotation of the continuum which is independent of the dis-

placement field. They are naturally led to the existence of a couple stress tensor which

appears in the spin angular momentum balance equation. As Toupin [5] has pointed

out, this spin momentum equation is actually the antisymmetric part of a more general

balance equation. Toupin's comments (1964) concerning the symmetric part of this

general balance equation are still valid. He said, in part: "The symmetric part ... is

not so easy to interpret in terms of familiar concepts." We term the symmetric part

the microstructure stretch momentum balance equation and note it enters only when

the microstructure is allowed to deform as well as rotate. The authors of [17], [18], [19]

were not concerned with microstructure deformations; their work may be considered

a refinement of the work discussed in the first class above. For example, in the recent

work of E. Reissner and Wan [19] a variational principle is given which extends one

obtained by Naghdi [14] and has, as the Euler equations, the linear and spin momentum

equations, the strain displacement relations (which relate strain measures to the dis-

placement and rotation fields), and the stress strain relations. The extension from [14]

to [19] centers precisely on the kinematical structure assumed; as discussed above,

Naghdi [14] considered a rotation which is related to the displacement field, while

E. Reissner and Wan [19] considered rotations and displacements as independent quan-

tities. In the sense that the present work considers rotations, displacements and micro-
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structure deformations as independent quantities, our results may be considered as

further refinements. However, they are offered here in the broader hope they may shed

light on the troublesome stretch momentum equation.

The notion that the microstructure can deform and rotate independently of material

particle displacements is, of course, central to the work of Mindlin [4] and Toupin [5],

and, in fact, the variational result most akin to ours was given by Mindlin. Mindlin

obtained, from Hamilton's principle, the linear, spin and stretch momentum equations

and the stress and couple stress boundary conditions. Our second variational principle

may be considered as an extension of Mindlin's result to viscoelastic media with micro-

structure.

In our first variational principle we assume only that the double stress and the classical

strain tensors are symmetric and obtain, as Euler equations, the linear, spin and stretch

momentum equations, the full set of kinematical relations (which express strain measures

in terms of the displacement, rotation and microstructure deformation fields), the

constitutive equations for the stress, couple stress, and double force tensors (in terms

of Stieltjes convolutions), the stress and couple stress boundary conditions, and the

displacement and director difference boundary conditions. The restriction of symmetry

for the double force and classical strain tensors does not, at this time, appear to be

unreasonable, and in any event could be easily removed using the technique presented

by E. Reissner [20].

Finally, as a possible application for the theory presented here we mention the prob-

lem of creeping motion (e.g. small shear rates) of a viscous fluid containing suspended

deformable particles. Certain blood flows provide such an example since red cells are

highly deformable. Following the imaginative work of Ericksen [21] some progress

has been made in treating blood flow if the red cells are assumed rigid; one merely con-

siders displacements and rotations as independent quantities and neglects microstructure

deformations (see [22]). However, to account for the deformable character of red cells

one must consider independent microstructure deformations, and hence deal with double

forces and the stretch momentum equations. The present work provides a unified foun-

dation for the necessary theory, and the variational formulation makes possible the

application of well-known approximate solution techniques.

2. Preliminary remarks on solids with microstructure. We refer the motion of a

continuous medium with microstructure to a single fixed rectangular Cartesian coordinate

system and denote material points by X. Following Toupin [5], the microstructure at

time t is described by the directors d„ (X, t), a = 1, 2, 3. Thus the motion of a continuum

with microstructure is represented by the mappings

x = x(X, t) da = d* (X, t) (2.1)

where x is the position of X at time t.

Toupin [5] expressed the energy of deformation W as a function of d„ , Vx, Vd„ and

X, where V = d/dX, and required IF to be invariant under the group of Euclidean

displacements. From this he obtained the following kinematical measures appropriate

for a nonlinear theory of elastic materials with microstructure:

^aK dai*^i,K , C'KL 1 ^2 2)^

&aLK — dai tK%i , L ■

2 An equivalent set of measures was given by Fox [7].
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The tlieory of viscoelastic materials with microstructure was considered in [10] and

[11]. In [11] constitutive equations were postulated in the form of functions of the kine-

matical variables

d„ , Vx, Vda , Vx and Vd„ ,

where (•) indicates the material derivative3. Using the principle of material objectivity

we obtained the following kinematical measures in terms of which a nonlinear theory

of viscoelastic materials with microstructure could be formulated:

! &ccK t Ckl , &<xLK > CKL , VKL , VKLM] (2.3)

where AaK , GKl and AaLK are defined in (2.2) and

VkL %i ,K%i, l(Pi, i dj

V KLM = Xi,K%j ,LXk,m(di daj),k •

In (2.4) v is the velocity, defined through (2.1) by v = dx/dt, and d" is the reciprocal

to dQ . That is, we assume at each X the associated director triad forms a linearly in-

dependent set of vectors in the three-dimensional Euclidean space. A set of measures

equivalent to (2.3) was given in [10].

Using the kinematical measures in (2.3) we wish to construct a linear theory. Let

Da designate the director field at reference time r; i.e., say the functions in (2.1) satisfy

X = x(X, r), Da = d„ (X, r).

Now recall that in obtaining infinitesimal strain measures for elastic materials with

microstructure Toupin [5] formed the quantity yoK = DaLCLK — AaK and observed

that yaK vanishes if each director is material, i.e., if the director field deforms and rotates

along with the continuum. To obtain infinitesimal strain measures for viscoelastic

materials with microstructure we first note from (2.4) that VK L vanishes if each director

is material. This is immediately evident since if each director is material

0 = dai — xi:K DaK. (2.5)

Then taking a material derivative of (2.5) we obtain, using (2.5)

0 = dai - VijXj.K DaK = dai — v,j dai .

Multiplying this last equation by the inverse d% yields that if (2.5) holds

d"k dai = v,,k ; VKL = 0.

Defining EKL by CKL ~ oKL + 2 EKL , it is clear that the basic set of kinematical

measures (2.3) can be replaced without loss of generality by the set

{'YaK , EkL , &aLK , Ekl , VKl , Vklm}- (2.6)

Let u be the displacement, defined by u = x — X, and, following [4] and [5], choose

= &aL , and define

ta, = dai — Dai . (2.7)

'Dependence on temperature and temperature gradients was also considered in [10] and [11] but is

neglected here.
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We wish to obtain infinitesimal strain measures corresponding to the general measures

in (2.6). Toupin [5] showed, to first-order terms in the displacement gradients w,., and

director differences \pai , that

yai ^i,a ai J j ^Pai,j Kaij ^

En = + m,-,<) = en .

It is easy to show, retaining first-order terms in m,.,- , duifj/dt, \[/ai , d\pai/dt, ipai,j and

Vi , that the infinitesimal strain measures corresponding to the last three measures

in (2.6) have the form:

V = dY.' . y _ d^n.k _ dKiik

dt ' iik dt dt

F _ de'i

Eii ~ dt

The quantities yu , and e;,- are used in the linear theory of elasticity with micro-

structure as developed by Mindlin [4]. We see that additional!}7' the measures dyn/dt,

dKiik/dt and den/dt must enter to treat the linear theory of viscoelasticity with micro-

structure. Hence, for the theory of microstructure in viscoelastic solids, it is natural

to postulate constitutive equations relating the stresses and double force to terms of

the type y*dG\ v.*dG2, and e*dG'\ where the G's are various relaxation functions

and the notation j*dg stands for the Stieltjes convolution (see [9]).

3. Definitions. A certain economy is made possible in the statement of variational

principles by first giving definitions of the problems, states and solutions one wants

to consider. Such definitions are the core of the present section and are patterned after

the systematic treatment given by Gurtin [1],

We consider an open, bounded, connected region of three-dimensional Euclidean

space, V, with closure V and boundary S, where S is the union of a finite number of

nonintersecting closed regular surfaces (see Kellogg [23]). We allow S to have a pair

of complementary subsets (S, , S„) and (S„ , S^), and denote the unit outward normal

to S by n. Finally, we require the closure, e.g. <S, , of each of the subsets of S to be a

regular surface.

The complete system of field equations in the linear quasi-static theory of viscoelastic

solids with microstructure is required to hold on ^(-co, co); the Cartesian product

of region V and the entire time interval, and can be expressed in the form

(3.1)
T.» = uii{ — in , /cat = iii.k ,

en = Km.-,/ + «#,.),

tii.i + pji — 0, (3.2)

t,i — Di,i + fikii.k + pbji = 0; VIn = m,-,- , (3.3)

ta - m,-,- = Vkn*dBjik„ - (y*» - enk)*dCjikn , (3.4)

to,-,- = 2enl*dAiikn + (ykn - enk)*dCiikn , (3.5)

tiku = Knam*dLkiimn<l onVx(- co, co). (3.6)

Eqs. (3.1) give the appropriate kinematical relations for solids with microstructure:
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strain measures y are defined in terms of displacement gradients and director differences

t|r; strain measures k are related to director difference gradients; and e is the classical

infinitesimal strain tensor. Eq. (3.2) express the balance of linear momentum, with t

the stress tensor and f the body force vector. The antisymmetric part of (3.3) gives

the balance of spin momentum, while the symmetric part may be called the stretch

momentum equation. Further, m is the double force tensor, y the double stress tensor, and

tensor b arises since we allow the association of a body force vector b" with each director

da ; the antisymmetric part of b is a couple per unit mass.

In writing momentum equations (3.2) and (3.3) we have used the notation of Allen,

DeSilva and Kline [24]. These governing equations were derived in [24] by postulating

an energy balance equation and, following Green and Rivlin [25], by making use of

invariance conditions under superposed rigid body motions. Similar governing equations

were derived by Mindlin [4] and Toupin [5], both of whom used Hamilton's principle

to obtain the variational equation of motion. For example, Mindlin's results (see Eqs.

(4.1) of [4]) are the same as Eqs. (3.2) and (3.3) of the presen4- work except for some

notational differences: Mindlin's x corresponds to our m, his <J to our t — m, and his

<i> to our b. Similarly one could relate symbols in Mindlin's theory to those used by

Toupin or those used by the authors in [6], [7] and [8], Here we only note that there are

no standard notational agreements, perhaps due to certain conceptual differences among

workers in this field. We compare explicitly to Mindlin's work to allow reference to

his thorough discussion of constitutive equations (see Sec. 5 of [4]).

Constitutive relations for viscoelastic solids with microstructure are given in Eqs.

(3.4), (3.5) and (3.6), where A, B, C and L are relaxation tensors. By the symmetry

of m and inspection of (3.5) we are led to require

Ajikm = Aiikm , Ciikm = Ciihm onFx(-o, 0). (3.7)

Note that if A, B and C are isotropic tensors, then Eqs. (3.4) and (3.5) are completely

consistent with Mindlin's corresponding constitutive relations for d and t (Eqs. (5.6) t

and (5.6)2 of [4]). In this case the constitutive relations for t — m and m involve only

seven independent relaxation functions.

We have already tacitly assumed that all quantities appearing in Eqs. (3.1) through

(3.6) are defined on Vx(— co), and will now list additional requirements. We first

adjoin to the field equations the initial conditions

U = i|f = y = e = K = 0,

m = t = y = 0 on Vx(— °° , co),

and the mixed boundary conditions

ti = tj,n,- = ti on S,x(—coo),

u{ = Ui on Sux(— co , co),

Mi/ = P-ki,nk = fin on S„x(—co, oo),

in = hi on Stx(— co , oo),

where t, u, y and ijj are prescribed functions.

We now define a regular problem:

R = R(V, St , Su , S„ , S+ , t, u, y, f, b, A, B, C, L) (3.10)

(3.8)

(3.9)
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is a regular problem for region V with boundary S having complementary subsets

(St, Su), (S, , S#) as already defined if:

(i) u and ^ vanish on Sux( — co, 0) and S^x(— co, 0), respectively, and are continuous

on >S«a:[0, co) and /S*a:[0, <»), respectively;

(ii) t and y vanish on S,x(— oo, 0) and , 0), respectively, and are piecewise

continuous on iS,.t[0, m) and (S„a;[0, °°), respectively, while t(x, ■) and u(x, •) (the

mappings of time alone) are continuous on [0, °°) for each x £ S, and for each x £ S„,

respectively;

(iii) f and b vanish on Vx(— <», 0) and are continuous on Vx[0, <*>);

(iv) A, B, C and L vanish on Vx(— , 0), are continuously differentiable on Vx[0, »),

and have the symmetry properties

A — A 7? = 7? f = C-*1jxkm kmi i » j ikm kmj i f jikrn ^ km.) i t J

kjimnq ^mnqkji > Oil Vx( 00 , 00 ) .

Further, A and C must satisfy the relations (3.7).

We note the symmetry relations given in (3.11) for the relaxation tensors A, B, C

and L are of the same form as the symmetry relation assumed for the relaxation tensor

in classical anisotropic viscoelasticity [1], and are identically satisfied if we reduce to

the linear theory of microstructure in isotropic elastic materials [4].

Having specified the meaning of a regular problem, one's task is to find a set

of functions

{u, tfc, r> e, k, m, t, yj on Vx(— °°, °°)

which satisfies the field equations (3.1) to (3.6), the initial conditions (3.8) and the

boundary conditions (3.9). We seek an equivalent variational formulation for the

preceding statement of the mixed boundary-value problem, and, to this end, now define

an admissible state.

The ordered array of functions

« = [u, it, r, e, k, m, t, y] (3.12)

is an admissible state on Vx(— °°, °°) if:

(i) u, it, y, e, k, m, t and y vanish on Vx{— <», 0) and are continuously differentiable
on Vx[0, co );

(ii) e and m satisfy the symmetry relations ei; = , mtj = m,-,- on Vx(—a>, co).

Addition of states and multiplication of a state by a scalar are defined by

a + S = [u + u, it + it, v + y, e + e, k + ic, m + m, t + t, y + y], (3 13)

a® = [au, ait, aYi ae> am> «y],

in which case the set of all admissible states is a linear space.

We now define a solution of the mixed boundary-value problem in terms of admissible

states. Given a regular problem R = R(V, S, , Su , S„ , S# , t, u, y, tjj, f, b, A, B, C, L),

we say ft = [u, it, y, e, k, m, t, y] is a regular solution of R if ft is an admissible state

on Vx(— oo, oo) which satisfies the field equations (3.1) to (3.6) and the boundary

conditions (3.9).

By functional we mean a real-valued function defined on a subset of a linear space.
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If L is a linear space, 12 {•} a functional whose domain is K, K C L, then for

8, 8 £ L, a + a® £ K for every real a, (3.14)

we formally define the notation

dJS2[a} = S2{® + aSJ (3.15)
a-0

The variation of Q {■} is zero at tt over K and is written

512 [ Ct} = 0 over K, (3.16)

if and only if exists and equals zero for every choice of ft consistent with (3.14).

4. Variational principles characterizing viscoelastic solids with microstructure. In

this section we consider two variational principles, the first of which is the more general

since it treats admissible states which are not required to meet any of the field equations

or boundary conditions. It should be noted from the definition that an admissible state

(and hence a regular solution) is allowed to have finite jump discontinuities at time

zero.

We begin by generalizing to solids with microstructure Gurtin's first variational

principle [1], which in turn provided a generalization of the theorem due to Hu Hai-

Chang [2] and Washizu [3].

First variational principle. Let K be the set of all admissible states on Vx{— °°, co).

Let R = R(V, S, , Su , S„ , S* , t, u, y, f, b, A, B, C, L) be a regular problem. Let

a = [u, tlr, y, e, k, m, t, y] £ K, and for each fixed t £ (— °°, 00) define the functional

fi, {•} on K by

{a} = f ti* d.Ui dS + [ (ti — it) * dUi dS
Js. Jst

+ f Ha * d\pij dS + f (n{j — fin) * dipa dS
J st J s„

— / {(tji.i + pfi) * dUi + (tu — m,i + ntji.k + pbn) * d^a) dV
Jy

+ / {iLtiimna * dic„am * dKjik — iCiikn * d{ykn — ekn) * d(yii — ejx)
J V

+ \Biikn * dykn * dya + Aiikn * dekn * deti} dV

- / {nkii * dKUk + (/,-,• - mu) * dyjt + m,-< * den} dV. (4.1)
J V

Then

512, {a} = 0 over K, t £ (—°°, 00) (4.2)

if and only if a is a regular solution of R.

Proof. Let a = [u, tjr, y, e, k, m, t, y] £ K, from which it follows that a + «a £ K

for every scalar a. Then by (4.1), (3.15), (3.11), the divergence theorem, property (ii)

of admissible states, and Theorems 1.2 and 1.6 of [9],

5a0({a} = f (Hi - Ut) * dli dS + [ ($ti - iu) * dpn dS
J Su Js +
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+ [ {hi— U) * dui dS + [ — fin) * dS
JSt Js,

~f~ I [ (^7iqm ̂ dL/cj imnq MA j i) * dK j {^
J y

+ (2e„t * dAiikn + (ykn - ent) * dCiikn - mit) * dZH

+ (ykn * dBiikn - (ykn — enk) * dCjikn — (/,,■ — m,-,)) * dyu

~ ihi.i + p/.) * dUi - {tji - mit + p.kii,k + pbix) * dj>H

~ fcit ~ &<.*) * dptji - (en - §(«,-.,• + u< ■ •')) * dm a

~ (y,i ~ («<„■ ~ &■<)) * - m,i)} dV, (-00 < t < 00). (4.3)

Clearly, if a is a regular solution of R, then by virtue of (3.1)-(3.6) and (3.9), (4.3)

yields

Saft, [®j =0 (— 00 < t < co) for every ft G K, (4.4)

which implies (4.2).

Turning to the converse assertion we need show that 8 G ^ is a regular solution

of R whenever (4.4) holds. Note that each of the integrands in (4.3) is a function of

(x, t) and choose

fi(x, t) = U'(X)ft(0, ^(X, 0 = t[r'(x)/l(/),

r(x, t) = r'(x)/i(0, e(x, t) = e'(x)h(f), ^ ^

k(x, t) = k'(x)h(t), m(x, /) = m'(x)h(t),

t(x, 0 = t'(x)/),(0, y(x, 0 = y'(x)^(0

for every (x, i) G Fx(— », 00)( where /«, the Heaviside unit step function, is defined

by h(t) =0 (— co < t < 0), MO = 1 (0 < t < co). Then, using (4.3), (4.5) and Theorem

1.2 in [9], we obtain from (4.4)

[ (Hi — dS + f (ypu — \pi,)n'knnk dS
J s. Js +

+ f 0i ~ ^)w' dS-j-f — fii^xp-j d.
•> Si ■'s,

1 I { (fnflm * dLkjimnq ^kji)^i%k
Jy

+ (2enk * dAiikn + (ykn - enk) * dCjikn — m,i)e<i

+ (yk„ * dBjikn - (ykn - enk) * dCiikn - (tit - mj^yU

(^2».l ~t~ (^;V ~f~ V'kji.k ~}~

(Kjik i i ,k) V-kj i (fi 1 i 2 (^i . 1

- (y,-,- - (m,-.,- - 4>u))(.t'n ~ <.)! = 0 (—•00 < t < co). (4.6)

Now (4.6) must hold for every u', t!'', y', e', k', m', t', y' continuously differentiate on

V with e' and m' symmetric. From this fact, the fundamental lemma of the calculus
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of variations, and the symmetries of e, m, A, C it follows that ft satisfies (3.1)-(3.6),

(3.90, (3.9,) and

[ (Ui — dS + f ($;,■ — 1pi,)ti'kiinkdS = 0 on (-co </<co). (4.7)
J S„ Jst

We need only confirm (3.92) and (3.94). Let / and g be functions continuously differen-

tiable on V, say m, p, n, q, t are fixed integers (m, p, n, q, t = 1, 2, 3) and consider

= Sim Sip g(x), ^

//«<(*) = Skn Sia Sit /(x), x E V.

Since (4.7) holds for every such t' and y' we obtain

[u„{x, t) - up(x, £)] nm(x) = 0 (4.9)

for every (x, t) E Sux( — 00, «>) with x a regular point, and

[t,q(x, t) - \f*ta(x, t)] n„(x) = 0 (4.10)

for every (x, t) E S..x(— <*>, co) with x a regular point. Consider (4.10), fix (x, t) and

choose coordinates such that n„(x) ^ 0 to conclude that

ijr(x, t) = t[;(x, t) for every (x, I) E <*> t a>)

with x regular. Hence from this and the continuity of tjj and ijr we see (3.94) holds. Sim-

ilarly consider (4.9), use the continuity of u and u to conclude (3.92) holds and finally

that ft is a regular solution of R. This completes the proof.

To develop another form of variational principle we consider more stringent conditions

on the admissible states. Define a kinematically admissible state as an admissible state

which meets the kinematical relations (3.1), the constitutive relations (3.4)-(3.6) and

the displacement and director difference boundary conditions (3.92), (3.94). Such con-

siderations lead to the following generalization of the theorem of minimum potential

energy.

Second variational principle. Let K be the set of all kinematically admissible states

on Vx(— oo, co). Let R = R(V, S, , Su , , S# , t, u, y, ijr, f, b, A, B, C, L) be a regular

problem. Let ft = [u, ifc, y, e, k, m, t, y] E K, and for each fixed i E (— ro, 00) define

the functional {•} on K by

$ ,{ft} = / HLkiimn<l * dKntm * dKiik - iciik„ * d(yk.n - ekn) * d(yii - eit)
J v

+ IBjikn * dykn * dyti + Ajikn * dekn * de,i} dV

— / {p/» * dUi + pbn * din] dV — t{ * du{ dS — * d^a dS.
Jr J st J s„

(4.11)
Then

<S3>,{ft} = 0 over K, - co < t < » (4.12)

if and only if ft is a regular solution of R.

Proof. Let ft = [u, tjj, y, e, k, m, t, y] be an admissible state and suppose that

ft + aft E K for every scalar a. (4.13)
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Since K is the set of all kinematically admissible states, (4.13) implies ft meets (3.1),

(3.4)-(3.6) with

m, = 0 on Su;®), ^ ^

!pH = 0 on S^(-m, °°).

Now use (3.1), (3.4)-(3.6), (3.15), (3.11), the divergence theorem, property (ii) of

admissible states and Theorems 1.2 and 1.6 of [9] to verify that

= I (h — U) * dUi dS + I (ju,-,- — fin) * d$ij dS
Jst JSp

- I {(hi.i + p/») * dtii + (hi - + P&x) * diu) dV (4.15)
J V

for every u, \\ which meet (4.14) and property (i) of admissible states. Clearly (4.15)

implies (4.12) if ft is a regular solution of R.

Turning to the "only if" portion of the proof, we assume (4.12) holds and choose

u(x, t), tjr(x, t) as in (4.5), where now (since (4.1) holds) u' and are twice continuously

differentiable on V and

u' = 0 on Su , if = 0 on St . (4.16)

Then by (4.12) and (4.15)

[ — ii)u'i dS + [ (na — p-a) ip'a dS
•>S, J s„

— [ {(tji.i + pfdu'i + (hi — ma + Mtj.-.t + pbii)Va] dV = 0 (4.17)
Jy

on — 0° < t < co for every u', t'/ with the foregoing properties. This fact, by virtue

of the fundamental lemma of the calculus of variations, implies that ft meets (3.2),

(3.3), (3.9i), (3.92); hence, ft is a regular solution and the proof is complete.
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