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SOME RESULTS IN THE LINEAR DYNAMICAL THEORY OF
ANISOTROPIC ELASTIC SOLIDS*

By

LEWIS T. WHEELER

University of Houston

Introduction. This paper aims at generalizations to anisotropic homogeneous elastic

solids of some of the results contained in a recent comprehensive study [1] of various

topics in the linearized dynamical theory of homogeneous and isotropic elastic media.

All of the theorems proved here encompass unbounded domains. Specifically, we establish

the prolonged quiescence of the far elastodynamic field in an initially quiescent an-

isotropic body. In addition, we prove a uniqueness theorem and a reciprocal identity

which are applicable to infinite anisotropic solids, in the absence of artificial regularity

requirements at infinity. With these objectives in mind, we first deduce an appropriate

elastodynamic analogue of Zaremba's [2] generalized energy identity for the scalar

wave equation.

1. Notation and preliminaries. The notation used in this paper is, except for minor

modifications, the same as that employed in [1], Ordinary lower-case letters stand for

scalars, while lower-case boldface Latin letters denote vectors and lower-case Greek

letters in boldface designate higher-order tensors. If x is the position vector of a point

in the euclidean three-space E, we write

B5(x) = {z j z G E, |z — x| < 5} (5 > 0) (1.1)

for a spherical ball of radius 5 centered at x. In particular, we let Bs stand for Bs(0).

The letter R at present will always denote a regular region in E: thus R is open and

there exists d0 > 0 such that for every o > <50 the set R Bs is connected and has as

its boundary a finite number of nonintersecting "closed regular surfaces", the latter

term being used in the sense of Kellogg [3, p. 112], If dR is the boundary1 of R, we call

d*R the set of all points in OR at which its normal is defined. The symbol T" is reserved

for the entire real line and T denotes an arbitrary (open, closed, or half-open) interval

of T". In addition, we use the notation

T~ = (-00,0], r = [0, co). (1.2)

Standard indicial notation, with the usual summation and differentiation conventions,

is employed in connection with cartesian tensor fields of any order. Also, we write • tjr

for the fully contracted outer product of two tensors <£, of the same order
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and Vv for the tensor with the components i>,, ,■ , if v is a differentiable vector field.

Finally, to facilitate concise smoothness hypotheses, we employ the function classes

e(P) and e"(P). The class G(P) consists of all tensor-valued functions of any order

that are defined and continuous on a subset P of euclidean n-space; for a a positive

integer, Q"(P) consists of all functions in Q(P) whose partial derivatives of order up

to and including a exist on P and there coincide with functions belonging to C(P).

As for preliminaries from the linear dynamical theory of elasticity, we require the

notion of an

Elastodynamic state. If u and <5 are, respectively, a vector-valued and a second-order

tensor-valued function defined on R X T, we call the ordered pair [u, d] an elastodynamic

state on R X T corresponding to the body-]orce field f, the mass density p, and to the elasticity

tensor y, and write

[u, d] G £(f, p,y;RX T),

provided:

(a) u g e2CR XT)n e\R X T), d G G(R XT), f e e(R X T),

p is a positive constant, and y is a constant fourth-order tensor such that

7iikl = 7iikl = "fklii , (1-3)

yukiVuVki > 0 for every second-order tensor <p; (1.4)

(b) u, d, f, p, and y on R X T satisfy the equations

c.i+ fi — pUi , (1-5)2

yukiuk,i - (1.6)

If, in particular,

T = T", u = 0 on R X T~, (1.7)

we say that [u, d] is an elastodynamic state with a quiescent past and write

[u, d] G S0(f, p, y, R)- (1-8)

Eqs. (1.5) represent the stress equations of motion and Eqs. (1.6) the stress-dis-

placement relations of the linear theory. Note that (1.3), (1.6), together with the as-

sumed continuity of d on fi X T, imply the symmetry of d on R X T. Condition (1.4)

assures that the quadratic function e defined by

e(<n) = \yatifxifki for every second-order tensor o, (1.9)

is positive semi-definite. If u is the displacement field of an elastodynamic state, then

e(Vu) evidently represents the strain-energy density associated with this state. Finally,

if d is the stress field of an elastodynamic state on R X T and n is the unit outward

normal of d*R, we call the vector field s defined by

Si = <ji jUj on d*R X T, (1.10)

the tractions of d acting on dR.

2The superposed dots indicate partial time-differentiation.
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2. Prolonged quiescence of the far elastodynamic field. Uniqueness and reciprocal

theorems. In preparation for the theorems that constitute our main objective, we

require the following auxiliary result.

Lemma 1 (Generalized energy identity). Suppose:

(a) [u, d] £ S0(f, p, r, R)\

(b) r £ 6'(.ff) is a given junction such that the set

!x | x £ R, r(x) > OJ

is bounded. Let t]r be the second-order tensor-valued junction defined by

ipa(x) = m,(x, t(x))t.,(x) /or evert/ x£ (2.1)

Then,

f f u(x, £)-s(x, t) dt dA + [ [ u(x, /) • f(x, i) dt dV
J dR Jo J R Jo

= £ [j u2(x, r(x)) - e«r(x)) + e(Vu(x, r(x)) + ifc(x))J dV, (2.2)

where s are the tractions of d acting on dR and e is given by (1.9).

Prooj. For convenience define vector fields p and v through

Pi = on R X Ti\-(x) = [ pt(x, t) dt for every x £ ft. (2.3)
Jo

The degree of smoothness of u, d, r implied by hypotheses (a), (b) ensures that

v £ e'(ft) C\ C(ft). (2.4)

Next, note that (2.3), (1.5) furnish

V• v(x) = J j^Vu(x, t)-6(x, t) + ~|^u2(x, t) - u(x, t)-i(x, t) dt

+ p(x, r(x))-Vr(x) for all x £ R, (2.5)

while (1.6), (1.3), (1.9) yield

Vu(x, t) • d(x, 0 = Je(Vu(x, 0) for a11 (x- 0 £ ft X T. (2.6)
ot

Substitute from (2.6) into (2.5) and use (1.7) to arrive at

V-v(x) = p(x, r(x))• Vr(x) + e(Vu(x, t(x))) - j u(x, /)-f(x, /) dt + |u2(x, r(x)),

which, after a brief computation involving (1.6), (2.3), (1.9), (2.1) and the symmetry

relations (1.3), gives rise to

V • v(x) = e(Vu(x, r(x)) + ^(x)) - e«r(x)) + (p/2)u2(x, r(x))

fT (X)
— / u(x, /)-f(x, t) dt for every x £ R. (2.7)

Jo
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Observe that v has bounded support by virtue of (2.3), hypothesis (b), and (1.7).

Moreover, hypothesis (b) and (1.7), because of (1.9), (2.1), imply that each term in

the right-hand member of (2.7) is the value at x of a function with bounded support.

Thus, the individual terms in the right-hand member of (2.7), and hence V-v, are

properly integrable on R, since (1.9), (2.1) and the assumed regularity of u, f, t imply

that each of these terms represents the value at x of a function in G(R). The preceding

remarks concerning v and V-v, in conjunction with (2.4), entitle one to apply the

divergence theorem3 to v on R. Accordingly, (2.7) leads to

f v(x) -n(x) dA = f
JdR J R

^u2(x, r(x)) - e(<r(x)> + e(Vu(x, r(x)) + *t(x)) I dV

— f [ u(x, t)-f(x, t) dt' dV,
J R JO

where n is the unit outward normal of d*R. The desired result (2.2) now follows at once

with the aid of (2.3) and (1.10). This completes the proof.

If R is bounded, we may in particular choose t = t on It, where t is any given positive

number; for this choice (2.2) passes over into the classical energy identity

[ f u(x, X) • s(x, X) d\ dA + f f u(x, X)-f(x, X) d\ dV
JdR *>0 Jr Jo

= £ [j u2(x, 0 + e(Vu(x, /))] dV. (2.8)

The preceding lemma reduces to Lemma 2.1 of [1] in the special case of isotropy, for

which

T iki — Su + Su Sjk + y _ ^ &>• > (2-9)

where /j. and v respectively denote the shear modulus and Poisson's ratio, while S,-,- is

the Kronecker delta. We now use Lemma 1 to establish

Theorem 1 (Sufficient conditions for the prolonged quiescence of the

far elastodynamic field). Let R be unbounded and suppose

(a) [u, d] G £0(f, P, r; R)',

(b) for every t > 0, there is a bounded set A(t) C R such that

f = 0 on (R - A(0) X [0, t],

and, ij dR extends to infinity,

u-s = 0 on (d*R — A(0) X [0, t],

where s is given by (1.10).

Then, jor every t > 0, there exists a bounded set tt(t) C R, depending only on A(t), p,

and y, such that

u = d = 0 on (R - S2(0) X [0, f]. (2.10)

sSee Theorem 1.1 of [1] for the required version of the divergence theorem, which is a trivial modifica-

tion of the strongest form stated and proved by Kellogg in [3, p. 119].



1970] ANISOTROPIC ELASTIC SOLIDS 95

Proof. It is clear from (1.9) that

e(<$) < ~c2<£-<£ for every second-order tensor s?, (2.11)

provided

c = a/ 2(1 + 81 Irl/p), Irl = (2.12)

With c so determined, fix t > 0, and choose 5 > 0 such that

dR W A(t) C Bs if dR is bounded,
(/.lo)

A(/) C -B5 if 3/2 is unbounded.

Now consider the set

U(t) = £J + C, . (2.14)

Since 0(2) is closed, one shows readily4 that R — S2(f) is contained in the closure of

R — Q(t). In view of the continuity of u, <J on R X T", and because (1.6) holds on R X T",

it suffices to show that

u = 0 on (R — Q(t)) X [0, t] (2.15)

in order to establish (2.10). To this end, choose

(z, X) G (R - 0(0) X (0, I] (2.16)

and hold (z, X) fixed. Define

t(x) = X — ̂  |x — z| for every x£fi. (2.17)

If Rz and Rz stand for the sets obtained from R and R by deletion of the point z, then

evidently

r e e\Rz) n e(R), |Vr(x)| = - for all xGA, (2.18)5

{x I x e R, r(x) >0! = R r\ Ba(z). (2.19)

It follows from (2.14), (2.16) that Bs does not intersect 5cx(z), so that (2.13), (2.19)

imply

{x | x G R, t(x) > 0| C R — A(0 \J dR if dR is bounded,

(2.20)
{x | x £ R, t(x) > 0} C R — A(<) if 322 is unbounded.

Next, appeal to (2.16), (2.17) to see that

r(x) < t for every x £ R. (2.21)

Hypothesis (b), (2.20), (2.21), and the fact that u vanishes on It X T~ according to

hypothesis (a), furnish

4Cf. [4, Exercise 1, p. 37].

6Note that X/t is not defined at z.
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nr(x)

/ u(x, 7j)-f(x, t]) dy = 0 for every x £ R,
Jo

/*T (l)

/ ii(x, i?)-s(x, v) dt] = 0 for every x £
J 0

(2.22)
fT(X)

a*s.

At this stage, consider the one-parameter family of regular regions R(Q given by

R(£) = R — B((z) (0 < £ < f„)

with £0 > 0 such that 5fo(z) C j?- Observe that the present elastodynamic state [u, d]

and the function t defined by (2.17) satisfy the hypotheses of Lemma 1 if R in this

lemma is replaced by /£(£) (0 < £ < £„). Invoking Lemma 1, taking account of (2.22),

and subsequently passing to the limit as £ —> 0, one easily obtains

t(x)) — e(t|/(x)) + e(Vu(x, r(x)) + t^(x)) \ dV = 0, (2.23)

where t|r has the components

i/\,(x) = m,(x, t(x))t.,(x) for all x £ , (2.24)

while e is defined by (1.9).

In view of hypothesis (a), e is positive semidefinite. Hence (2.11), (2.24), (2.18) imply

that

7,u\x, r(x)) - e(it(x)) > |u2(x, t(x)) - ~ c2ij;(x) • i{r(x)

= |u'2(x, r(x)) - |c2ii2(x, t(x))[Vt(x)]2 (2.25)

= ^ u2(x, r(x)) > 0 for every x £ .

Therefore, the integrand in (2.23) is nonnegative on Rz. Also, this integrand is continuous

on Rz , as a consequence of (1.9), (2.24), the first of (2.18), and the smoothness of u

implied by hypothesis (a). These observations, together with (2.23), yield

| u2(x, r(x)) - e(ifc(x)) + e(Vu(x, r(x)) + tjr(x)) = 0 for every x £ Rz , (2.26)

which, in conjunction with (2.25), implies

u(x, t(x)) = 0 for every x £ Rz . (2.27)

But u is continuous on R X T", and r is continuous on R. Accordingly, (2.27), (2.17)

lead to

u(z, X) = u(z, t(z)) = 0,

and thus, since (z, X) was chosen arbitrarily in (R — 2(1,)) X (0, /],

u = 0 on (R - O(<)) X (0, t\.

The assertion (2.15), and consequently (2.10), now follow at once from (1.7) and the
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assumed regularity of u. Finally, note from (2.12), (2.13), (2.14) that il(t) depends

exclusively on A(t), p, and y. The proof is now complete.

Theorem 1 contains as a special case Lemma 2.2 of [1], which is confined to the isotropic

medium characterized by (2.9). We are now ready to state and prove

Theorem 2 (Generalized uniqueness theorem). Suppose

(a) [u', d'] G S(f, p,r,Rx n, [u", d"] G s(f, p, r; R x r+);
(b) u'(x, 0) = u"(x, 0), u'(x, 0+) = u"(x, 0+) jor every x G R',

(c) (u' — u") ■ (s' — s") = 0 on d*R X [0, °°), where s' and s" are the tractions of d'

and d" acting on dR.

Then,

u' = u", d' = d" on R X T+. (2.28)

Proof. Define u, <5 on R X T" through

u = u' - u", d = d' - d" on R X T+, u = d = 0 on R X T~. (2.29)

Hypotheses (a), (b) allow one to conclude without difficulty that

[u, d] G S0(0, P, r, R)- (2-30)

If s denotes the tractions of d acting on dR, then (2.29), (2.30), (1.10), and hypothesis (c)

imply that

u-s = 0 on b*R X T". (2.31)

Choose t > 0 and consider t as fixed for the remainder of the argument. For a bounded

R one draws from (2.30), (2.31), and the energy identity (2.8) that

J [j u2(x, 0 + e(Vu(x, /))] dV = 0 (2.32)

with e given by (1.9). Suppose next that R is unbounded. In this event (2.30), (2.31),

and Theorem 1 guarantee the existence of a bounded set fl(<) C R for which (2.10)

holds. Let

R{5) = R n Bs (5 > 0), (2,3.3)

and choose S large enough to ensure that R(8) is a regular region6 and

m C Bs . (2.34)

Since R(5) is a bounded set contained entirety in R, (2.30), (2.8) yield

f f u(x, X)-s(x, X) d\ dA = f ^ u2(x, /) + e(Vu(x, ()) \ dV, (2.35)
JdR(S) Jo JriS) La J

provided s here denotes the tractions of d acting on SR(5). It is clear from (2.31), (2.33),

(2.34), and (2.10) that the integrand in the left-hand member of (2.35) vanishes for

(x, X) G dR(5) X [0, t], whereas the integrand in the right-hand member vanishes for

all x G R — R(S). Hence (2.32) remains valid also if R is unbounded.

The argument may now be completed along the lines of the classical uniqueness

6Recall the definition of R in Section 1.
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proof. Indeed, since e is positive semidefinite, and because of the continuity of the

integrand in (2.32) for every x £ R, one has

u(x, t) = 0 for all x £ R-

Thus, t having been chosen arbitrarily in (0, °°),

u = 0 on R X (0, 0°).

This fact, in view of (2.29), (2.30), confirms the desired conclusion (2.28).

The preceding theorem is an extension to anisotropic solids of Theorem 2.1 in [1],

Theorem 2 is also broader than the latter theorem because it covers the general mixed

problem, in addition to the first and the second fundamental problem of dynamic elas-

ticity. We note that the foregoing proof of Theorem 2, which relies on the prolonged

quiescence of the far field established in Theorem 1, is considerably more economical

than the procedure used in arriving at Theorem 2.1 of [1]. The present method of proof

is an adaptation of Neumann's [5] classical uniqueness argument to unbounded aniso-

tropic elastic solids, in which Theorem 1 served the purpose of avoiding artificial order

restrictions on the velocity and stresses at infinity.

As for the generalized reciprocal theorem, we turn first to some prerequisites from

the theory of Riemann convolutions. If P is a set in E, and if

<pE e(P X T+), tee(PX T+),

we mean by the convolution of <p and \p the function ip*\p defined on P X T" through

[<p * f](x, /)=0 for every (x, t) £ P X T~ ^ ^

= [ <p(x, t - T)i(x, t) dr for every (x, /) £ P X T\
«'0

We will use without mention the commutativity and distributivity of convolutions;

additional required properties of convolutions are cited in

Lemma 2. Suppose P is a set in E and let

d £ e(P X T+), a' £ e(P X T+).

(A) // (x, t) £ P X (0, oo) and [0*w] (x, •) = 0 on [0, 21], then either &(x, ■) = 0 on

[0, f] or co(x, •) = 0 on [0, /].

(B) If P is in particular an open or closed region in E and

<p £ e'(P x T+), i £ e\P x T+), x = <pH,

then

(a) 0*co £ Q(P X T"), x £ f(P X T+);
(b) x,.- = <p.<H + vH.i on P X T+,

x(x, t) = [<p*yp\ (x, t) + <p(x, 0)i/>(x, t) for every (x, t) £ P X T+;

(c) x £ e'(P X T°°), provided (p{x, 0) = 0 for all x £ P.

Part (A) of this lemma is an elementary consequence of the strengthened form of Titch-

marsh's theorem given in Mikusinski's book [6, p. 397]; part (B) is merely a restatement

of portions of Lemmas 1.1, 1.2, and 1.3 in [1],
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In connection with vector fields, we write 8*v for the vector with the components

6*Vi , if the latter convolutions are meaningful. The analogous interpretation is to be

attached to 0*Jr, where i|r is a higher-order tensor field. Finally, we adopt the notation

v*w = Vi*Wi , = ipii...k*ffi...k , (2.37)

provided ig> and have the same order and the convolutions appearing in the right-

hand members of (2.37) are defined.

We may now proceed to

Theorem 3 (Generalized reciprocal theorem). Let

[u, d] e S(f, p, r; R x n, [u', d'] E s(f', p, r; R X T+) (2.38)

and, for every x G It, put

°(x) = u(x, 0), v(x) = u(x, 0+), u'(x) = u'(x, 0), v'(x) = u'(x, 0+). (2.39)

When R is unbounded, suppose further:

(a) for every t E (0, °°) there exists a bounded set T(t) C R such that

f = 0 on (R - T(0) X [0, t], (2.40)

and, if dR is unbounded,

u(x, ij)-s(x, i?) = 0 for all (x, £, r;) E (d*R — T(t)) X [0, t] X [0, t], (2.41)

where s are the tractions of d acting on dR;

(b) each of the sets

n = jx j x e R, u(x) ^ oj,

H = 'x | x E R, v(x) ^ 0J

has a bounded closure.

Then, for each t E (0, °°),

[ [s *u'](x, t) dA + f {[f *u'](x, t) + p[u'(x. 0-u(x) + u'(x, 0-v(x)]} dV
•'as J r

= f [s' * u](x, t) dA + f {[f' * u](x, t) + p[u(x, o-u'(x) +u(x, /)-v'(x)]} dV, (2.42)
J dR Jr

where s and s' denote the respective tractions acting on dR.

Proof. It is convenient to show first that if R is infinite, there exists, for

every ( E (0, °°), a bounded set Q(t) C R such that (2.10) holds. Thus suppose R is

unbounded. Define

<p{t) = 0 for every t E (- 00 , 0] ^ ^

= f for every t E (0, ra),

and put

u = <p*u, d = <£*d on R X T". (2.44)
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Then part (B) in Lemma 2 and the first of (2.38) enable one to confirm without difficulty

that

[u, 3] £ 8„(f, p, Y; R), (2.45)

where

f = <p*f pipv -f- p(f>u on R X T . (2.46)

Next, set

A(t) = T(t) UnWE for every t £ (0, °°), (2.47)

where r(i), n, and E are as specified in hypotheses (a) and (b). Thus, for t > 0,

A(0 C R, &(t) is bounded, (2.48)

and (2.46), (2.36), together with hypotheses (a), (b), imply

f = 0 on (R — A(0) X [0, t]. (2.49)

Since <p(0) = 0, (2.44) and part (B) of Lemma 2 yield du/dt = <p*u. Thus if dR is infinite

and t > 0, then (2.41), (2.47), and (2.36) give

^•s = 0 on (d*R - A(/)) X [0, /], (2.50)
ol

where s denotes the tractions of 3 acting on dR. One now infers, from (2.45), (2.48),

(2.49), (2.50) and Theorem 1, the existence of a bounded set &(t) C R with the property

u = 3 = 0 on (R — &(L)) X [0, t].

This conclusion, because of (2.43), (2.44), and part (A) in Lemma 2, implies that (2.10)

holds for every t £ (0, <*>), if Q(t) is the bounded subset of R given by Q(t) = Sl(2t),

which is the desired auxiliary result. Incidentally, it is now clear from (2.36), (2.38),

and hypothesis (b) that the integrals in (2.42) are proper even if R is unbounded.

To establish (2.42), fix t £ (0, °°) and define a vector-valued function v through

v,(x) = [ff,-i*w;](x, t) - [o-;,*w,-](x, i) for every x £ R. (2.51)

Then (2.38) and part (B) in Lemma 2 imply

v £ e\R) r\ Q(R), (2.52)

t'i.i(x) - [tr,* W,'](X, t) + [cr,-,- * m'.,](x, t)

— [cr* m,](x, t) — [a-<i * m,.,](x, t) for every x £ R. (2.53)

By (2.53), (2.38),

V-v(x) = p[ii * u'](x, 0 — [f * u'](x, t) + [d * Vu'J(x, t)

— p[ii * u](x, t) + [f' * u](x, 0 — [d' * Vu](x, t). (2.54)

Next, appeal to (1.3) and (1.6) to see that

d*Vu' = d'*Vu on R X (0, °°). (2.55)

Apply part (B) of Lemma 2 to u*u' twice in succession to arrive at

u*u' — ii'*u = v'-u + u'-u — v u' — u u' on R X (0, <»), (2.56)
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o o o o

where u, v, u', and v' are given by (2.39). Substitution from (2.55), (2.56) into (2.54)

yields

V-v(x) = [f' *u](x, t) + P[v'(x)-u(x, t) + u'(x) -u(x, t)]

— [f * u'J(x, t) — p[v(x)-u'(x, t) + u(x)-u'(x, /)] for all x£K. (2.57)

In view of (2.51), (2.36), and the fact that if R is infinite [u, cJ] obeys (2.10) with Sl(t)

the bounded set whose existence was deduced earlier in the proof, v has bounded support.

Equation (2.57), together with (2.38) and part (B) of Lemma 2, require V-v to coincide

on R with a function belonging to Q(R). Therefore, and because of (2.52), the version

of the divergence theorem invoked in the proof of Lemma 1 is applicable to v on R.

The identity (2.42) then follows immediately from (2.57), (2.51), and (1.10). This

completes the proof.

The reciprocal identity (2.42) is due to Graffi [7], whose derivation (which is confined

to bounded regions) relies on the Laplace transform. Theorem 3 is a counterpart for

anisotropic bodies of Theorem 2.2 in [1], which is not only limited to the isotropic case,

but also to elastodynamic states with a quiescent past. Finally, we emphasize that if

the elastodynamic state [u, <i] of Theorem 3 is characterized as the solution to a standard

boundary-initial value problem, the data enable one to decide whether or not hypotheses

(а) and (b) are satisfied.
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