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THE SOLUTION OF SOME INTEGRAL EQUATIONS OF
WIENER-HOPF TYPE*

By

MARVIN SHINBROT

Northwestern University

1. Introduction. The number of functional equations of any type that can be solved

explicitly is very small. In this paper, we shall increase it a little by showing how to

solve certain integral equations of the form

/J e
k(x — t)j(t) dt — g(x), x £ E, (1.1)

where E is a finite union of intervals:

E=\J{aitbi). (1.2)
i = 1

The method to be used is what I have earlier called the general method of Wiener and

Hopf [12], [13], In the present context, the method has points of contact both with the

method of separation of variables for the solution of partial differential equations and

with Latta's method for solving certain integral equations ([6], see also [10]).

Certain boundary value problems can be reduced to integral equations of the form

(1.1). As an example, we have the problem of solving Laplace's equation

(Pxx ~"I~ 0 (1.3)

with data given on a set E on the z-axis:

<p{x, 0) = g{x), x E E. (1.4)

This problem can be solved explicitly when E = (— <», co) by Fourier transforms.

When E = (0, c°), it can still be solved [8], this time by the Wiener-Hopf method

(which I called the special Wiener-Hopf method in [13]). When E — (—1, 1), the prob-

lem (1.3), (1.4) can also be solved, but now by conformal mapping or, alternatively,

by separation of variables in elliptic cylindrical coordinates [3]. I believe that these

three cases exhaust the known examples of explicit solutions of Laplace's equation

when the boundary values are given on a portion of the z-axis.

But (1.3), (1.4) can be reduced to an integral equation of the form (1.1) for any open

set E. In addition, (1.1) can be solved, in principle, by the general method of Wiener

and Hopf, again, whatever the open set E may be. What we shall do here is describe a

method for solving (1.1) for certain simple kernels k when E has the form (1.2). The

kernels studied include that associated with the boundary value problem (1.3), (1.4).

The method reduces the solution of (1.1) to a certain eigenvalue problem for an

ordinary differential equation with polynomial coefficients and regular singular points.
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That is exactly what the method of separation of variables does when it applies to a

boundary value problem like (1.3), (1.4). Thus, when E is the single interval (—1, 1),

separation of variables in elliptic cylindrical coordinates reduces (1.3), (1.4) and similar

boundary value problems to the solution of an eigenvalue problem. The method we

shall describe transforms the problem into exactly the same eigenvalue problem when E

is a single interval. On the other hand, when E consists of more than one interval, there

is no coordinate system in which (1.3) is separable, but our method continues to apply.

Therefore, it is fair to say that the method generalizes the method of separation of

variables.

The method also applies to some integral equations that are not derived from bound-

ary value problems. Let 7c denote the Fourier transform of the kernel k of (1.1). It

will be seen below that the method depends primarily on the hypothesis that some

power of k~ is rational. Now, if k is any function whose Fourier transform has this prop-

erty, it is not hard to prove that k itself satisfies an ordinary differential equation with

linear coefficients. This last is exactly the hypothesis made by Latta [6], who also reduced

the solution of (1.3) (when E is a single interval) to an ordinary differential equation,

but in an entirely different way.

Our entire argument depends on the general Wiener-Hopf method. A description

of the method is therefore supplied in Sec. 2. No proofs are given in Sec. 2, however;

these can be found in [12] and [13].

The rest of the paper consists of examples of solutions of equations of the form (1.1).

Although it seems to be possible to solve (1.1) by the method described here whenever

a power of k" is rational, the general solution is complicated. Therefore, I have chosen

this method, where the ideas are illustrated by a number of examples, as superior to

the derivation of a solution which, while very general, is largely unintelligible.

In the first three examples, solved in Sees. 3, 4, and 5, the set E is a single interval.

By choosing E in this way, we are able to describe certain aspects of the method most

clearly. In Sec. 3, the kernel is k(x) = \x\~", 0 < v < 1. In Sec. 4, the kernel is that

associated with the boundary value problem (1.3), (1.4). The problem is solved com-

pletely, and it is shown how the separation of variables solution can be recovered from

our solution.

The integral equations of Sees. 3 and 4 can be solved by other means. In Sec. 5, in

which we still choose E as a single interval, the complicated kernel \x\ 'Kv(k |a;| ) is con-

sidered. When v = 0, this is the kernel that arises from solving a boundary value problem

like (1.3), (1.4) but with Laplace's equation replaced by the Helmholtz equation. Since

this equation is still separable in elliptic-cylindrical coordinates, the problem can also

be solved in that way. Again, our solution has exactly the same form as the separation

of variables solution when v = 0, but our solution remains valid even when v 0.

This method remains essentially the same when E consists of more than one interval.

However, there are enough differences that an example of this situation is warranted.

Such an example is supplied in Sec. 6, where the solution of (1.3), (1.4) is determined

when E is the union of two intervals. Study of this example will make it clear, I hope,

that the method imposes no limitation whatever on the number of intervals of which E

is composed. The reader who is interested in a problem (1.1) in which E consists of

more than two intervals should easily be able to construct the solution for himself.

2. The general method of Wiener and Hopf. The special Wiener-Hopf method is

a method for solving equations
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g(x) = [ Ic(x — <)/(<) dt, x > 0, (2.1)
Jo

and certain other equations similar to (2.1). (See [5], [8], [15], [16].)

Let k (£) denote the Fourier transform of k (x):

k~(£) = J elxk{x) dx.

Wiener and Hopf showed that if k (£) is positive and does not approach zero too fast

at infinity,1 then k (£) can be factored into a product of two functions having certain

desirable analyticity properties. With the aid of these factors, Eq. (2.1) can be solved.

In [12] and [13], I tried to show that it is not the hard analytic details of (2.1) that

allow it to be solved. Rather, it is certain general properties that (2.1) has in common with

a very large class of equations that are important. To see this, we shall recast (2.1)

in a different, more general, form.

Let f(x) be any function defined on (— oo, oo). Define an operator P by the equation

(Pf)(x) = f(x), x > 0, ^ ^

= 0, x < 0.

Then, (2.1) is equivalent to

(Pg)(x) = P (2.3)' f k(x - t)(Pf)(t)

Indeed, if x < 0, (2.3) becomes just the identity 0 = 0, while if x > 0, (2.3) becomes

g(x) = J k(x - t)(Pf)(t) dt

= [ k{x — t)j(t) dt,
•>0

by (2.2).
Now, write

(Af)(x) = J k(x — t)j(t) dt. (2.4)

Then, (2.3) can be written in the shorter form

Pg = PAP], (2.5)

and this equation is equivalent to (2.1).

Next, we note two facts about the operators A and P occurring in (2.5). We consider

them both as operators on L2(— oo, oo). Without being too precise about the conditions

for the validity of the following operations, we note that

(Af, /) = J (Aj)(x) ■ f(x) dx

= £ J] If© I2 dt, (2.6)

•The precise condition is /!!„ (log fc~(£))/( 1 + J2) see [16].
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by Parseval's formula. If, as Wiener assumes, 7c (£) is positive, (2.6) shows that

(Af, 1) > 0 if / jk 0. (2.7)

A selfadjoint, linear operator A satisfying (2.7) for all / £ 1)(A) is called ■positive. What

we have shown is that if k (£) is positive, then the operator A defined, by (2.4) is positive.

The second important fact about (2.5) is that the operator P occurring there is an

orthogonal projection. This is trivial; one only has to see that P is selfadjoint and P2 = P.

Thus, the Wiener-Hopf equation (2.1) has the form (2.5) where A is a positive operator

and P is a projection. We shall call any equation of the form (2.5) with A a positive

operator and P a projection a Wiener-Hopf equation. If A and P have the special forms

(2.4) and (2.2), we shall refer to (2.5) as a special Wiener-Hopf equation.

It should be noted that (1.1) is a Wiener-Hopf equation with this definition whatever

the open set E may be. To rcduce (1.1) to the form (2.5), it is only necessary to define A

as before, by (2.4), and to define P by

(Pf)(x) = f(x), x E E, (2 g)

= 0, X 0; E.

In [13], I showed2 that whenever A is a positive operator and P is a projection, then A

can be factored as in the special Wiener-Hopf method in such a way that (2.5) can be

solved. This brought equations such as (1.1) under the purview of the Wiener-Hopf

method. A consequence of this fact is a representation for the solution of (2.5). To state

the representation theorem, we need one preliminary definition.

Let H be a Hiibert space and P a projection on it. Denote the scalar product in H

by parentheses. Denote the range of P by R(P). We say3 that a sequence jx„l is total

in R(P) if

Sx»l C R(P)-, (2.9)

((7; X*) = 0 for all n implies Pg = 0. (2.10)

A good deal of [13] is devoted to the question of when the Wiener-Hopf equation (2.5)

has a solution. Here, however, we are interested in the question of explicit solutions

of Eqs. (1.1) for which we know there is a solution since, for example, the equation

may have come from a boundary value problem like (1.3), (1.4) for which a solution

is known to exist. Therefore, we shall generally assume that a solution exists. When

there is any doubt of this, [13] should be consulted. With this understanding, we can

state the basic

Theorem 1. Let A be a positive operator on a Hiibert space H. Let P be a projection

in H. Let {x„} be any sequence total in R(P) such that {A1/2x„l is orthonormal. Then, if

the Wiener-Hopf equation (2.5) has a solution, it is given by

Pf = X (Pg, Xn) Xn . (2.11)

This series converges in the following sense: the sequence of partial sums of the series

2With an additional technical hypothesis related to the condition of footnote 1.

3The definition given here is slightly different from the one in [13]. The one given here is more

convenient for our purposes, and it is not hard to show that the two definitions are equivalent.
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£ (Pg, x„M1/2x„

converges in the norm of H.

When we consider integral equations of the form

rJ E
k(x — t)f(t) dt = g(x), x £ E, (2.12)

it is convenient to work in the Hilbert space H = L2(— °co). Theorem 1 applies to

this equation, of course, by defining A and P by (2.4) and (2.8). Unfortunately, however,

there are a number of interesting equations of the form (2.12) for which the solution

exists, but is not in L2.

To deal with this problem, we have to state Theorem 1 in a slightly different way. Let

H be L2( — oo, oo), and let P be defined by (2.8) for some open set E. Also, let A be a

positive operator of the form (2.4). If / is a function in the domain of A, the quantity

(Af, /)1/2 is a norm, since A is positive. However, the integral

(Af, f) = f f k(x — t)f(t)f(x) dt dx (2.13)
J —CO J —CO

may make sense even if / is not in the domain of A. An example is the following. Let

k(x) = — (l/:r) log |x|. As we shall see later, the corresponding operator (2.4) is positive.

Let f(x) = 1 for |x| < 1, and let f(x) = 0 otherwise. Then / is not in the domain of A,

for when x > 1,

1 /*'
g{x) = — / log \x - t\ dt

7r J—i

= (x + 1) log (x + 1) — (x — 1) log (x — 1).

Since this grows logarithmically as x —> oo, it cannot be in L2(— «>, oo). On the other

hand,

(Af, f) = —- [ [ log \x — <| dt dx
IT J — i J — l

= - (3 - 2 log 2).
7T

Let H+ denote the set of all functions such that the right side of (2.13) is finite. For

such functions, we define (Af, f) by (2.13). In the same way, we let //_ denote the set

of all functions g such that (A~'g, g) is finite. An important point to notice is that if

f £ II, and g £ II- , it makes sense to speak of the scalar product (g, /), for the gen-

eralized Schwarz inequality [9] shows that

I(g, f)I2 < (A~*g, g)(Af, f).

Recall now that P is defined by (2.8). R(P) is a subspace of L2(— co, oo), of course,

since it simply consists of all functions in L2(— 03, co) that are zero outside of E. Clearly,

R(P) can be defined in a natural way as a subspace of either II + or . If / is a function

in H+ , say, and if f(x) = 0 for x £jE E, we shall still write / £ R(P). Thus, the symbol

R(P) will be used to denote functions that are zero for x (J E, regardless of which of

the three spaces H+ , //_ , or L2(— oo, oo) they may lie in. No confusion need result

from this practice.
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Let [Xn! be a sequence of functions in 11+ . We shall say that the sequence {x„} is

A-orthonormal if

04 Xm. Xn) = S.mn )

the Kronecker delta. Clearly, this idea of A-orthonormality generalizes the idea that

the sequence {A1/2x„! is orthonormal in L"(— °°, od).

Next, a sequence {x«} in H+ will be called total in R(P) if two things are true. First,

each function x„ must be in R (P). Second, it must be true that if a function g £ Il-

ls, in R(P), and if (g, x») = 0 for all n, then g must be zero. Again, this notion clearly

generalizes the definition of totality given earlier.

We then have the following generalization of [13, Theorem 1].

Theorem 2. Let A be the integral operator (2.4). Define the spaces H+ and H- as we

have just done. Let {x»} be any A-orthonormal sequence in 11+ that is total in R(P). Let

g £ II_ be an element in R{P), and suppose that the integral equation

g(x) — f k(x — t)f(t) dt, x £ E,
J e

has a solution in 11+ . Then, this solution is given by

1 = E {9, Xn)Xn ■ (2.11)
n=-l

The series converges in the sense that

(A(f - U), /-/«)—> 0 as N -> co,

where jN = X»-i (?> Xn)x» •

The point of Theorem 2 is that the solution need not be in L2, but only in

H+ . Formally, however, all calculations are the same, except that the operator A1/2

never appears. Instead of ||A1/2/||2, say, we always write (A/, /) for / £ II + . Notice

that the formula (2.11) appears in both Theorem 1 and Theorem 2. It is the basic formula

that we shall use in the sequel.

3. The kernel \x\~" on a single strip. We begin our discussion by considering the

integral equation

g{x) = dt, -1 < x < 1. (3.1)

We assume that 0 < v < 1. As in Sec. 2, to bring (3.1) into the form (2.5) of a general

Wiener-Hopf equation, we define an operator A by

I

~t\

and a projection P by

(P/)(x) = f(x), if -1 < x < 1,

(Af)(x) = dt, (3.2)

(3.3)
0, otherwise.

Then, (3.1) can be written in the form

PAPf = Pg.
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In order for the theorems of Sec. 2 to apply, we must show that A is positive. This

is easy, for the Fourier transform of the kernel \x\~' is c0 |S['~\ where c0 is the positive

constant

_ 7rsecJ>/2)
c° - rw (3.4)

(See, e.g., [4].) Therefore, Parseval's equation shows that

cAf,f) = £ /_" i*r ir©r«,

and this is positive if / ^ 0.

According to the Theorem 1, then, to solve (3.1) we need only find a sequence {x»}>

total in R(P), and such that {A1/2x„} is orthonormal. One way to do this is simply to

pick any total sequence in R(P)—say, the powers x—and to orthonormalize the sequence

\Ax/2Px\ by the Gram-Schmidt process. But since it is hard to justify the choice of

the sequence {xn} over any other total sequence, we shall proceed differently, and attempt

to find a sequence {x„l that in some sense is naturally connected with the integral

operator (3.2).

Let L be any selfadjoint operator on L2(— °°, <»). Suppose the x»'s can be chosen

as the nontrivial solutions of the equation

Lx = XAx (3.5)

normalized, of course, so that

l|A1/2xll = 1. (3.6)

Then the condition that ! AI/2x„l be orthonormal is automatic. This is proved in exactly

the same way that it is proved that the eigenvectors of a selfadjoint operator are ortho-

normal.

In order for a sequence {x»| to qualify as a sequence for which (2.11) is valid, it must

have two properties: it must be total in R(P), and {A1/2xn} must be orthonormal. We

shall choose the x's as solutions of an equation (3.5) with L selfadjoint. This will imply

the sequence {A1/2x„} is orthogonal.

We must also require that {x»} be total in R(P). We shall return to this important

condition in a moment. But first, we should like to impose some kind of condition that

assures us that (3.5) is in some way easier to study than the original equation (3.1).

Because the type of equation most studied in analysis is the ordinary differential equation

with polynomial coefficients and regular singular points, we meet this condition by re-

quiring arbitrarily that (3.5) be equivalent to such an equation. For shortness, we shall

call an equation equivalent to an ordinary differential equation with polynomial co-

efficients and regular singular points a regular equation.

To see how to construct an operator L such that (3.5) is regular while the x's are

total in R{P), consider the Fourier transform of (3.5). As we remarked before, the

Fourier transform of Ax is c0 x (£)■ Therefore, if we define an operator IT by the

equation L x = (Lx) , the transform of (3.5) takes the form

Lx' = Xc0 Itr x" • (3.7)
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There are any number of selfadjoint4 operators L with the property that at least the

associated equation (3.7) is regular. Examples are

Lx - isr-x", (3.8)

etc. In each case, it can be verified that the corresponding equation (3.7) is regular by

a simple computation.

Any linear combination of the operators (3.8) still gives rise to an equation (3.7)

that is regular. Let a be a constant, and define

+ (3.9)

This operator is formally selfadjoint. In addition, if L is defined by (3.9), (3.7) can

easily be reduced to the form

a)X ^ ^ Ji X = XCoX ' (3.10)

This equation is certainly regular. We should like to be able to say that its nontrivial

solutions qualify as the Fourier transforms of functions that can be used in (2.11). For

that, we must surely show that (3.10) has solutions which are transforms of functions

that are in R(P), and so are zero for |.c| > 1. Take the inverse transform of (3.10). We

find that any solution x~ of (3.10) is the transform of a function x satisfying

l(x2 - «)x(z)] - (1 + *) ~ M*)] = Xc„x(z). (3.11)

Suppose that (3.10) has a solution that is the transform of a function that is zero

for \x\ > 1. Then, this function will satisfy (3.11), and taking the finite Fourier transform

of (3.11) over the interval (—1, 1), we should get (3.10) back. But the finite Fourier

transform of (3.11) is

+ a)x + (1 + ?)£ = Xc0x + R,

where the remainder R has the form

R = j—— «)x(z)] + (1 + v)x%(x) + i£(x2 - a)x(z)je'£l

For the finite transform of (3.11) to agree with (3.10), then, R must vanish, and this

yields the four conditions

a. lim (x2 — a)x(x) = 0,
x^±1 (3.12)

b. lim [(x2 - a)x(z)] - (1 + f)zxOc)j = 0.

If a ^ 1, (3.12a) gives x(—1) = 0, and then (3.12b) gives x'(—1) = 0. Since the

point x = — 1 is a regular point of (3.11) when a ^ l.we conclude that the only solution

♦Formally; we shall worry about such things as boundary conditions later on.



1970] SOME INTEGRAL EQUATIONS OF WIENER-HOPF TYPE 23

of (3.11) and (3.12) is x(-*0 = 0. If we are to have any hope that the solution of (3.11)

and (3.12) be total, then, we must choose a = 1. With this choice of a, (3.11) becomes

(1 - x2)x" - (3 - v)xx' + mx = 0, (3.13)

where we have written ^ = Xc0 + v — 1. Also, the boundary conditions (3.12) turn into

a. lim (1 — x2)x(x) = 0,

(3.14)
b. lim [(1 — x2)x'(x) — (1 — v)xx(x)] = 0.

x-+±l

There are four boundary conditions here. But two of them are irrelevant, for a very

simple reason. The indicial equation of (3.13) has the roots 0 and —(1 — v)/2 at both

singular points x = ±1. Therefore, in a neighborhood of a; = 1, say, the general so-

lution of (3.13) has the form

2>„ (i - xt + xx (i - *r(1">0/2

But any function of this form satisfies the boundary condition (3.14a) at x = 1 since

(1 — x2) goes to zero linearly and v > 0. Indeed, this would be so even if v were merely

greater than —1. Thus, we can simply ignore the condition (3.14a).

We now consider the eigenvalue problem (3.13), (3.14b). If the argument leading

to these equations is carried backwards, it will be seen that this problem can be written

in the form (3.5), with L at least formally selfadjoint and, indeed, the boundary con-

ditions (3.14b) are such that L is selfadjoint. We conclude, then, that the solutions of

(3.13), (3.14b) have the orthogonality property

(A1/2x,„ , A1/2x„) =0 if m n.

In addition, (3.13) is clearly a regular equation, as desired.

It remains to show that there are enough solutions of (3.13), (3.14b) that the totality

hypothesis (2.10) is satisfied. But this is a standard matter since, after all, (3.13), (3.14b)

is a Sturm-Liouville problem, and the completeness of the eigenfunctions is well known

[1]. Therefore, we can apply Theorem 1 to derive the following result.

Theorem. Let jx»(^)} denote the solutions of the eigenvalue problem

(1 — x2)x" — (3 — v)xx + MX = 0,

lim [(1 - x2)x'(x) - (1 - f)xx(x)] = 0.
x—*± 1

Define Xn(x) = 0 for |a;| > 1, and normalize xn(%) by the condition that

I" f1 Xn(x)xn(t) , ,, _ sec (vir/2) r , ~ |2
L •/-! = 2rw L lfl lx"®1

= l.

Then, the solution of the integral equation (3.1) is given by

/(0 = H Xn(fi J Xn(x)g(x) dx,

if it exists.

(3.15)
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Until now, it has not been mentioned that the eigenvalue problem (3.13), (3.14b)

can be solved in closed form, although this is in fact the case. The reason for not men-

tioning it is that the derivation of the preceding theorem is meant to illustrate a general

method rather than to solve a special problem, and in general, of course, the cor-

responding eigenvalue problem will not be so simple as to have elementary solutions.

Having derived the above result without using the explicit solution, however, we now

finish the job by solving (3.13), (3.14b).
Let C*/2 denote the (nonnormalized) Gegenbauer polynomial defined by

c:/2(x) = (1 - x2)n~y)/2 (1 - z2y+('-1)/2. (3.16)

It is known [2] that the function

Xn(x) =7n(l - xY~1)/2 c:/2(x), (3.17)

where yn is a constant, satisfies the differential equation (3.13) with

ix = (n + 1 ){n + v — 1).

Moreover, with x» defined by (3.17), the boundary conditions (3.14b) becomes simply

lim (1 - x2Y1+')/2C"n/2(x) = 0,
x-»±l

and this is surely correct since C"n/2{x) is a polynomial.

It remains to impose the normalization condition (3.15). The finite Fourier transform

of (3.17) is known [4]. It is simply

l/2r»n+ p/2_ — inr/2-nl.„ I V ^T /*A
X«(s) = 2 e rin H  —If «/„+»/2(§).

Therefore, (3.15) reads

1 = 7>22—r2(n + ^1) sec2^2) /_" Itr dZ

72x22n+T2^n -f ^ sec (irv/2)

(2 n + y)r(y)

(See, e.g. [2, p. 92].) Thus yn must be taken to be

y. - r(» + >-^-l)((2" + wvy (3.18>

and we have the

Corollary. Define

Xn(x)=y n£,(l-x2r("1)/2

where y„ is given by (3.18). Then, the solution of the integral equation (3.1) is

1(t) = X) x»(0 J Xn(x)g(x) dx,

if it exists.
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4. The potential of a strip. Consider Laplace's equation

<Pxx + <Pvv — 0 (4.1)

where <p is given on a line segment on the x-axis, say

<p(x, 0) = g(x), — 1 < x < 1. (4.2)

We suppose, as usual, that <p has at most logarithmic growth at infinity.

The function

<p(x, y) = -- f f(t) log ((x - t)2 + y2)U2 dt (4.3)
7r J—i

has logarithmic growth and satisfies (4.1) whatever /(f) may be. Therefore, (4.3) will

be a solution of the entire boundary value problem if / is chosen to satisfy

g(x) = -- f f(t) log \x f| dt, -1 < x < 1. (4.4)
7T J-i

(4.4) is again a Wiener-Hopf equation, having the form (2.5). We define

(Af)(x) = -- f /(<) log |x - t\ dt
7T" J -co

whenever this makes sense, and

(Pj)(x) = J(x), -1 < x - 1

= 0, otherwise

The kernel

k(x) = — log \x\
7r

has generalized Fourier transform 1/[£|, in the sense that [4]

lim f e-,ul eif* log |®| dx = -jrr
<10 J-co |C |

Tlius, A is positive, and the theorems of Sec. 2 apply.

In this case, it will have to be Theorem 2 that is used rather than Theorem 1, for it

is known ([7]; see also [6], [11]) that if g is continuous, / tends to look like (1 — x2)~1/2

near the ends of the interval (— 1, 1) and so will not be in L2 in general. What is important

about this is not the warning that Theorem 2 must be used instead of Theorem 1, but

that the following calculations are the same no matter which of the two theorems is

used. Thus, one need not know in advance how the solution of the integral equation

behaves.

We proceed just as in Sec. 3, starting with Eq. (3.5). If L is self adjoint in L2 and the

functions {x„} are chosen as the nontrivial solutions of the equation

Lx = A^x> (4.5)

then the sequence {%„} will be A-orthonormal.

Next, set (Lx) = L x~- Since the Fourier transform of the kernel of A is 1/|£|, the

transform of (4.5) is

L x = /|£|- (4.6)
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We wish (4.5) and (4.6) to be regular. A convenient choice of a selfadjoint operator

that makes (4.6) regular is

= (!<)
J^jx + cc |£| x , (4.7)

where a is a constant. Again, (4.7) is only one operator out of many that will make

(4.6) regular.

With L given by (4.7), (4.6) becomes

£ (| 5 + «)x~+ = Xx". (4.8)

The inverse transform of any solution of this equation will satisfy

£<«)-**. (4.9)

Now, suppose that (4.8) has a solution that is the transform of a function x(x) which

is zero for \x\ > 1. Then, (4.8) will be recoverable from (4.9) by taking the finite Fourier

transform over the interval (—1, 1). If the finite transform of (4.9) is taken, however,

the result is (4.8) with a remainder term added on. This remainder term vanishes if

and only if x satisfies the boundary conditions

lim [(a - x2)x(x)] = 0,

(4.10)

Hm 'Jo: ~ + zx(z)j = 0.
x—>± 1

As in Sec. 3, if x(^) is not to be identically zero, a must be unity. Therefore, (4.9)

and (4.10) become

a. (1 - x2)x" - 3xx' + (X - l)x = 0,

b. lim (1 — x2)x(^) = 0, (4.11)
x->±l

c. lim [(1 — x2)x'(x) — xx(x)] = 0.
x—* ± 1

The indicial equation of (4.11a) has roots 0 and (—1/2) at both singular points;

therefore, (4.11b) is satisfied by every solution of (4.11a) and is irrelevant.

The eigenvectors of (4.11a, c) are total. Therefore, if we define the functions Xn(x)

to be the nontrivial solutions of (4.11a, c) that are identically zero outside the interval

(—1, 1), Theorem 2 will apply if we can show that these functions are in the space H, .

It should be noted that this is not automatic. The function

Ax = - f x(0 log \x - t\ dt
7r J — i

might make sense, and x might be a solution of (4.11), but in principle, we might have

(Ax, x) = 00, so that x would not be in H+ .

However, the roots of the indicial equation associated with (4.11a) are 0 and (—1/2).

Therefore, every solution of (4.11a) satisfies

Ix(a0| < c/( 1 - x2)1/2
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in the interval (—1, 1) for some positive constant c. Let 1 < p < 2, and let q be the

index dual to p, so that l/p + 1/q = 1. Then for — 1 < x < 1 we have, by Holder's

inequality,

px)W

-1 (/„, (r=V>)|log 11 ~,|r dt)'

s f (/., (i - V) (/-,|iogl,||'<") •
Therefore, (Ax)(z) is bounded in (—1, 1), and 4x-x is integrable. Thus, x £ #+ . and

we have the

Theorem. Let jx-W! denote the sequence of solutions oj the eigenvalue problem

(1 - x2)x" ~ 3xx' + (X - l)x = 0, (412)

lim [(1 - x2)x'{x) - xx{x)] = 0.
x-*±l

Define Xn(x) as zero for \x\ > 1, and normalize this function by the condition

,Xn)=-~f [ Xn(x)xn(t) log \x - t\ dt = 1. (4.13)
7T J — i J — i

Then, the solution of the integral equation

g{x) = [ f(t) log \x - <| dt, -1 < x < 1,
7T J-i

/(0 = X) Xn(0 J g(x)Xn(x) dx,

whenever it exists.

As in Sec. 3, the solutions of (4.12) are elementary. In fact, (4.12a) has as one of its

solutions the function

x(x) = (1 — x2)~1/2 cos (X1/2 arccos x).

When X is the square of an integer, this function also satisfies the boundary condition

(4.12b). Therefore, we shall write

ct
Xn{x) = Ti ^72 cos (n arccos x), n = 0, 1, • • • , (4.14)

(1 — x)

where a„ is an appropriate normalization constant.

We now evaluate an , using (4.13). When » ^ 0, an elementary integration shows

that

£ *„«>
dt = 0.
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Therefore,

(AXn)(x) = -- f Xn(t) log \x - t\ dt
7r J—i

= -- f Xn(<)[l0g \X ~ t\ — lOg |X|]
7T J — J

= -- f Xn(t) lOg
T J-1

1
X

dt

t
dt

- 0(1/|a:|) as [x| —> °o.

This shows that Axn has a Fourier transform when n ^ 0, and we may use Parseval's

formula to evaluate the left side of (4.13).

According to [4], the Fourier transform of (4.14) is

= t ane""/2J„(£).

Also, as we pointed out before,

(AX„r© = x;©/i?|.

Therefore, Parseval's equation gives

(^Xn, x») = ^ f (-4x»r(£)-x»(£) di

= £ ium2 f

t- n*°-

(See [2, p. 92].) If (4.13) is to be satisfied, we must choose

a,. (2n/ir)1/2, n = 1, 2, — . (4.15)

When n = 0, we can evaluate (A x„ , x») directly. In fact,

dt dx
(Ax° ' Xo) ~ 7 L, L l0g ~ ((1 - 0(1 - *2))172

a r r
— —9 / / log |cos x — cos t\ dt dx.

7T J o J 0

Elementary manipulations show that this integral can be reduced to the form

(^Xo , Xo) = -«oj^7r log 2 + 4 J log sin x dzj •

The integral can be found in any table of definite integrals, and the result is

C^Xo , Xo) = auir log 2.

Thus, we must choose

"0 = (tt log 2)I/5' (4-16)
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Using (4.14), (4.15), and (4.16) in the main theorem, we obtain the following result:

Corollary. The solution of the integral equation

g{x) = —- f f(t) log \x - <| dt, -1 < x < 1,
7T J-i

when it exists, is given by

1 f1

^ -K log 2 i_, ((1 -

fffa)
x2)(l - Wr° dx

, A2»i f1 . . cos (n arccos x) cos (n arccos t) ,+ £ V L >{x) (1 - XT' (i - dx <4'n)

One further comment before leaving this example. The basic boundary value problem

(4.1), (4.2) that we have solved by this theorem can also be solved by separating variables

in the coordinate system (£, y) defined by the equations

x = cosh 7j cos £, ^ ^

y = sinh 77 sin £.

If one does this, he is led to exactly the functions (4.14) in terms of which we have

solved the problem.

Indeed, in the (£, ??) coordinate system, we want to solve Laplace's equation

Vll + <Pvi — 0

in the domain 0 < £ < ir, rj > 0, with the boundary conditions

d<pdjp

dj

<P

t-o K

= g( cos^).

f = °'
(4.19)

1 — 0

Separating variables, we find that the solution has the form

V = cos ni- (4.20)

The coefficients {a„} are determined by (4.19). Setting rj = 0 and noting that x =

cos £ when ?? = 0, we see that the coefficients must be determined from the equation

g(x) = a„ cos in arccos x),

= D-(l - xT2Xn(x). (4.21)
OLn

Thus, the same functions x» appear here also.

Now, if <p(x, y) is given by (4.3), a standard argument shows that

f(t) = -<pv(t, 0).

One can use (4.21) to determine the a„'s and then (4.20) to determine <fa , and so /.

The result is exactly (4.17).

5. The kernel \x\" K,{k M). Our next example is the equation
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g{x) = J \x — t\" K,(k \x — t\)j(t) dt, — 1 < x < 1. (5.1)

Here, K, denotes the modified Hankel function of the third kind which can be defined

by [2]

,-KM - 2"r(;(1H/2')/2) /; (1 « (.* > 0). (5.2)

We assume that —1/2 < v < 1/2.

If v = 0 and f(t) satisfies (5.1), we can define a function ip(x, y) by the formula

v(x, y) = K0(k((x - tf + y2)1/2)j(t) dt.

This function will satisfy the differential equation

<p*x + fw — *2<P - 0 (5.3)

and the boundary condition

<p(x, 0) = g{x), -1 < x < 1. (5.4)

The boundary value problem (5.3), (5.4) can be solved by separation of variables in

the coordinate system (4.18). This fact allows one to solve (5.1) with v = 0 in the same

way that we solved (4.4) at the end of Sec. 4 by separating variables in (4.1), (4.2).

However, (5.1) cannot be solved for v ^ 0 by this technique. We shall solve (5.1) as-

suming only that | < v < The solution that we obtain will agree with the solution

by separation of variables when c = 0. I do not believe that (5.1) has been solved before

for general v.

The idea of the solution should be familiar by now. Define

(Af)(x) = [ \x - t\- I* - *|)/(0 dt.
J —05

We look for a selfadjoint operator L such that the equation Lx = A/lx is regular, while

its solutions satisfy the conditions of either Theorem 1 or Theorem 2. The method

proceeds exactly as in Sec. 3 or Sec. 4, and our description will be brief.

(5.2) shows that the transform of k(x) = \x\'K, (k |z|) is

r© =
(k2 + er+l/2'

where c0 is the constant

Co = (2K)T(l/2)r(, + 1/2).

We take the operator L to be

T ~ - \ d , 2 . ,.2-.i/2-v d

Lx ~ Ida +n Id
1 / 2 _I >2\ 1/2 — 1' ^

x +(«+£) x ■

The solutions of L x = X/c x are transforms of solutions of

£2 [(1 - x2)xi.x)} + (1 - 2v) j~ [xx(x)] + Oi + "V)x(z) = 0, (5.5)
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where fi — c0X — k2. Moreover, the finite transform of (5.5) is L x - Xfc'x" again if

and only if

lim (1 — x2)x(x) = 0,

(5.6)
lim [(1 - x*)x'(x) - (1 + 2v)xx(x)] = 0.
x-*±l

The indicial equation associated with (5.5) has roots 0 and [—(1 -f 2e)/2], Since

v < 1/2, then, (5.6a) is satisfied by every solution of (5.5). It is for this reason that we

assumed v < 1/2. (The condition v > —1/2 is assumed in order to make k(x) integrable.)

The method now goes through as before. The result is the

Theorem. Let Sxn0*0} denote the sequence oj nontrivial solutions o/ the boundary-

value problem

~ [(1 - x2)x(x)l + (1 - 2v) ~ [xx(x)] + (m + kx)x(x) = 0,

lim [(1 — x2)x'{x) — (1 + 2v)xx{x)} = 0.
x—* ± 1

Define Xn(x) = 0 for |x| > 1, and normalize this junction by

i xW\2

(5.7)

£
di = 1,

where

Ij f(t) satisfies (5.1), then

i- Oc2 + i?y+1/2

Co = (2K)T(l/2)rO> + 1/2).

/(0 = Z)x»(0 J g(x)xn(x)dx.

When v = 0, the substitution

co (a:)
x(x) =

(1 - ^)'

reduces (5.7) to the Mathieu equation. Solving (5.1) by separation of variables in (5.3)

leads exactly to the same form for the solution, involving Mathieu functions divided

by (1 - x2)172.

6. The potential of two strips. As our last example, we consider an integral equation

g(x) = f k(x — t)j(t) dt, x £ E,
J e

where E is not a single interval. The equation we shall discuss arises when one tries

to solve Laplace's equation with boundary data on two line segments. Since it is easy

to map the domain bounded by two arbitrary line segments conformally onto the domain

bounded by two specific line segments on the x-axis, there is no loss in generality if

we assume the segments to be the intervals (—2, —1) and (1, 2) on the x-axis.

Thus, we shall solve the problem consisting of Laplace's equation

<pxx + <Pn — 0
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with

<p(x, 0) = g(x), x £ E,

where

E = (-2, -1)U (1, 2).

As in Sec. 4, the function

<p{x, y) = -- [ f(t) log ((x - 02 + y2)1/2 dt
7T J E

is a solution of this problem if / satisfies the equation

g(x) = — - [ j(t) log \x — t\ dt, x £ E. (6.1)
7T J e

As in the earlier sections, we define

(Af)(x) = -- f f(t) log \x - t\ dt
IT J-a

and

(Pj)(x) = /(x), x E: E,

= 0, x(£E.

The operator A defined in this way is positive, and P is a projection. Consequently,

Theorem 2 applies.

The method for solving (6.1) is much the same as in Sec. 4, but there are one or two

additional features worth observing due to the fact that E is not a single interval.

To solve (6.1) by means of Theorem 2, what is required is a sequence of functions x»

such that

{Xn} is A-orthonormal, (6.2)

{%„} is total in R(P). (6.3)

To find such a sequence, we try to choose the functions x» as solution of an eigenvalue

problem of the form

Lx = ^Ax (6.4)

where L satisfies the two conditions:

L is selfadjoint; (6.5)

Eq. (6.4) is regular. (6.6)

(6.5) assures us that the solutions of (6.4) are A-orthogonal. (6.6), on the other hand,

is imposed entirely for our convenience. We insist that (6.4) be regular because regular

equations are the ones we like best and know the most about. The regularity of (6.4)

also allows us to prove (6.3).

As in the earlier sections, it is easiest to begin with the operator L obtained by

Fourier transforms: L~x = (Lx) • Since the Fourier transform of (— 1/ir) log |x|) is

1/|£[, (6.4) can be written in the alternative form

= XxVlfl- (6.7)

As a first step toward achieving (6.6), we require that (6.7) be regular.
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Naturally, in order for (6.5) to hold, L must be selfadjoint. But, again as before,

we have a wide selection of selfadjoint operators L such that (6.7) is selfadjoint. Any

of the operators

J r2"+1 J , m,n = 0,1,2,-.., (6.8)

will do. To decide which of these to choose, we draw on our experience from Sees. 3,

4, and 5. In those sections, it was found that the equation corresponding to (6.4) had

to have singular points at the ends of the interval over which the equation is valid. If

that experience is a guide, we must expect (6.4) to have singular points at x = ±1

and x = ±2, the endpoints of the intervals constituting E. This means that the highest

derivative occurring in (6.4) will have to be multiplied by some power of the polynomial

(1 — z2)(4 — x2). To keep things as simple as possible, we shall attempt to keep the

power equal to unity. Thus, the highest derivative in (6.4) will be multiplied by a fourth

degree polynomial in x. Since multiplication by x amounts to differentiation with respect

to £, the means that the transformed equation (6.7) will be a differential equation of

order four. This means that the values of to we may use in (6.8) are m — 0, 1, and 2.

To continue with the attempt to keep things as simple as possible, we shall try to

restrict the order of the differential equation (6.4) to two. This means that when (6.7)

is written as an equation with polynomial coefficients, no powers of £ higher than two

may appear. This requirement limits the values of n in (6.8). In fact, the only operators

of the form (6.8) satisfying both restrictions we have imposed are

I I J_ d_ | | d_ d_ 1 d | | (f_
|f| ' df|€|d£' dt |£| dV d£ m df

The second of these can be absorbed into the right-hand side of (6.7), while the third

interferes with the others. Therefore, we see that the simplest choice possible for L

is the linear combination

- (I2 ̂  ie + a Il?l I+ 0 -
Wf IM df 1 141 d{

where a and /} are constants.

With this choice for L , (6.7) can be reduced easily to the form

, d2 , \ . , d (n d2 , \ .

* t + adf + /3JX + £dk Vdf + VX ~ Xx '

The values of a and 0 can be read off immediately from this equation. The only term

involving second derivatives with respect to x is the first. Its inverse transform has the

form

— d2/dx2[(xi — ax2 + j3)x]-

If, as expected, (6.4) has singularities at the endpoints of E, the polynomial x4 — ax2 + (3

must have zeroes at x = ±1, ±2. This means that we must have a = 5, /3 = 4. We

now take these values as given and prove, after the fact, that the associated operator L

has all the desired properties.

This means that we shall consider the equation

«'d+5$+4)*"+4(2!+5k- Xx' (6.9)
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and prove that it has solutions that are transforms of functions x» satisfying (6.2) and

(6.3). The first property the solutions of (6.9) must have is part of (6.3): the inverse

transforms of solutions of (6.9) must be zero for x ££ E. Suppose x were the transform

of a function x that is zero for x E. x itself must satisfy the equation

~ (1 - x2)(4 - x2)x + £ x(5 - 2x2)x + XX = 0. (6.10)

Before going on, we note that (6.10) is regular, so that (6.6) is satisfied.

If x has the property assumed of it, (6.9) must be recoverable from (6.10) by trans-

forming (6.10) over E. If one transforms (6.10) over E and insists that the result be

(6.9), then x(x) must satisfy the boundary conditions

lim (1 - z2)(4 - x )x(x) = 0,

(6.11)
lim [(1 - x2)(4 — x2)x'(x) + x(2x - o)x(z)] = 0,
x-+dE

where dE denotes the boundary of E.

As before, (6.11a) is satisfied by every solution of (6.10) since the indicial equation

of (6.10) has the roots 0 and (—1/2) at all the singular points. Thus, we need only

consider (6.11b). However, dE consists of the four points ±1, ±2, so there are already

jour boundary conditions (6.11b).

Let E = E~ yj E+, where E~ = ( — 2, —1) and E+ = (1, 2). Denote the functions

that are zero outside E~ by R(P) and the functions zero outside E+ by R(P+). Clearly,

both R(P~) and R(P+) are subsets of R(P). Let u~(x) be a solution of (6.10) satisfying

the two boundary conditions

lim [(1 — x2)(4 — x2)w'(x) + ,r(2.ri — 5)w(x)] = 0 (6.12)
x—>0E~

and

u~(x) = 0 for a: (Jj E~. (6.13)

The same argument that was used in the earlier sections shows that there is an infinite

sequence {co~j of solutions of (6.10), (6.12), and (6.13) that is total in R(P~).

The eigenvalues associated with the problem just described are simple. To see this,

make the substitution

r~(x) = oT(x)((l - z2)(4 - x-))U2.

Since the indicial equation associated with (6.10) has roots 0 and (—1/2), the indicial

equation associated with the equation satisfied by t~ has roots 1/2 and 0. Moreover,

in terms of r~, the boundary condition (6.12) becomes

lim t'(x) = 0.
x—>dE ~~

Therefore, near x = — 1, for instance, t~(x) is regular. Suppose that associated with

an eigenvalue X there were two eigenfunctions and t~2. Then we could find a linear

combination t~ = c^ + c2t~2 that is zero at x = —1, while the boundary conditions

give that the derivative of r~ is also zero at x = —1. Since t~ is regular, this implies

that r~ is identically zero, so that t\ and t~2 are linearly dependent.
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In the same way that we constructed the sequence {co~), we also construct a sequence

{co^,} of solutions of (6.10) satisfying the boundary conditions

lim [(1 — x2)(4 — x2)u'(x) + x(2x2 — 5)co(a*)] = 0 (6.14)
x-dE +

and

o)+(x) = 0 for a; E*. (6.15)

This sequence is total in R(P+), and the corresponding eigenvalues are simple.

We now define a sequence {«„} by the formulas

(6.16)
u2n(x) = 0) n(x),

u2n+i(x) = ca+n(x).

The entire sequence j } includes all the functions o>~ and co* and is therefore total

in R(P). Two functions and o>n associated with different eigenvalues are A-orthogonal

since these functions each satisfy an equation (6.4) with L selfadjoint. Because of the

simplicity of the eigenvalues proved earlier, no two eigenfunctions can have the same

eigenvalue except possibly for two successive functions o>2„ and co2n+i. These two functions

do correspond to the same eigenvalue since, as is easily seen, &>2„(x) = w2„+1(—x).

On the other hand, a>2„ and oi2n+1 are obviously linearly independent, since each is

zero wherever the other is not. Also, we can prove in the same way that we did in Sec.4

that (Aw„ , «„) < co. Therefore, the two functions can be A-orthonormalized by the

Gram-Schmidt process. We call the resulting two functions X2» and X2»+i • It is easily

seen that the sequence {x„l so defined satisfies all the conditions of Theorem 2. Thus,

we have the

Theorem. Define two sequences {co~} and {co~J,} as the solutions of (6.10), (6.12),

and (6.13) and of (6.10), (6.14), and (6.15), respectively. For each n, let X2» and X2n+i

be linear combinations of u>~n and co+n chosen in such a way that

_ir \/2 + L )X2n^X2n^ log ~ 'I dt dx = l'

~t(I + h )X2n+1^X2"+1^ loS I® ~ l\ dt dx = 1>

~~~ (/ + f )x2n(a;)x2n+i(0 log \x — t\ dt dx = 0.

Consider the integral equation

g(x) = —~ (/ + J )/(0 \x ~ A dt, 1 < \x\ < 2.

If there is a solution, it is given by the formula

f(t) = X) X-(o(/ 2 + ^ )g(X)Xn(x) dx.
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