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ON CONVECTION AND DIFFUSION*

BY
S. L. PASSMAN
United States Naval Academy

1. Preliminaries. In a recent paper [1], Marris and Passman developed the theory
of the transport of a general solenoidal vector in the motion of a continuum. This con-
stituted a generalization of part of the elegant classical theory of vorticity transport,
as set forth by Truesdell [2]. I show here that part of the work of Marris and Passman
can be considered to be a special case of a somewhat more general theory, and give
another application of that theory. With certain minor exceptions, I use the notations
and assumptions of Truesdell and Toupin [3].

2. The general integral formula'. Let B be any twice continuously differentiable
vector function with covariant components 8, . Form the material expression ;. . 2* .
Then

(%(Bk,axk.ﬂ) = Bk.axk.ﬂ + Bk.ai’k.p . (1)

Thus

%(5k,le.a$k.ﬂ) = Br.aZ" s+ Br.al’ g . 2

Let 8. 5 represent the values of 8, at ¢ = 0. The integration of (2) along the path of
a particle® yields

Bk.lxl.axk,ﬂ = ﬁa.ﬂ + [) (Bk,axk.ﬁ + Bk,aj:k.ﬂ) dt’ (3)

which, with appropriate changes, yields

B = [Bﬂ.a + f Bii + By.i3".0a" oz’ s dt] XX, . @)

Eq. (4) is a relationship for the transport of the gradient of an arbitrary vector
in the motion of a continuum. The first formula of this type was published in 1948 by
Truesdell [5].

It is seen that there are two processes involved in the transport of the gradient of 8.
One, represented here by the term

Bs.a X*u X4,

depends only on the value of 3 at ¢ = 0 and the initial and final coordinates of the

*Received February 16, 1969.
1The method used here is due originally to Carstoiu [4].
2That is, write all of the functions in (2) in terms of X and ¢. Fix X and integrate.
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particle, and is called convection. The second process, here represented by the term

t
|:f (B-',i + Bp.ij’.p.i)xi.ax‘.ﬂ dt] Xa.kXﬁ.x
0

depends on the motion and the values of § between 0 and ¢. It is called diffusion.

The axial-vector of (4) yields the relation (2.11) of Marris and Passman [1] which,
in turn, yields relations for the transport of Nth-order vorticity, including Truesdell’s
formula for transport of first-order vorticity. The symmetric part of (4) with the sub-
stitution B, = &, yields the formula for transport of stretching ([3], p. 381).

3. An application. The covariant components of the Nth Rivlin-Ericksen tensor
are given by

N (N~-K) (K)
AD = 24® 4 KZ;( ) Tomp 2™ o s (5)

)
where z* are the contravariant components of the N — 1st acceleration, defined by

N) N k
" d'

= , 6
dtN ( )
and d{¥ are the covariant components of the Nth stretching tensor, given by
N (N)
l(cm) = Tk.m) - (7)
The symmetric part of (4) is
t
By = [ﬁ(p.a) + f Bes.iy Tt Br.i%%,:0)x" o2’ 5 dt:l Xa.lXﬁ,k . ®
0

We thus have the following relation for transport of the Nth Rivlin-Ericksen tensor:

A:;V) — 2|:d(N) + f (d(N+l) ,(_N()i .7 ‘)xi.axt"ﬂ dt] )(a'k)(ﬂ'u
(N—-K) (N-K+1) (N=-K) . .
+ Z ( )[:( x'g a + f ( Z;,; x,','fi;r_,‘)x"qx.‘p dt) Xa'mXﬁ_k

K=1
(N+1)
<x5 , + f ( Ten T+ :c, W )x"_yx"_.; dt)g'"’X".,X‘,q]' 9)

It might be speculated that there exists a relation for the transport of a Rivlin-
Ericksen tensor which depends only on other Rivlin-Ericksen tensors and the second
referential kinestate. I have not been able to derive such a relation. Eq. (9) indicates
that the Nth Rivlin-Ericksen tensor at time { is, in general, the result of a much more
complex transport mechanism. It is also seen that there exist conditions under which
the transport of a Rivlin-Ericksen tensor is due to convection only. It would be interest-
ing to study these conditions.
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