
139

NOTE ON ELECTROHYDRODYNAMIC STABILITY*

BY
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Problems of small oscillations of fluid systems subject to electrostatic forces have

been studied by many authors, for example Rayleigh [1], Bassett [2], Taylor and McEwan

[3] and Melcher [4]. Such problems can usually be analysed with the simplification

that the electric field may be treated as an electrostatic field on the time scales which

are of interest for mechanical vibrations. The time scale of decay of charge in the interior

of a conducting body is k/47t?7 (see Jeans [5]), where k is the dielectric constant and ?j

the electrical conductivity. We find that with water, for example, this decay time is

of order 1CT4 seconds, so that only for oscillations with periods as small as this need

we consider the departure of the electric field from its equilibrium configuration for

waves on water in the presence of an electric field.

In considering perturbations of an electrohydrodynamic system from equilibrium

it is possible for the electrostatic field to be perturbed in two distinct ways, one in which

electrostatic potentials of conductors are maintained constant in the oscillation by

connections with batteries, and the other in which the conductors are electrically in-

sulated from their surroundings, in which case their charges are maintained constant.

In studying several problems of this kind recently the author has found that the normal

modes of oscillation have turned out to be the same in both these cases. For example

it was shown (Michael [6]) that this is the case for small oscillations of an incompressible

conducting circular jet which is projected along the axis of a concentric electrified con-

ducting cylinder. The intention of this paper is to show that this result is not valid in

general. An attempt is made to classify the problems in which the result is true, and we

give finally a simple illustration of a case in which the normal modes of oscillation are

different in the two cases.

It is not difficult to identify formally the situations in which charge-maintained and

potential-maintained oscillations are the same. If we represent the system in general

by a number of charged conductors, in which the charge is Q< and potential V{ on the

ith conductor, then

Vi = VuQi , (1)

Qi = CijVj , (2)

where p„- and c,,- are the coefficients of potential and capacity respectively. These co-

efficients are functions of the geometrical shape and positions of the conducting bodies.

We also know from the reciprocal theorem in electrostatics that

Pa Pa > /o\
and W

Cii — Cji .
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The electrostatic energy W is given by

W = iQ,Vt = |p,,Q,Q, = |ciiViVi ,

so that

3> = QiVi — |PaQiQj - ICi.F.F,- = 0.

We are interested in small changes in the electrostatic field in situations in which

the conducting bodies may be fluids which may change their shape, size and relative

positions. Let A Q, , A I', , Ap,, , and Ac,-,- represent small changes in QL , Vt , pti and

c,j , respectively. Then

A$ = Q,AV, + Vit^Qi - |APaQ.Qi - IvatQikQi + QjAQi) - |ACi,-7,-7,-

- laiV,A7, + V,-AFi) = 0,

to the first order, and using (1), (2) and (3) we find

I hPaQiQj = ~h ACijViVi . (4)

The left-hand side of (4) represents the increase in electrostatic energy due to a change

in shape and position of the conductors when the charges are kept constant. We describe

as the available energy the energy released by the electrostatic field in a small change,

which is available to build up the kinetic energy of the fluid, say. In this case the available

energy is — §APaQiQi since the conductors are electrically insulated from their sur-

roundings. When a small change at constant V occurs the increase in electrostatic energy

is |ACijViVj , but in this case a charge AQ; = Ac,,F,- is added at potential V, to the

ith. body so that additional energy F;AQ; = Ac,,F,F,- is added to the system. Thus

the available energy is now |A. Equation (4) therefore shows that the available

energy is the same in both cases. However, an important proviso concerning this result

is that it applies only to the lowest order in the small changes in position of the con-

ducting surfaces.

The significance of this result for the problem of small oscillations depends on whether

energy changes of this order determine the behaviour of small oscillations. If e denotes

a small dimensionless parameter representing the amplitude of a small allowable dis-

turbance, we need to distinguish the two cases in which the electrostatic energy changes

are 0(e) and 0(e2), respectively. In the first of these a steady state is achieved by the

interplay of electrostatic forces with other force fields, as for example the pressure field

of internal motion of a fluid conductor or of the motion of an insulating fluid surrounding

the conductors. When small oscillations occur in such a system the available energy

is the same, in charge- and potential-maintained oscillations, only to the order e. To the

order «2, which determines the form of the oscillations, the available energy may be

different in the two cases. When the electrostatic energy change is of order e2 the electric

field and other force fields are separately in equilibrium and the result above shows

that small oscillations then have the same dispersion relation in the two cases.

We need therefore to classify problems of electrohydrodynamic stability according

to whether the electrostatic energy is itself stationary to the allowable displacements

or not. The displacements allowable will of course depend on the material of the con-

ducting bodies. Clearly there is an important distinction between oscillations of an

incompressible fluid conductor in which the volume is conserved, and a conducting

gas, say, in which an expansion or contraction in volume may occur in the oscillations.



1970] NOTES 141

In attempting a classification we examine first the electrostatic energy of the field

associated with incompressible charged conductors. In the first place, if we have one

simply connected incompressible conductor of finite volume and of arbitrary shape

with charge Q, for what shape is the electrostatic energy of the field produced stationary

to small changes in the shape which preserve the volume of the conductor? This is

equivalent to the requirement that the conductor, treated as an ideal incompressible

fluid which cannot store internal energy, should be in equilibrium under the action

of the electrostatic field. It clearly requires that the surface-charge density a should be

the same at all points, so that the electrostatic stress shall be constant over the surface.

This cannot be so in general since it requires V and its normal derivative dV/dn to be

constant on the conductor, and these conditions taken together overprescribe the bound-

ary conditions for V. It seems clear that the only exception is the case in which these

conditions are satisfied on account of the symmetry the body, that is, the spherical

conductor. Similar remarks apply to a single cylindrical conductor, which needs to be

of circular cross-section. For a conducting fluid which extends to infinity in two directions,

a plane layer of uniform thickness also satisfies this criterion. We may also add to these

the configurations which have the same degrees of symmetry, such as a system of con-

centric spherical shells, coaxial circular cylindrical shells, or plane parallel layers of

conductors. These categories include the problems already discussed by the author

[6], [7]. All other systems of incompressible fluid conductors which have occurred to the

author lack sufficient symmetry to satisfy this criterion.

The situations in which a system of compressible conductors satisfies the criterion

can be at most the same as those for the incompressible case. But in fact the possibility

of expansion of a conductor in small oscillations appears to reduce the number of cases

to zero. In the small displacement of a single spherical conductor we find that the in-

crement AC in capacity C is such that AC/C is 0(e2) only for displacements in which

the volume is unchanged, but when the volume changes A C/C is 0(e). This is simply

seen in the case of a radial expansion from radius a to a(l + e) since the capacity is

equal to the radius. In this case if the charge Q is maintained in the expansion the avail-

able energy is

Q2 L 1 \ _ Q2
2a I1 (1 + e)j 2a ^ e + e " ^'

whereas if the potential of the conductor is maintained the available energy is (Q2/2a)e.

The fact that the term in e is the same in the two cases is in accord with our general

result. Changes in energy to this order will of course be balanced out from other sources

in a displacement from equilibrium, but the example illustrates that the e2 terms are

different, so that different sets of normal modes would result.

As a further simple illustration, the capacity C, per unit length, of two parallel circular

cylinders of radii a and b, eccentrically placed so that the distance between their axes

is d, is given bv

1 = 2 cosh- & + >' " *
C ' \ 2ab

If we make an incompressible translation of one cylinder so that d —» d(l + e), the

change in capacity is 0(e), except in the case where d = 0, when the change becomes

0(e2) if c? —> ea, say. But even in the case where d = 0, if we make a compressible dis-

placement, as for example when a —> a(l + e), A C/C is again O(e).
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We end this discussion with the derivation of stability criteria for radial oscillations

of a gaseous cylindrical conducting jet of radius a, as an illustration of a situation in

which different stability characteristics are obtained. Suppose a jet of conducting gas

occupies the region 0 < r < a and is surrounded by a nonconducting gas in the region

a < r < b with a solid conducting outer boundary at r = b. We assume each of the

gases to be a perfect gas, and denote by p, t, y the pressure, volume per unit length,

and the ratio of specific heats respectively. Also we use suffixes 0 and 1 to distinguish

the inner and outer gases respectively.

The internal energy U is easily seen to be given by

u ' ©

where p^, r# represent a reference state which can be taken as the equilibrium state

p0 , T0 and pi , tl for the respective gases. When the interface at r = a is displaced to

r = a(l + e) we find easily that the increments AU0 and AUt are given to the order e2 by

AU° = (Tf°:° !) K1 - 7o)2e + (1 - 7o)(3 - 27oy + 0(e3)},

V1T1 1/1 . -I (~2"2)e
(7i - 1) l(1 ~ 7l) - a2)

n _ \l ~a2 _| i o (1 ~ ^)a'
(1 \(b2 — a1)/ (b2 — a2)3 J

+ 0(e3)

In the equilibrium state let the electrostatic potential V be such that V = 0 at r = a

and V = V at r = b. The surface charge per unit length is then Q = V/2 log (b/a) at

r = b, and the electrostatic energy W = Q2 log b/a. We then find that the available

energy in the two cases (i) in which Q is conserved and (ii) in which the po-

tential difference V is conserved, are + 0(e3)}, and Q2[e — e2(J —

1/log (b/a)) + 0(e3)j, respectively. The conditions for stability are, respectively,

AU0 + AU, > Q2(t - e2/2), (6)

and

AU0 + AUi > Q2U - e2(| - 1/log (b/a))}. (7)

The terms in e cancel out of these conditions on account of the equilibrium condition,

which is that

Pi — Pa = Q2/2ira2. (8)

Using (8) we may write the conditions (6) and (7) in terms of p0 and px and they

become, after simplification,

Po(2 - 7o) < Pi

and

l (1 - 7i)
(b2/a2 - 1)J

p<> 2 70 log b/a_
< Pi

1 „ _ (1 ~ 7.) 1 .
log b/a (b/a)2 — 1J

(9)

(10)

To examine the significance of (8), (9) and (10) we have put 70 = 7i = 1.4. It is easily

seen that in case (i) the equilibrium is stable to radial oscillations for any Q. But in
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Fig. 1. Stability characteristics for potential maintainance of radial oscillations of a gaseous electrified

jet.

case (ii) such oscillations are unstable when (Q2/2ira2p0) > Stable and unstable

conditions in case (ii) are shown in Fig. 1.

Under conditions in which distinct normal modes arise, it is to be expected that

potential-maintained oscillations will be more unstable than charged-maintained oscil-

lations, since in the former case the system can avail itself of additional energy from

external sources.

We should note finally that the effect of electrostatic forces on the vibrations of a

system of fluid conductors depends on the geometry of the conducting surfaces only,

and not on the fluid motion produced. It follows that the distinctions made in this paper,

between cases in which charge-maintained and potential-maintained oscillations are

the same or different, will apply equally to oscillations of viscous as to inviscid highly

conducting fluids.
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