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- NOTES -

CANONICAL APPROACH TO BIHARMONIC VARIATIONAL PROBLEMS*

BY

A. M. ARTHURS

University of Yorlc, England

Abstract. A canonical approach to biharmonic variational problems is presented.

It provides a new form of the principle of stationary energy and a new derivation of

the principle of minimum potential energy.

1. Introduction. In a recent series of papers [l]-[4], variational principles associated

with the canonical equations

= dW/dU, T*U = dW/d$

have been studied. The work of Noble [1] dealt with the one-dimensional case T =

d/dx, T* = —d/dx, while the operators T = grad, T* = — div have been discussed

in papers on diffusion and related topics [2]-[4].

The purpose of this note is to present some results for the operators T = V2, T* = V2.

The theory is used to derive a canonical form of the principle of stationary energy for

biharmonic problems and to provide a new derivation of the principle of minimum

potential energy.

2. Theory. We consider a physical problem which is described by the pair of canon-

ical Euler equations

T*= w F(r' u) (1)
in R,

T*U = ~ W(r, $, U) (2)

in which T and T* are linear operators, r is a position vector and $ and U are functions

of r. The region R is a part of the xy-plane which has a piecewise smooth boundary B.

The boundary conditions are taken to be

$ = ^ on B (3)

d$/dn = /([/) (4)

where n is the outward pointing normal to the boundary, and <p0 and / are given functions.

The operator T* in (2) is the adjoint of T in the sense that

(U, r$) = (T*U, $). (5)

where the inner products are defined by
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(U, T<i>) = [ UT$ dxdy - [ U ds + f F(U) ds, (6)
J r J B uYl J B

(T*U, $) = [ (T*U)<S> dxdy - [ $ ds + f F(U) ds, (7)
Jr Jb d7i Jb

with

F(U) = JU KU')dU'. (8)

Definitions (6) and (7) are appropriate to the case T = V2, T* = V2. If we introduce

the functional

/($, U) = [ W(r, U) dx dy - (U, T$), (9)
•> R

then the following results are obtained:

Stationary property. /($, U) is stationary at (ip, u) if Eqs. (1)—(4) hold simul-

taneously at (<p, u).

Extremum principle. Choose a trial function $ which is equal to <p0 on B, and deter-

mine C/($) so that Eqs. (1) and (4) are satisfied identically. Then, if (2) holds at (<p, u)

we have from (9)

G($) = /($, [/($)) = I(<p, u) + 52/($) + 0(<E> - <pf, (10)

where

«•/(.) -11 {<* - - (um - dx dy

+1 £ (C« -»>■[§],.„*• (")

If terms of third and higher orders can be neglected (or if they vanish), it follows that

G($) < I(<p, u) if d2I < 0, (12)

or

£($) > I(<p, u) if b2I > 0. (13)

Thus we have an upper or a lower bound for I(<p, u) depending on the sign of o'l. The

pair of functions (<p, u) furnishes the exact solution of the problem in Eqs. (l)-(4).

3. The biharmonic equation. The equation which governs the small deflection

bending of a thin elastic plate is [5], [6]

V4$ = q/D in R, (14)

where $ is the deflection normal to the surface, q(x, y) is the distribution of normal

loading and D is the flexural rigidity. The boundary conditions [5], [6] for a plate which

is clamped on part and simply supported on B — Bt are

<i> = d$/dn = 0 on , (15)
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and

$ = d$/dn - 1/K(1 - v) V2$ = 0 on B - Bt . (16)

Here k is the local curvature of B and v is Poisson's ratio. In addition we assume that

these deflection conditions satisfy Eq. (14) explicitly. We now write (14) as the pair of

equations

V2-f> = U . „ (17)
in R. y '

V2U = q/D (18)

This way of writing (14) is equivalent to that used by Morley [5], but the canonical

form of (17) and (18) does not seem to have been emphasized previously. The boundary

value problem in (15)—(18) is a special case of that discussed in Sec. 2 and corresponds to

W(r, 3>, U) = W2 + q*/D, (19)

T = V2, T* = V2, (20)

<Po = 0 on B, (21)

m = 0 on Blt (22)

= U/k(1 — v) on B — Bi .

Putting these in (9) we obtain

/<*. V) - l{i V■■ + % * - CTV'*} dy + L, {p I - <23>

From Sec. 2 we see that /($, U) in (23) is stationary at (<p, u) where <p, u are the exact

solutions of (15)-(18). This is a canonical form of the principle of stationary energy.

When $ = <p and U = u we find that (23) gives

K<P, u) = \ [ u2 dxdy - ^—r [ - u ds. (24)
I JR 2(1 — v) Jb-bx k

The functional (?(<£) given by (10) is found to be

" I H + D *} d* + I L. "(1 - ''(f)* » B■
(25)

In addition Eq. (11) becomes

52m = -f I - u)2 dx dy + 2(1 v) B -K (C/($) - u)2 ds. (26)

k(1 - v) <0, (27)

then

52/($) < 0, (28).

and hence, by (12), we have the variational principle

<?(*) < I(<P, u). (29)

Eq. (29) is equivalent to the principle of minimum potential energy [5], [6].
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