-NOTES-

CANONICAL APPROACH TO BIHARMONIC VARIATIONAL PROBLEMS*

 \mathbf{BY}

A. M. ARTHURS

University of York, England

Abstract. A canonical approach to biharmonic variational problems is presented. It provides a new form of the principle of stationary energy and a new derivation of the principle of minimum potential energy.

1. Introduction. In a recent series of papers [1]-[4], variational principles associated with the canonical equations

$$T\Phi = \partial W/\partial U$$
, $T^*U = \partial W/\partial \Phi$

have been studied. The work of Noble [1] dealt with the one-dimensional case T = d/dx, $T^* = -d/dx$, while the operators T = grad, $T^* = -\text{div}$ have been discussed in papers on diffusion and related topics [2]-[4].

The purpose of this note is to present some results for the operators $T = \nabla^2$, $T^* = \nabla^2$. The theory is used to derive a canonical form of the principle of stationary energy for biharmonic problems and to provide a new derivation of the principle of minimum potential energy.

2. Theory. We consider a physical problem which is described by the pair of canonical Euler equations

$$T\Phi = \frac{\partial}{\partial U} W(\mathbf{r}, \Phi, U) \qquad \qquad (1)$$

$$T^*U = \frac{\partial}{\partial \Phi} W(\mathbf{r}, \Phi, U)$$
 (2)

in which T and T^* are linear operators, \mathbf{r} is a position vector and Φ and U are functions of \mathbf{r} . The region R is a part of the xy-plane which has a piecewise smooth boundary B. The boundary conditions are taken to be

$$\Phi = \varphi_0 \qquad \text{on} \quad B$$
 (3)

$$\partial \Phi / \partial n = f(U) \tag{4}$$

where n is the outward pointing normal to the boundary, and φ_0 and f are given functions. The operator T^* in (2) is the adjoint of T in the sense that

$$(U, T\Phi) = \langle T^*U, \Phi \rangle, \tag{5}$$

where the inner products are defined by

^{*}Received April 8, 1968.

$$(U, T\Phi) = \int_{R} UT\Phi \, dx \, dy - \int_{B} U \, \frac{\partial \Phi}{\partial n} \, ds + \int_{B} F(U) \, ds, \tag{6}$$

$$\langle T^*U, \Phi \rangle = \int_{\mathbb{R}} (T^*U)\Phi \, dx \, dy - \int_{\mathbb{R}} \frac{\partial U}{\partial n} \Phi \, ds + \int_{\mathbb{R}} F(U) \, ds,$$
 (7)

with

$$F(U) = \int_{-\infty}^{U} f(U') dU'. \tag{8}$$

Definitions (6) and (7) are appropriate to the case $T = \nabla^2$, $T^* = \nabla^2$. If we introduce the functional

$$I(\Phi, U) = \int_{\mathbb{R}} W(\mathbf{r}, \Phi, U) \, dx \, dy - (U, T\Phi), \tag{9}$$

then the following results are obtained:

Stationary property. $I(\Phi, U)$ is stationary at (φ, u) if Eqs. (1)-(4) hold simultaneously at (φ, u) .

Extremum principle. Choose a trial function Φ which is equal to φ_0 on B, and determine $U(\Phi)$ so that Eqs. (1) and (4) are satisfied identically. Then, if (2) holds at (φ, u) we have from (9)

$$G(\Phi) \equiv I(\Phi, U(\Phi)) = I(\varphi, u) + \delta^2 I(\Phi) + O(\Phi - \varphi)^3, \tag{10}$$

where

$$\delta^{2}I(\Phi) = \frac{1}{2} \int_{R} \left\{ (\Phi - \varphi)^{2} \left[\frac{\partial^{2}W}{\partial \Phi^{2}} \right]_{\varphi, u} - (U(\Phi) - u)^{2} \left[\frac{\partial^{2}W}{\partial U^{2}} \right]_{\varphi, u} \right\} dx dy + \frac{1}{2} \int_{R} (U(\Phi) - u)^{2} \left[\frac{df}{dU} \right]_{\varphi, u} ds.$$
 (11)

If terms of third and higher orders can be neglected (or if they vanish), it follows that

$$G(\Phi) \le I(\varphi, u) \quad \text{if } \delta^2 I \le 0,$$
 (12)

or

$$G(\Phi) \ge I(\varphi, u) \quad \text{if } \delta^2 I \ge 0.$$
 (13)

Thus we have an upper or a lower bound for $I(\varphi, u)$ depending on the sign of $\delta^2 I$. The pair of functions (φ, u) furnishes the exact solution of the problem in Eqs. (1)-(4).

3. The biharmonic equation. The equation which governs the small deflection bending of a thin elastic plate is [5], [6]

$$\nabla^4 \Phi = q/D \quad \text{in R}, \tag{14}$$

where Φ is the deflection normal to the surface, q(x, y) is the distribution of normal loading and D is the flexural rigidity. The boundary conditions [5], [6] for a plate which is clamped on part B_1 and simply supported on $B - B_1$ are

$$\Phi = \partial \Phi / \partial n = 0 \quad \text{on } B_1 \,, \tag{15}$$

and

$$\Phi = \partial \Phi / \partial n - 1/\kappa (1 - \nu) \nabla^2 \Phi = 0 \quad \text{on } B - B_1.$$
 (16)

Here κ is the local curvature of B and ν is Poisson's ratio. In addition we assume that these deflection conditions satisfy Eq. (14) explicitly. We now write (14) as the pair of equations

$$\nabla^2 \Phi = U \qquad \text{in } R. \tag{17}$$

$$\nabla^2 U = q/D \tag{18}$$

This way of writing (14) is equivalent to that used by Morley [5], but the canonical form of (17) and (18) does not seem to have been emphasized previously. The boundary value problem in (15)–(18) is a special case of that discussed in Sec. 2 and corresponds to

$$W(\mathbf{r}, \Phi, U) = \frac{1}{2}U^2 + q\Phi/D,$$
 (19)

$$T = \nabla^2, \qquad T^* = \nabla^2, \tag{20}$$

$$\varphi_0 = 0 \quad \text{on } B, \tag{21}$$

$$f(U) = 0 \qquad \text{on} \quad B_1,$$

= $U/\kappa(1 - \nu) \qquad \text{on} \quad B - B_1.$ (22)

Putting these in (9) we obtain

$$I(\Phi, U) = \int_{\mathbb{R}} \left\{ \frac{1}{2} U^2 + \frac{q}{D} \Phi - U \nabla^2 \Phi \right\} dx \, dy + \int_{B-B_1} \left\{ U \frac{\partial \Phi}{\partial n} - \frac{U^2}{2\kappa (1-\nu)} \right\} ds. \tag{23}$$

From Sec. 2 we see that $I(\Phi, U)$ in (23) is stationary at (φ, u) where φ , u are the exact solutions of (15)-(18). This is a canonical form of the principle of stationary energy. When $\Phi = \varphi$ and U = u we find that (23) gives

$$I(\varphi, u) = \frac{1}{2} \int_{\mathbb{R}} u^2 \, dx \, dy - \frac{1}{2(1-\nu)} \int_{\mathbb{R}^{-B}} \frac{1}{\kappa} u^2 \, ds. \tag{24}$$

The functional $G(\Phi)$ given by (10) is found to be

$$G(\Phi) = \int_{R} \left\{ -\frac{1}{2} \left(\nabla^2 \Phi \right)^2 + \frac{q}{D} \Phi \right\} dx \, dy + \frac{1}{2} \int_{B-B_1} \kappa (1-\nu) \left(\frac{\partial \Phi}{\partial n} \right)^2 ds, \qquad \Phi = 0 \quad \text{on } B.$$
(25)

In addition Eq. (11) becomes

$$\delta^2 I(\Phi) = -\frac{1}{2} \int_{\mathbb{R}} (U(\Phi) - u)^2 \, dx \, dy + \frac{1}{2(1 - \nu)} \int_{B - B_*} \frac{1}{\kappa} (U(\Phi) - u)^2 \, ds. \tag{26}$$

If

$$\kappa(1-\nu) < 0, \tag{27}$$

then

$$\delta^2 I(\Phi) \le 0, \tag{28}$$

and hence, by (12), we have the variational principle

$$G(\Phi) \leq I(\varphi, u).$$
 (29)

Eq. (29) is equivalent to the principle of minimum potential energy [5], [6].

Acknowledgment. I should like to thank Sir H. Jeffreys for valuable comments on this work.

REFERENCES

- [1] B. Noble, Univ. Wisconsin Math. Res. Center Rep. No. 473 (1964)
- [2] A. M. Arthurs, Proc. Roy. Soc. Ser. A298, 97 (1967)
- [3] A. M. Arthurs and P. D. Robinson, Proc. Roy. Soc. Ser. A303, 497 (1968)
- [4] A. M. Arthurs and P. D. Robinson, Proc. Roy. Soc. Ser. A303, 503 (1968)
- [5] L. S. D. Morley, Q. J. Mech. Appl. Math. 19, 371 (1966)
- [6] S. G. Mikhlin, Variational methods in mathematical physics, Chapter 4, Pergamon Press, London, 1964