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—NOTES—

CANONICAL APPROACH TO BIHARMONIC VARIATIONAL PROBLEMS*

BY
A. M. ARTHURS
University of York, England

Abstract. A canonical approach to biharmonic variational problems is presented.
It provides a new form of the principle of stationary energy and a new derivation of
the principle of minimum potential energy.

1. Introduction. In arecent series of papers [1]-[4], variational principles associated
with the canonical equations

Te = oW/oU, T*U = oW /od

have been studied. The work of Noble [1] dealt with the one-dimensional case T =
d/dx, T* = —d/dx, while the operators T = grad, T* = —div have been discussed
in papers on diffusion and related topics [2]-[4].

The purpose of this note is to present some results for the operators T = V?, T* = V>
The theory is used to derive a canonical form of the principle of stationary energy for
biharmonic problems and to provide a new derivation of the principle of minimum
potential energy.

2. Theory. We consider a physical problem which is described by the pair of eanon-
ical Euler equations

Il

0
T® Y W, ®, U) 1)

in R,
a
* _
T*U = = W@, @, U) @
in which T and T are linear operators, r is a position vector and & and U are functions

of r. The region R is a part of the zy-plane which has a piecewise smooth boundary B.
The boundary conditions are taken to be

® = ¢,
Id/on

on B @)
1(U) @

where 7 is the outward pointing normal to the boundary, and ¢, and f are given functions.
The operator T* in (2) is the adjoint of T in the sense that

(U, T®) = (T"U, @), ®)

where the inner products are defined by
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U, T®) = fmwmm—fv m+fmw@ ©)
v, @) = [ @ v@dedy — [ Laas+ [ Fw)as, @

with
mw:ffwmwc ®)

Definitions (6) and (7) are appropriate to the case T = V?, T* = V° If we introduce
the functional

1@w=fwmqmmw—wmm ©)

then the following results are obtained:

Stationary property. I1(®, U) is stationary at (¢, u) if Eqs. (1)-(4) hold simul-
taneously at (o, u).

Extremum principle. Choose a trial function ® which is equal to ¢, on B, and deter-
mine U(®) so that Eqgs. (1) and (4) are satisfied identically. Then, if (2) holds at (o, u)
we have from (9)

G(®)

I1(®, U®@) = I(p, u) + 8°1(®) + O(2 — ¢)°, (10)

where

1) = R{@ s ["—l‘—] - W@ - [ aU‘] }dx dy
+3 [ W@ - [df] asap

If terms of third and higher orders can be neglected (or if they vanish), it follows that
G(®) < I(p,uw) if 6°I <0, (12)
or
G(®) > I(p,uw) if 6’1 > 0. (13)

Thus we have an upper or a lower bound for I(e, ) depending on the sign of 8°I. The
pair of functions (¢, w) furnishes the exact solution of the problem in Eqgs. (1)-(4).

3. The biharmonic equation. The equation which governs the small deflection
bending of a thin elastic plate is [5], [6]

V'® = q/D inR, (14)

where & is the deflection normal to the surface, q(z, y) is the distribution of normal
loading and D is the flexural rigidity. The boundary conditions [5], [6] for a plate which
is clamped on part B, and simply supported on B — B, are

® =9d/o0n =0 onB,, (15)
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and
® = 9%/on — 1/k(1 —») V& =0 onB — B,. (16)
Here « is the local curvature of B and v is Poisson’s ratio. In addition we assume that
these deflection conditions satisfy Eq. (14) explicitly. We now write (14) as the pair of
equations
2 —
Ve =U o R an

VU = ¢/D @18)

This way of writing (14) is equivalent to that used by Morley [5], but the canonical
form of (17) and (18) does not seem to have been emphasized previously. The boundary
value problem in (15)-(18) is a special case of that discussed in Sec. 2 and corresponds to

W, ® U) = 3U* 4 q@/D, (19)

T =vV? T* = V2, (20)

=0 onB, 21)

() =0 on B, @)

= U/l — v on B—B,.
Putting these in (9) we obtain
_12_9__2} {@_02}
I(@,U)—L{ZU +Dd> UV*®) dz dy + . Uan 50 =) ds

From Sec. 2 we see that I(®, U) in (23) is stationary at (¢, u) where ¢, u are the exact
solutions of (15)-(18). This is a canonical form of the principle of stationary energy.
When & = g and U = u we find that (23) gives

23)

I(p,u) = 2f u® dx dy — 5 1_ 3o luz ds. (24)
The funectional G(®) given by (10) is found to be
G@) = fk{_% (V') + 4 cp} dz dy + % - y)(%)zds, =0 on B.
’ (25)
In addition Eq. (11) becomes
SI@) = —1 f U@ — W dzdy + ——— 2(1 5 Lo@ —wias e
If
k(1 —») <0, (27)
then
3°1(®) <0, (28)
and hence, by (12), we have the variational principle
G(®) < Ie, u). (29)

Eq. (29) is equivalent to the principle of minimum potential energy [5], [6].
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