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DISTURBANCE DUE TO WEAK BUOYANCY ON THE FORCED CONVECTION
FIELD OF A SOURCE SINGULARITY OF HEAT*

By

W. P. KOTORYNSKI

University of Victoria

1. Introduction. In this paper, we are concerned with the change in the convection

field of a uniform stream U when small effects of buoyancy are present for a flow in an

unbounded region containing a point source of heat at the origin. Density difference®

established by temperature gradients induce fluid motion by driving less dense fluid

elements against the direction of the gravity vector g(f). In such a flow there is, therefore,

a coupling of the velocity and temperature fields. Except as they induce buoyancy forces

the density differences are otherwise ignored. The fluid is assumed to be a constant-

property one, so that the variation of thermal properties and the effects of viscous

dissipation on the temperature distribution are neglected.

The problem is treated by a regular perturbation of the classical problem in which

buoyancy is totally neglected (see e.g. [3, p. 266]). The first-order perturbation solutions,

which are obtained explicitly for a Prandtl number of one, are assumed to provide the

dominant behaviour of the self-convection fields of velocity and temperature. The

solutions imply a paraboloidal wake-like behaviour of these fields. Such behaviour is

consistent with solutions of the free convection problem as obtained by Mahony [7]

and Yih [9].

2. Formulation of the problem. The Oseen equations. The appropriate governing

system of equations for steady motion is (see e.g. Howarth [6, Chap. II, Eqs. 11, 54,

56, 93]).

u • grad u = —grad (p/po) + c Am — aTg

w-grad T = k. AT + Q 8(f) (2.1)

div u = 0.

In the above simplified Boussinesq equations k, a, v, are, respectively, the thermometric

coefficient, the coefficient of thermal expansion and the kinematic viscosity. The second

equation in (2.1) differs from the corresponding equation in Howarth by the inclusion

of the term Qd(f) which corresponds to a source singularity of heat delivering Q units

of heat per unit time at the origin. The divergence theorem permits this equation to be

expressed as

u ■ grad T = kAT (2.2)

in any region not containing the source, and

f [uT - k grad T]-n dS = Q (2.3)
J s
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in a region R with surface S which contains the source. Thus, instead of the second

equation in (2.1) we employ Eq. (2.2) and retain Eq. (2.3) as a boundary condition.

In a three-dimensional axisymmetric flow, in which the axis of symmetry is in the

direction of g and in which there is no velocity component in the azimuthal direction ev ,

there is only one component of the vorticity o> = ue9 . This corresponds to an annular

vortex filament encircling the axis of symmetry in a circle of radius p. The vorticity is

proportional to p. Following Pillow (see e.g. [2, Chap. I, §3]), we introduce the quantity

I = oj/p, the ring circulation density, in order to have a quantity which is conserved

under convection. The momentum equation in (2.1) when expressed in terms of I becomes

w-grad I = v Al + 2v p-grad I + ag-[p~l grad T X ev\. (2.4)
P

The equation of continuity can be used to advantage when the scalar stream function

tp is introduced by the identity u = curl ( — \pev). The relation between ring circulation

density and the stream function is then given by the Poisson equation

Aip = pi. (2.5)

In terms of coordinates (r, ju), where ju is related to the polar coordinate 0 by p = cos 6

(see Fig. 1), the governing system (2.2)-(2.5) then becomes

[r2l,r + (1 — p2)+ 4rl, — 4pZ„] — e[rT, — pTJ = d(\p, l)/d(r, p), (2.6)

r2T„ + (1 - pX, + 2rTr - 2pT„ = <r d(f, T)/d(r, p), (2.7)

r2hr + (1 - p2)^, = -r4(l - p2)Z, (2.8)

with the condition

/_'[r#, + irx]rf, = i- M

Fig. 1. Flow geometry.
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The above equations have been written in terms of nondimensional variables defined

by

i' = Uv~2i, v = irVi, r = it1v2q~1t, / = t/rV

and the primes have been dropped subsequently for convenience. The set of dimensional

scales

1 = [U'\\, t = [CTV|, & = [t/r2Q]

which has been employed is independent of ag, and therefore is suitable for considering

processes in which ag —> 0. The two nondimensional parameters a = vkT1 and e =

(ag)QU~2v~1 are the Prandtl and Grashof numbers, respectively. In the boundary

condition (2.3), S has been chosen to be the surface of a sphere with center at the origin.

The system (2.6)-(2.8) is to be solved subject to the additional boundary conditions

^ ~ fr2(l - M2); T, Z —> 0 as r-> », (2.10)

uniformly in 8,

V1 - 7 T„ = 0(1), Vl - H2 h = 0(1) as (2.11)

uniformly in r, and

Mr, ± 1) = 0. (2.12)

Conditions (2.10) are statements that the flow approaches a uniform stream for large r,

and conditions (2.11) are symmetry requirements on the derivatives of T and I normal

to the axis of symmetry. The definition of the stream function is completed by the

requirement (2.12).

The nonlinearity of the convection terms in Eqs. (2.6), (2.7) precludes closed solu-

tions in all but special cases. An approximate solution is attempted based on an Oseen

linearization in which the velocity is assumed to differ only slightly from that of a

uniform stream. The effects of buoyancy are therefore regarded as small in the Oseen

region. More precisely, the perturbation of the system (2.6)-(2.8) with boundary condi-

tions (2.9)-(2.12) is considered about the state of zero-buoyancy which is represented

by writing e = 0 in the above equations. It is assumed that the perturbation is regular.

This assumption would appear to be reasonable, at least for points in the region of

downstream infinity. Justification of a regular perturbational analysis for large r is given

a ■posteriori by employing in Sec. 6 the solutions obtained in preceding sections to calculate

directly orders of magnitude of neglected terms at the first stage of the process.

The process begins by expressing \p, I and T as power series in e, i.e.

i = Z Ur, nV, I = t ln(r, nV, T = i: Tn(r, M)«". (2.13)
n = 0 n=0 n=* 0

The zero-order equations with the appropriate boundary conditions have the classical

solution (see e.g. [3, p. 266])

to = |r2(l - A Z„ = 0, T0 = ^e (2.14)

The equations for the quantities tpi , h and 1\ characterize the first-order perturba-

tions due to nonzero buoyancy, and are termed the Oseen equations for this problem.
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They are

+ (1 - + 4rlu - 4nllf] - [rT0r - „T0J = , (2.15)

r2Tu, + (1 - + 2rTlr - 2»TU = + ^rf"] - (2-16)

and

»"Vi,r + (1 — m2)>Aw = —»"4(1 — m2)?i • (2.17)

This set of equations is to be solved subject to the conditions

/' \roh, + Trfo, + Jr2rir] dn = 0, (2.18)

with

\pi = o(r2), Ti , ix —> 0 as r —* °= uniformly in n- (2.19)

V71 — iU.2 Tir = 0(1), Vl — M2 fi, = o(l) as |/x| —» 1 uniformly in r,

and yf/i(r, ±1) =0.
In the remainder of this paper attention is centered on solution of the above system

for the quantities \j/1 , lx and rl\ as functions of the coordinates (r, n). The analysis is

carried out completely for Prandtl number equal to one. For other values of the Prandtl

number suitable Green's functions permit expression of , I, and rl\ in closed form as

multiple integrals to which conditions (2.18), (2.19) apply. The formidable integral

boundary condition (2.18) appears to make intractable the complete solution of the

perturbation problem for arbitrary values of the Prandtl number.

3. Perturbation solution for ring circulation density. Substitution of the zero-order

solutions (2.14) for \pa and T0 into Eq. (2.15) gives the Oseen equation for as

r2lrr + (1 — ai2)luu + 4rlr — 4— tirlT — r(l — n2)lu = — j(r, n) ^ ^

<T

47r
O I

-j<rr (1 — m)

in which the subscript on U has been suppressed temporarily.

In order to obtain the solution of Eq. (3.1) an appropriate Green's function valid

in the plane region 0 < r < °°, — 1 < < 1 is employed. This fundamental solution,

denoted by C(r, n; r0 , /x0) and satisfying the equation

rG„ + (1 - + 4rGr - 4^ - nr2Gr - r(l - m2)G„ = -S(r ~ r°] 8(f ~ Mo) ,

(3.2)

has been given by Breach [2, Chap. 3] along with the fundamental solution of Eq. (2.17)

for \pi . We will employ both of these along with the corresponding fundamental solution

of Eq. (2.16) appropriate for Oseen flow obtained by the present author. With the

Green's function taken in the form

<*• «''• ■ "> " ? 4,(„ + t,(n+ 2) C:"WC:"«
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then the solution for h , considered as a function of the coordinates (r, n) and parameter

a and satisfying all the boundary conditions, is

«'■ S (;P" \:^ [-2 + + r<H *•>«' - s)2t)

+ (* - ^)*(f, 5; W + s)2t) dt, (3.4)

where the ^ function is the second solution of the confluent hypergeometric equation,

and s2 = [r/2t + (<r — l)/u]2 + (a — 1)2(1 — ju2). It appears improbable that the inte-

gration with respect to t can be performed for arbitrary c.

The integral in (3.4) may be evaluated explicitly for the value <r = 1. In this case,

U{r,v) = ^-7— (* = D- (3.5)

The above solution may be verified to satisfy Eq. (2.15) directly by noting that it is

equal to §T0(r, /*, 1).

The perturbation ring circulation density h decays exponentially everywhere, except

along the axis of symmetry where it decays algebraically. The solution has the expected

feature of wake-like behaviour. That is, because of the exponential factor in (3.5), the

disturbance to the uniform stream due to U is slight, becoming important only when

r(l — n) = 0(1) for all r, n- This defines the paraboloidal region y = 0(x2) in which lx is

significant while outside it h rapidly tends to zero. Further interpretation of the result

for the perturbation ring circulation density is reserved until the discussion in Sec. 6.

4. The perturbation stream function. The perturbation stream function iMr, /1)

is obtained by solving the Eq. (2.17) with U given by Eq. (3.4). The function

g(r, /x; r0 , Mo)

= (i - m2),/2( 1 - mo)-i/2^'mp;'(mo)CI
1 47r r0

n+1/2

(r < r„),

(4.1)
' v+1/2

r (r > r0),

satisfying the equation

r grr + (1 - n2)(J^ = - o(r - r0) 5(m — n0)/2(4.2)

is a suitable fundamental solution for Eq. (2.17) valid in the region 0<r< co, — 1 <

M < 1 and vanishing along the axis of symmetry.

With lx given by Eq. (3.4) and g(r, n) r0 , /i0) given by Eq. (4.1), a particular integral

of Eq. (2.17) for arbitrary values of <7 is expressible in closed form as a multiple integral.

That is,

h(r, m) = / dr„ 2irrl-r0(\ - n\)k(r0 , ju0)g(r, ju;r0 , n0). (4.3)
J0 J-1

The problem of simplifying the above multiple integral significantly for arbitrary values

of the Prandtl number appears intractable. We confine ourselves henceforth, therefore,

to a Prandtl number of one, for which value I, has the relatively simple form (3.5) and
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the integrals in (4.3) can be evaluated explicitly. Thus, when u = 1 we have

Mr, M) = ^r(l + m)[1 - (4.4)

The perturbation velocity Hi = (wr, w9) is readily obtained from the stream function,

and the components are

l l
Mr = 2 "7— = T-

r dp
+ |(1 + p)e~*r(1_*)

1 /1 + pY^r^1-*' - 1 ,, v 1
^ "V = s ; *(1 - ^)e J •J 

r(l — ju2)1/2 dr

(4.5)

Off the axis, the components ur, u0 of the perturbation velocity are 0(r~l) for r tending to

infinity. However, near the axis of symmetry the exponential terms must be taken into

account and in fact, limM-i ur = (47t)_1 for all nonzero r, while ue is zero for p = ±1 and

r^O. The above implies there is a concentration of momentum along the axis. This may

be seen more clearly by expressing the perturbation velocity in terms of components uc

parallel to the axis and up perpendicular to the axis. In terms of cylindrical coordinates

(p, z) in the plane,

u, = (p2 + z2)-1/2 [exp (-J(p2 + 22)172 + 22) - 1]

+ i-
47r

1 I Z / 2 , 2\ —1/2

2 2 +3)
exp (-|(p2 + Zy/2 + iz),

(4.6)

Up = hr ' + P ^ + ^ 1/2^eXP (~5(P2 + 22)1/2 + §2) - 1]

+ ~ tKp2 + 22)172 - ip~y(p2 + *T1/2] exp (-Hp2 + *T2 + fc).

The wake-like behaviour superimposed on the uniform stream can now be inferred

as follows. The component uf of the velocity tends to zero as p tends to infinity, for

all z. Moreover, for all p, up tends to zero as z tends to infinity. The downstream compo-

nent of velocity uz approaches zero as p tends to infinity, for all z; however, it approaches

the constant value (47r)-1 as 0 tends to infinity for finite p.

This wake region in which the perturbation velocity is significant is paraboloidal in

shape. The form of the wake is deduced from the observation that exponential terms

appearing in the velocity components (4.5) are significant only when (r/2)(l — p) =

0(1) for all r, p, i.e. y = 0(x2).

The mass flux flowing downstream may be compared with that flowing into the

paraboloidal wake region as follows. In the boundary layer, the former is almost entirely

the mass convected across a disc of radius p at a height z. This flux is given by

p2r

Po / / uzp dp
Jo J 0

where p0 is the density. The mass of fluid directed into the wake is given by

2r /»z

po / / (-Wp)p dzd<t>.
J 0 J 0
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With the aid of (4.6), the preceding expressions both become

|p„t(p2 + z2)1/2 + z]-[l- exp (-Hp2 + 22)i/2 + §2)],

and it is seen that the increasing mass flux flowing downstream is balanced by that

entrained at the edge of the wake. It may be noted further that each is 0(z) for z tending

to infinity, a result which is indicated by similarity solutions of the free convection

problem (see e.g. Batchelor [1]).

5. Perturbation temperature. The perturbation to Tn is obtained by solving Eq.

(2.16) with \p0, ipi and T0 known. The solution of this equation for arbitrary values of a

is expressible in closed form as a multiple integral analogous to that in (4.3). Since the

perturbation stream function and ring circulation density have been evaluated explicitly

for a = 1 we concern ourselves with this value of a only in solving for rI\ . By virtue of

the expressions (2.14) and (4.4), Eq. (2.16) with the subscript on suppressed is

r2T„ + (1 - M2)rw + 2rT, - 2- »S-Tr - r( 1 - n')T,

= h('f, m) + U{r, n) + /s(r, At), (5-1)

where,

'• = T5? (1 + u - gp (1 - U - "is? (2 + W"-'.

It is convenient to express the right-hand side as above and to obtain particular integrals

corresponding to jl , f2 and /3 separately in order to simplify the task of applying the

relatively complicated boundary condition (2.18).

The solution of this equation is obtained in essentially the same manner as the

solutions for h and \pi . The complementary function is

T.(r, n) = e'r" £ [CJ>M + DnQM)- (5.2)
In+l/2(2^) 1 D Kn + 1/2(lr)

^ (lr)l/2 (ir)V2

By employing the fundamental solution

8(r, M;r„, mo) = y z («+^ ^ (5 3)
^7T r T 0 0

■^-"n+1/2(2 1/2(2^*0) (r ^ r0),

satisfying the equation

r2S„ + (1 - M2)8„h + 2rSr - 2„S,. - ^Sr - r(l - /)& = -*(r ^^
2Tr (5.4)

we determine particular integrals corresponding to /1 , /2 and /3 , respectively, to be

(1) _ _ _1  --ir(l-n) r

^ 7 -"lb6

7(2) _ 1 fl ruiTT-/ \ , e

16ir2 L2
(ii) r"=7

2r (5.5)

(iii) 71'3' = ds(2s 1 + s 2)
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• i; tt,/2(2n + l)e-In+u&s)PM
0

• [In + l/2(%S)Kn+l/2(ir) ^n+l/2(5?-)^Vn + l/2(3S)] •

The upper limit b of the integral in (5.5, iii) is an as yet undetermined constant

greater than zero which is determined by the boundary conditions (2.18), (2.19). The

integral is in fact well-behaved even for b tending to infinity. The series are absolutely

and uniformly convergent for all r > 0 and jpi| < 1. This follows by comparison of each

of the series with the series

£ (2n + 1 )e"2zIn+w2(z)h+i/2(Z)K„+w,(\Z)

(\z)W2 _2z fl ,a exp ( — ZV1 + X2 — 2Xa) , ^ n

L° Vl + X- - 2X« J° (X"1)(2tt) J-1 Vl + X2 — 2Xa

which may be obtained by multiplication of series given in Watson [8, pp. 365, 369], and

integration with respect to a. over the interval of orthogonality of the Legendre poly-

nomials. The expressions for Tu> and the partial derivative of Tv" with respect to r are

therefore both continuous for all r > 0 and |^i| < 1.

The general solution of (5.1) can be expressed as the sum of the expressions (5.5)

together with (5.2). Since Ti must remain finite as r —> the constants A„ for all n

must be chosen equal to zero in (5.2). Furthermore, the temperature is finite along the

axis of symmetry and hence the constants Dn must all be zero. The remaining constants

are determined by requiring that the integral boundary condition (2.18) and the condition

(2.19) for the gradient of rl\ on the axis be satisfied. This is accomplished by considering

separately the contributions of the individual terms of the integrand to the value of the

integral.

Firstly, with T0 given by (2.14) and given by (4.4), the contribution of the first

term in the integrand of (2.18) is

/:

dh 1 3 2 1 _2r.
T° d„ d>1 ~ "iOtM1 ~2r + ~r6 ~2r* )' (5"6)

A consideration of each of the quantities in (5.5) separately gives

® /„

(ii) /

(iii) /_

rpl 1)3^0 2 aZ,1C1)_| l/2 2
r' JiT + "Sri d> = "MP I; " 2 'osr - -•

, . STi"l , 1 /1 1
L5, H +' STI d» " -lft? I* - )■

rT<3,9*0, 2<wt~i
L7, + ? irj

(5.7)

dfj.

1 /—I
167T

+ 2 log r
r

e~2r 1 „~2b\

+ — + l~^ogb- —) •

The evaluation of the first two integrals in (5.7) is straightforward, but considerably

more effort is required to evaluate the third. Since T["" and dT[3^/dr are continuous for

all r > 0 and |^| < 1 the left-hand side of the boundary condition can be expressed in
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the alternative form

/><!^

The series in T[3), being uniformly convergent for |/x| < 1, permit the order of the inte-

gration with respect to n and summation to be interchanged. If the integrals

£ e>-PM - (2,)"' , £ e>-PM, i, - (2,)'" ^

are noted, the resultant integration with respect to n gives

= £ (2n + 1) f b e-(2s~l + s-2)Kn+1/2(is)In+wSs) ds

- E (2n + i) (%ryS-)-{e~"('2s~l + nh.UWn.wSs) &]

~ Tchr* £ ? (2w + 1} e"(2s" + ds

- £ (2n + 1) fe-(2s"1 + s-2)/,l+l/2(|s)/„+1/2(|s) <fe •
0 U?>> V2'/ •'r J

The preceding expression is considerably simplified by noting that (/g)' = 2f'g +

W(/>!?) f°r any differentiate functions / and g and applying this result to the functions

/ = (lr)_1/"^n+i/2(i?') and <7 = (§r)~1/2ifn+i/2(fr) with Wronskian —2r~2. The cancellation

of series which then becomes possible provides the simpler result

/>'^» + ''I/>'•<<•
= £ £ (2n + 1 )f e-(2s~l + S-2)/„+1/2(JS)/n+1/2(fs) ds.

The series is uniformly convergent for 0 < s < «> with sum (see e.g. [8, p. 365 (6)])

£ (2n + l)/n+,/2(§s)In.1/2(§s) = (2t)-1/2s,/2I1/2(s).
0

The integration with respect to s is now performed by noting that Ii/2(s) = (2/n-)1/2s~1/2

sinh s, and the final result is Eq. (5.7, iii).

The sum of the integrals in the expressions (5.6)-(5.7) reduces to the constant value

— [167r2£»]_1[J> + 1 — 26 log b — e~2b]. The nonzero value is due to the quantity T[3) which

possesses a singularity of 0(r"1) as r —> 0 corresponding to the n — 0 term in the com-

plementary function (5.2). By choosing b = 1, B0 = (2?r)_1/2-(32tt2)-1-(e-2 — 2) and

Bn — 0(n > 1), the boundary condition (2.18) is completely satisfied. The perturbation

temperature is given therefore by
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T( s 1 [\ r>r.( s . e—logr / l\e-Jr<1-") ,ro>
Tl(r' "} = 16? Lie M~r) + ~ 6 T" ~ I1 ~ W 7 (5"8)

Jr» r1*r/4 *i oo

- -175 rfs(2S- + s-2) £ xI/2(2n + 1)e~'P„(m)/„+1/2(|s)
r J, o

{ +1/2(2^) +1/2(2^*) ^71+1/2(2^*)*^" + 1/2(2^) }
]'

It can be verified directly that the condition (2.19) on the gradient of Tx normal

to the axis is satisfied uniformly in r. The logarithmic singularity of dT^/dfi as r tends

to zero is cancelled by the behaviour of dT^/dn as r —* 0, which is determined by noting

the behaviour

r /l \ T   J," (1\ 1/2 (2n) ! —(n + l/2)
tn + l/2\2r) ~ 22"+1r(n + -) ' n +1/2\2 / T M!

of the modified Bessel functions for small r.

6. Discussion. With the zero- and first-order perturbation solutions now determined

completely for a Prandtl number of one we investigate the consequences of assuming a

regular perturbational procedure. If L, M, N and K denote the linear partial differential

operators

L-f£ + (l -„-)£ +

M-r'£, + «-/) £ + 2^ -2,|.

N * r2 jp + (1 - M2) f? ,Or dn

v d d
A = r   /t — ,

Or dju

then Eqs. (2.6)-(2.8), which have been presumed to possess series solutions for small e

of the form (2.13), become

L(l0) + eL(U) + e2L(k) + - eK(T„) - <?K(1\) - ■■■

djipn , Q

d(r, ft)

, In) , d(^n , h)

d(r, ju) d(r, /x) .

+ e2
<3(^2 , ?o) , t?(^i , M , d(^0 ■ k)

. d(r, ii) d(r, n) d(r, n) _L oir, II) o\!~, H) oy, IX) j

M(T0) + tM (T t) + e2M(T2) + • • • (6.2)

5(^0 , In) ,
a Vt—+ ea

d(r, m)

djtx , T0) 3(^0 , T1)

. <3(r, m) d(r, n) _

, 2 3(^2, To) 3(^1, t,) d(xpn, r2)

+ 6 T d(r, n) ^ d(r, n) ^ d(r, M) J
+ •

W») + e^(>Pi) ~l~ + • • ■ = —r4(l — /i")[Z0 + tlx + tl2 + • • •].
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The analytical solutions for l0 , \p0 , T0 and for I, , \pt , Tt given by (2.14), (3.5), (4.4),

and (5.8), respectively, can be used to calculate the order of the terms neglected in each

of the first two stages of the perturbational process. The ratio of neglected self-convection

terms to forced convection terms outside the wake region is calculated readily to be

0(e) for large r.

The order in r, when r tends to zero, of the diffusion, buoyancy and convection terms

is calculated from solutions for l0 , fa , T0 and h , fa , Tx to be 0(r~l), 0(r~l) and 0(1)

respectively, and hence in the neighborhood of the source the order of neglected terms

is at most 0(e).

The ring circulation density flux vectors for diffusion, forced convection and self-

convection of I, and the corresponding vectors for heat flux can be calculated using the

zero-order and first-order solutions obtained for ip, I and T, and the effect of the perturba-

tion solutions compared with predictions made physically. For example, diffusion effects

would be expected to predominate near the source. The various forms of flux of I are:

JD = —grad I = i ie~'
-|r (l-n) 1 — M , _!

2 r r2

/1 2\*

,e 2r

JF = u = J- „m2)'/2) , (6.3)
r

2 / —r (1—fi) —ir(l—/i) -j i

j —nil  — (-   1- g-rfl-"). 1 m
Js _ ~ 32^2 \ r2 +e 2r

Outside the wake the distribution of I throughout the fluid is mainly by diffusion,

and convection by the uniform stream. The ratio of self-convected flux of I to the other

forms is small in this region, being 0(«r_1) for r —» <».

Inside the wake, for r tending to zero,

JD = 0(er~2), JF = 0(er'1), Js = O^r'1).

In this region diffusion of I dominates forced convection which in turn dominates

self-convection of 1. Similar conclusions hold for the distribution of heat flux in each of

the regions above.

The flux vectors of I in (6.3) can be expressed in terms of a component in the direction

of the uniform stream and another normal to it. It is then apparent that the downstream

component of diffusion reinforces the corresponding component of convection near the

axis of symmetry which implies there is concentration of heat and momentum in the

neighborhood of the center of the wake.
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