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Abstract. The paper deals with the low-frequency diffraction of a plane com-

pressional elastic wave incident obliquely on a rigid circular disc embedded in an infinite

elastic medium. The motion of the disc, both rotational and translational, has been

discussed in detail. By letting the mass of the disc go to infinity one obtains the results

for diffraction by a fixed disc. Far-field amplitude of the scattered field has also been

obtained. This can be used to calculate the scattering cross-section of the disc. It is found

that for long wavelengths the scattering coefficient varies as the fourth power of the

wave number if the disc is movable, whereas it is independent of the wave number if

the disc is fixed.

1. Introduction. The diffraction of electromagnetic and sound waves by finite

obstacles has been the subject of extensive studies in the past. In particular, the dif-

fraction by a circular disc has received considerable attention. Recently Jones [1] re-

viewed the different methods used for the low- and high-frequency diffraction by a

circular disc and gave a method particularly suitable for high-frequency diffraction.

In this paper he takes a typical axisymmetric problem of diffraction of plane sound

waves by a sound-soft circular disc. Jones [2] also discusses the general nonaxisymmetric

problem of diffraction of electromagnetic waves by a circular disc at high frequencies

using the method of [1]. The low-frequency diffraction of obliquely incident plane electro-

magnetic waves was earlier discussed by Lure'e [3], who reduces the dual integral equa-

tions governing the nth Fourier component of the diffracted wave into a Fredholm

integral equation of the second kind. The kernel of this equation is a Magnus type

kernel, which he expresses in terms of Bessel and Struve functions that are expanded in

the powers of the small wave number.

In comparison to the vast literature on electromagnetic and sound wave diffraction,

the problem of diffraction of elastic waves by finite obstacles has not been discussed at

length. The reason, of course, is the inherent coupling of governing equations. Recently

Mai et al. [4] have considered the axisymmetric problem of diffraction of compressional

waves by an immovable rigid circular disc. By expressing the displacements in terms of

two scalar functions and then decomposing these into symmetric and antisymmetric

components about the plane of the disc they were able to uncouple the dual integral
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equations governing the vertical and horizontal components of the scattered field. By-

following a method given in [5] they reduced the dual equations into a single integral

equation, which they then proceeded to solve for long wave lengths. Mai [6] uses this

same approach to discuss the diffraction of axisymmetric elastic waves by a circular

crack in an infinite elastic medium. This last problem has also been discussed by Robert-

son [7] for an incident plane compressional wave. However, the general nonaxisymmetric

problem of diffraction of elastic waves by an arbitrary obstacle is a considerably more

difficult problem and does not seem to have received much attention. Mai [8]1 has

recently considered a problem of nonaxisymmetric diffraction of a shear wave by a

circular crack. The method used is similar to the one used here. In a recent paper Barratt

and Collins [9] give the formulae for calculating the scattering cross-section of an

arbitrary obstacle (both in two and three dimensions) for an incident plane wave in

terms of the amplitudes of the far-field scattered displacement components. This is a

generalization of an earlier result of Jones [10] for scalar waves.

The present paper deals with the solution of a nonaxisymmetric elastic diffraction

problem which is amenable to analytical tools developed for the electromagnetic and

sound wave diffraction. This is the problem of diffraction of a plane obliquely incident

compressional wave by a rigid circular disc embedded in an infinite elastic medium. The

disc is assumed to be free to move. It is the object of this paper to discuss the motion

of the disc and derive expressions for the far-field displacement components. These can

then be used to calculate the scattering cross-section by the formulae given in [9]. The

method used is as follows.

The displacement components have been expressed in terms of three scalar functions

4>, and x, which are solutions of the scalar wave equation. By assuming harmonic

time-dependence and by assuming suitable forms of the functions </>, i{/, and x, it has

been possible to uncouple the dual integral equations governing the vertical and angular

motion of the disc from those governing the lateral motion. This last is governed by

simultaneous dual integral equations and it has not been possible to uncouple them.

Then, following a method given by Noble [11], we have reduced the dual equations gov-

erning the vertical and angular motion into single Fredholm integral equations of the

second kind with Magnus type kernels. For the lateral motion we get a pair of simultane-

ous equations for each Fourier component. Instead of expressing the kernels in terms of

Bessel and Struve functions (as is done in [3]) we express them, following Noble [12], in

terms of definite integrals that are suitable for expansion at low frequencies. The equa-

tions governing the vertical and angular motions can then be solved by straightforward

iteration. The equations for vertical motion reduce to the ones discussed by us [13]

when the wave is incident normally. On the other hand, the iterates for the simultaneous

equations governing the lateral motion are to be solved from simultaneous integral

equations that can be reduced to solving algebraic equations. This approach can be used

for other problems of low-frequency diffraction by circular discs and cracks. But this

is not suitable for high-frequency diffraction. In a later communication we wish to discuss

this latter problem.

2. Equations. Consider cylindrical polar coordinates r, 9, z with origin at the center

of the disc and z-axis normal to the plane of the disc. The displacement vector u satisfies

the equation

'The author is grateful to the referee for bringing this paper to his attention.
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(X + 2fx)VV-u — mV A V A u = p^u, (1)

where X, n are Lame constants and p is the density of the elastic medium. The solution

to (1) will be assumed of the form u(r)e~""\ The components ur , ue and uz of u(r) can

be expressed in terms of scalar functions 4>, and x as

_ d(j> d*\f/ 1 dx
Ur dr dr dz r d6

„ _ I ^ I i /Q\
' r dd r dd dz dr '

d<t> d2\p . 2 .

U'~ dz+W+ k**'

Here <t>, <p and x satisfy the equations

(V2 + k\)4> = 0, k\ = <J/C\ , (3)

(V2 + kDt = 0, k\ = u2/Cl , (4)

Ci , C2 being the two wave speeds.

The incident plane compressional wave is given by

= <£o exp [iki(z cos a + x sin a) — ioot], (5)*

where a is the direction of propagation of the wave measured from the positive direction

of the 2-axis.

The reflected field will be given in terms of <£<r>, and x(r). The motion of the

disc will be governed by the equations

1*1 /i2t

-muUz= / / KO+ — (O-k d6 dr, (6)
Jo Jo

— moi2Ux = [ [ [(<t«)+ — (<rxx)-]r dB dr, (7)
Jo Jo

— 7co2n = [ [ [(<r22)+ — (cr„)_]r2 cos ddddr, (8)
Jo Jo

where Ue~'"' and are respectively the displacement, and rotation about the y-axis,

of the disc, m is the mass and I is the moment of inertia of the disc about a diameter.

The boundary conditions are, at z = 0,

Uj'1 + u[T) = Uz + rO cos 6, 0 < r < I, (9)

u{rx) + Wr" = Ux cos 9, 0 < r < 1, (10)

+ M«'> = -17, sin 0, 0 < r < 1. (11)

Besides, the stresses and the displacement must be continuous across the plane z — 0

for r > 1.

*i within brackets stands for the incident field. Otherwise i = v'-1.
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Using the well-known relation

exp \ikxr sin a cos 0] = eJ"Jn(kirs'm a) cos nO, e" U (12)

0 2, n > 0,

the incident displacement field on the disc can be written as

w,*' = Mo 2^ e„inJn(k,r sin a) cos nd, 0 < r < 1, (13)
0

M*'* = ii„^Vi(/«ir sin a) + X) {r+,./„+1(fc,r sin a) + ■in'1Jn-1(k1r sin a)} cos noj ,

0 < r < 1, (14)

Uen = — v0 {tn",J„_1(fc1r sin a) — t'n+1J„+1(fc1r sin a)} sinnfl, 0 < r < 1, (15)
n— 1

where w0 = iki<t>o cos a, t>0 = iki<t>a sin a.

The functions <j>(r), ̂<r) and z<r) can be chosen in the following manner:

= ]C tn<t>nT) cos nd, (16)
0

VT) = cosnfl, (17)
0

z<r) = ^ enx'„T) sin nd, (18)

with

^ = 4 I I ̂  =F kP„= 1 f R
w2 i0 L

^:r) = A r + - Qn
CO Jo L "2

Here

and

Jn(kr) exp [—v, |z|] dk, (19)

J„(kr) exp [ v2 |z|] dft, (20)

= 1_f tiBJn(kr) exp [_„2 |^|] dfc> (21)
w J0 V2

n = (/c2 - fcD1/2, k > ki

= -t'(fc! - fc2)1/2, 0 <k <k, ,

v2 = (k2 - k > k2

= -f(/4 - fc2)1/2, 0 <lc<k2.

The boundary conditions (9)-(ll) and Eqs. (13)-(15) then lead to the following

equations:

Cn= -An, n > 0, (22)
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\ [ k — Q0 + nPo Ko(At) dk = U„ — u0J0(k^ sin a), 0 < r < 1, (23)
W ^0 L^2 J

"4 f k — Qi + viPi «/i(fcj") dk = +|rO — iu0Ji(kir sin a), 0 < r < 1, (24)
« J0 IV2 J

A f k — Q„ + ViPn L/„(/cr) dk = —i"u0Jn(k& sin a), 0 < r < 1, n > 1, (25)
W ^0 L^2 J

[ k[(2k2 - kt)Pn + 2k2Qn]Jn(kr) dk = 0, r > 1, n > 0, (26)
*>0

Qn= -Pn, n> 0, (27)

\ J /cj^~ — ̂ AoJiObr) rf/c = ivQJx{kir sin a), 0 < r < 1, (28)

dk

~ Wx + %v0J2(kir sin a) — \vaJ0(kir sin a), 0 < r < 1, (29)

dk

= \UX — ^vt>J2(k,r sin a) — ^v0J0(k1r sin a), 0 < r < 1, (30)

= —./i'.r sin /-v^ — iV" 1= — §i"+ v0J„+i(kir sin a) — \? v0J„~i(kir sin a), 0 < r < 1, n > 1, (31)

1 f T^2 ^ n r «. n j. ^ n

= %in+lv0J„+1(klr sin a) — |i"~1t,0«/„-i(fc1r sin a), 0 < r < 1, n > 1, (32)

f A0kJi(kr) dk = 0, r > 1, (33)
Jo

f [a„ + Bn™ JJJer)] tffc = 0, r > 1, n > 1, (34)

J" [a„ " J„(£r) + Bn rfA = 0, r > 1, n > 1. (35)

Using (27) in Eqs. (23)-(26) one obtains the following dual integral equations to

solve for P0 , P1 , and Pn (n > 1):

J — v^P0J0(kr) dk = —co2J72 + o}2u0Jo(k1r sin a), 0 < r < 1, (36a)

f kP0J0(kr) dk = 0, r > 1, (36b)
Jo

J  viJpjJi(A;r) = — §«2rfl + iu0J1(k1rsin a), 0 < r < 1, (37a)
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[ kPJ^kr) dk = 0, r > 1, (37b)
J 0

J /cj^- y,Jp„./„(/cr) dk = inu0w2Jn(kLr sin a), 0 < r < 1,

f kPnJn(kr) dk = 0, r > 1,
Jo

(38a)

in > 1).

(38b)

Also, using the relations

= | (J„_, - Jn+I), " Jn(kr) = | (Jn_, + Jn+1) (39)

in Eqs. (29)-(31) and (33)-(35), one gets the following system of dual integral equations

to solve fov Ai , Bi , and A„ , Bn (n > 1):

f ^ /a] Jn(kr) dk = Utco2 - v0<Jja(kir sin a), 0 < r < 1, (40a)

I fc[(r ~ "2)j41 ~ f-B^J^kr) dk = —v„w ,J 2(k{r sin a), 0 < r < 1, (40b)

f k[Ai + B,]J0(kr) dk = 0, r > 1, (40c)
Jo

f k[Ax — -Bi]«/2(fcr) dk = 0, r > 1, (40d)
Jo

j - x2)a„ + ^ ,(fcr) rf/c = -t—VPo/^fcirsina), 0 < r < 1, (41a)

/ [(^ ~ ^2)An - ^ B^\kJn+l(kr) dk = f+1u2v0Jn+i(k1r sin a), 0 < r < 1, (41b)

f k(An + 23„)/„_i(/cr) dk = 0, r > 1, (41c)
Jo

[ k(An - B„)Jn+1(kr) dk = 0, r > 1. (41d)
Jo

Eqs. (28) and (33) determine A0 .

3. Solution (vertical and angular oscillation). The solutions Pn (n > 0) satisfying

Eqs. (36)-(38) can be obtained as (see Noble [11, p. 358,])

Pn(k) = (~)2 f* dt (42)

A„(z) + - f K(QTn(x,0 d£ = x~"Hn(x), 0 < x < 1, (43)
7T Jo

Tn(x, £)= ir [ (xg)l/2utH(t)Jn-1/2(xt)Jn-1/2(£t) dt, (44)
Jo

1+»"«>- wh, Ct - -■) ■ <45>
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<46)

Here

2a>2
Up) = k2 [^. - m0J0(fciP sin a], (47)

2w2
/i(p) = — p"? z.2 tipQ ~ zu0Ji(fcip sin a)], (48)

/Ci ~J~ /C2

/»(p) = 122" 12 inu0Jn(kiP sin a). (49)
rCi ~|~ /C2

The kernel T„(z, Q in Eq. (43) can easily be expressed (see Noble [12, pp. 343-344]),

for x > £, as

2m7c2 / 0.1/21 f1
^(x,?)=^3 (^)i/2[ r *—5 Hi%2{k2xt)jn-1/2(ut) dt

1+7 L^o vl — t

+ f f V?~2 Hll\/2(k2xt) J n-U2(k2tf) dt\, 7 = |i. (50)
Jq J ">2

Use of Eqs. (47)-(49) in (46) gives

9 »
F0(x) = — @[U, — Mo cos (kiX sin a)], /3 = 2" 2 , (51)

rCi ~j~ *^2

#i(z) = — ̂ [Ox2 — iu0x sin (fcjo; sin a)], (52)

Hn(x) = inpuoyjTkl a- x^/2Jn.i/2{k,x sin a). (53)

Equation (43) will now be solved approximately for small values of fc, and fc2 • The

zeroth-order approximations are

\<0,(*) = -0(U. - u0), (54)

Xi0)(x) = -PQx. (55)

It is easily seen that \„(x) = 0(fc") for n > 1. Substitution of Eqs. (54)-(55) in (42) gives

P™(k) = I Ao0> , (56)
7T

Pi°\k) = -pn(£)U2J3/2(k). (57)

These expressions are pertinent to calculating the elastostatic resistance to the displace-

ment of the disc perpendicular to itself and the rotation about the y-axis. Thus if the

disc is displaced by an amount U„ parallel to the 2-axis and rotated through an angle %

about the y-axis, the resistance on the disc will be

Futatioi = —UoFoi,, F0 = 16 n/(l + 72),

and the resisting torque t is given by

r = —00Toi,- , T0 = 16 (u/3(l + 72)-
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To obtain higher-order corrections it will be necessary to expand T„(x, £) in powers

of fc2 . These expansions are

T0(x, Q = k2Ti" + klTl02) + ■■■ , (58)

T,(x, £) = k\T[2) + • • • , (59)

T2(x, 0 = klTi2) + • • • , (60)

with

- +(1 + _ I,, K* + «)•"' + " SD-'l

I* x/2

• / [7n+2sin" e cos2 0 + sinn+2 6] d0, n > 1, (61)
Jo

- -(,+,>-!), Kx + 0- " (I* - £1)-']
I*t/2

■ / [y"+2 sin" 0 cos2 0 + sin"+2 8] dd, n > 2, (62)
Jo

rm tt(y4 + 3) |2
2 12(1 + 72) ® ' * > *' (63)

It will be assumed that An(z) can be expanded in powers of k2 . Under this assumption,

and using (58)-(63) in (43), it is found that

Xr(x) = x;o)(x) + k2\'01}(x) + kX2)(x), (64)

X,(x) = \[0)(x) + k2\il\x) + k2X2\x), (65)

X2(.t) = fc2X<2,(x) + • • • , (66)

and the A^'(z) are given by

X^'(x) = -X<0)/. , ^ F
4z 2 + 73

3tt 1 + 7" '

A + 8(1 +V) (1 + ^ ]■

(67)

Xo2)(a;) = — ||3m0(7 sin a)V — A"'

X"'^) = i(3u0(y sin a)x,

X22)(a:) = — lf3u0(y sin a)2x2.

Now, it can easily be shown that the total thrust on the disc in the z-direction is

given by

F. = % f' Xo© <£. (68)
L/2 Jo

Using this and (64), (67) in Eq. (6) Uz is found to be
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TT - ,, 7 ~ ikl(y sin a)2
* U0 or ™ 2/1 l 2\/1£i ' (69jJ — mu (1+7 )/l0/U

where

5=1- tlk2 - km + (3 + 74)/6(l + 72)).

When a — 0, this expression for Ut agrees with that obtained in Ref. [13], Eq. (26).

Similarly, the torque on the disc is given by

= % r da. (70)
V2 «^0

Eq. (70) together with (64) and (67) will give t, which when substituted for the right-

hand side of Eq. (8) gives 0. Thus

~ 7 , • s /|~i ^(3+74) 3/W2(l+72)l

"■'"""•I""')/ L ~io(i + 73) m—J' w
It has been shown by Barratt and Collins [9] that the scattering cross-section of the

obstacle due to an incident plane compressional wave can be computed by knowing the

first term in the far-field approximate expression for 0<r). So here an expression for 0(r)

at large distance from the disc due to its vertical and angular oscillations about the

y-axis will be obtained. Similar expressions for can also be obtained. Note that the

contributions to <j>lr) due to these oscillations are given by the equation

4>[r) = — —2 2 €» f kPnJn(kr)e~"' cos nd die. (72)
n=0 Jo

Using Eq. (42), this can be written as

4>[r) = 4Jz e„ f k3/2PnJn(kr)e~'" [' cos nd dH dk. (73)
O) \ IT o J o J o

It can easily be shown that for large values of R (R = (r2 + z2)1/2)

ik ^
0i(r> ~ —2^ ex lR cos 6 22 enRn(ki sin 6) cos ndz n. (74)

CO xL o

On substitution of P„ from (42) and using Eq. (67) it may be seen that

iUr = ~ u0g(d) , (75)

where

g(6) = + (2/3/ttCJ) cos d [(J7«i — 1)5 + lK(y sin a)2 — §fcifc2(7 sin a) sin 6 cos 6(1 — fij)],

*5 — \k\(7 sin a)2
Utl =

J - W( 1 + 72)/16m ^

O _ 1 /|\ _ *#3 + 74) _ 3/co2(l + 72)1

1 V L1 10(1+72) 16m J'

For a = 0 the expression for g(d) agrees with the result derived in Ref. [13], Eq. 31.



10 S. K. DATTA [Vol. XXVIII, No. 1

4. Solution (lateral oscillation). The solution A0 satisfying (28) and (33) is

Ao = (f)1/2 £ ai/2e0 mum od

e0(x) + - [ e0(QM0(x, £) rf? = x~lG10(x), 0 < X < 1, (78)
IT J o

where

Mq(x, £) — w f atL(f)(xQ 1 J1/2{xt)J 1/2(£/■) dt,
Jo

1 + = in ~ "2) '

Gl0(x) = iv.fi £ ^ P(J(fciP^_n a) ^

In the same way as in the previous section one obtains an expansion for 90(x) in powers

of k2 as

e0(x) = Mo + 0(kl), (79)

with

C = iv0l3(y sin a)x.

To solve for A„ , B„ (n > 1) satisfying Eqs. (40), (41) let

An + B„ = pn , A„ - Bn = qn .

Then Eqs. (40)-(41) transform to

[ [1 + wN (k) (kr) dk
Jo

= au[t/x5ln — i"~V0/„-i(fcir sin a)] — fn(r), 0 < r < 1, (80)

[ [1 + uN(k)]qnJn+i(kr) dk = in+Ia0v0Jn+l(k1r sin a) — gn(r), 0 < r < 1, (81)
'0

f kN(k)pnJn-i(kr) dk = 0, r > 1, (82)
Jo

[ kN(k)q„Jn+1(kr) dk = 0, r > 1, (83)
Jo

where

5i„ = 1, n = 1

= 0, n ^ 1

4co

a° ~ fc* + 'Ski '

1 , »r/.N 2fc |V , *2*11 + CON(k) - [- - + -J -
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/„(r) = a [ [1 + aK(k)]qnJn-1(kr) dk,
Jo

gjf) = a f [1 + ooA'(fc)]p„Jn+1(fcr) dk,
Jo

1 jl ^ 2k Tfc2 fc? - ^2

fcf + 3 kl'

The solutions pn , qn satisfying Eqs. (80)-(83) are

Pn = (f )I/2 £ S1/2en(8Jn-3/2m da, (84)

= (v)1/2 £ dt, (85)

0n(x) + - r 0„(a)Mn(x, a) da = x'n+1Fln{x), 0 < x < 1, (86)
7T J0

ft,(x) + - f nn(DAf.+2(«, J) = af-'GUs), 0 < x < 1, (87)
7T Jn

where

M»(i, £) = 7r(x£)1/2 f utN(t)Jn -3/2(%t)Jn-3/2(£t) dt, (88)
Jo

7 /*x n

Fj,(x) = ^ J K^5l„ — r_Wo</»-i(fciP sin a) — /„(p)] ̂ 2 p2y/2 dp, (89)

7 /*z n + 2

Gln(x) = fa. J [l"+Wo'/n+l(fclP sill a) — gn(p)] ̂ 2 3 p2y/2 dp. (90)

In the same way as in the previous section it can be shown that

Mn(x, I) = |^2 (X?)1/2 £ p ^1/2 Hi%^xt)Jn^{Ut) dt

+ J f (1 — ^2)'/ + _ ^1/2 H'nJ3/2(k2Xt)J„-3/2(^2?0 , x > £. (91)

In the following it will be assumed that 0„ , /tn can be expanded in series of powers

of fc2 for small lc2 . First let n = 1.

The zeroth-order approximation can easily be shown to be

Mi"' = 0, 0|o> = a0(Ux - »„). (92)

Eq. (92) can be used to calculate the resistance to the lateral displacement of a rigid

circular disc embedded in an infinite elastic medium. Note that the force on the disc

causing its lateral motion is given by

Fxer'" = f ^(©e-'"' d^ (93)
v>2 Jo

Thus the elastostatic resistance to the lateral displacement V0 of the disc will be

T7>   16M<3q Vq /q A
" x(etatic) — q2
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To obtain first-order corrections to , Hi it may be noted that

[ dP - jf f ""'({) (95)

/; dp =* \k2a f* x'e<»®(l - f) dt, (96)

f) ~ «<", ml1' = §(y3 + 2), (96)
3+7

^ f pJo(fciP Sill ft) 7 - 1/7* \2 2 /aw\S I 1T^r ~ 1 - «*' *,n 1 ' (97)

(2 f" p3J2(klp sin a) , 1/; . ,2 4 . .

dx Jo (x2 - p2)1/2 P — 3(1 Sm X ' ( 8)

Thus Eqs. (86)-(87) will lead to the following equations for determination of the first-

order corrections d{l>(x) and n[l)(x):

""'<*> + f, I»"'® «• (99)
(1)

Mi <100>

It is easily seen that these equations have the solutions

C(x) = - ft1 2, mi1', „<»(*) = 0. (101)
k(6 + y )

Second-order corrections can similarly be obtained to be

d[2\x) = A + Bx2, (102)

nl2\x) = [C+ f aB]x2, (103)

where

R 1 I"26{0)m™ , ! , . ,2 , 3 r~\
B ~ 1 _ a2 72) + 2aovo(y sm a) + 2<*CJ ,

C = — \a0Vo(y sin a)2 — 0'O>'

A _ aB - - -2§-^y) - 5«C,

mi2) = ^ (374 + 5).

Now using

B^x) = 0{o,(x) + k26?\x) + k\6?\x), (104)

in Eq. (93) and in turn in Eq. (7), one obtains

tt — f? — 6^2(7 sin a) /mil
Ux — ^ 2rt2na (*^5)

Q — mco C2/16Ai«o
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where

9 = 1-- M[" + kl
r sm:2> (miu)2i

Lit (3 + 72) ir2kl J"

Eq. (105) can be used to calculate the resistance to forced lateral oscillation of

amplitude v0 of a rigid circular disc embedded in an infinite elastic medium to be

771 _— iia t 16/^C^o^O ^ —ihit
I'\e   ^2— Qe . (106)

For n = 2,

02 — —ictokiVo sin ax + 0(kl), n2 ~ 0(kl). (107)

As before, an approximate expression for the potential function <f>(r) due to the lateral

oscillation can be obtained to be

^<r) ^ sin 6 ^2 (ni'nAn(kl sin 0) cos n0 ^-5—• (108)
CO o li>

The contribution of to the radial component of the displacement is then

»(r) ik i R

djf~voh(6) —

where

= ~t^v0h{e)~, (109)

m sin 0 2/2/3 2a0 0/)\ ■ ■ .
= ^,2 —/Cj—b cos 26J sm a sm 0

+ — {(Uxl — 1)[g — lkl(y sin 0)2] + J/c^y sin a)2} cos0 | , (110)
7T

UX1 = Ux/v „ .

The scattering cross-section 2P can now be calculated from the equation

2, = |r*[0 («) + *(«)]. (Ill)

It can be verified that 2P is proportional to lc* .

In conclusion it may be noted that if the disc was kept fixed, the scattering cross-

section would be independent of the wave-length in the limit of long wave-length.
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