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1. Introduction. The purpose of this paper is to study the behavior as t —* °° of

solutions of a system of two nonlinear equations of the form

Xi(t) = /,(«) - [ ax{t - s)g1(s, z,(s)) ds - f a2(t, s)g2(s, x2(s)) ds,
Jo Jo

x2(t) = /2(0 - f a2(t - s)g1(s, x,(s)) ds - f at(t - s)g2(s, x2(s)) d
Jo Jo

(1.1)

where ji(t) and j2it) are asymptotically almost periodic and both g^t, x) and g2(t, x)

are almost periodic in t uniformly for x on compact sets. We seek conditions which

guarantee that the solutions x^t) and x2(t) of (1.1) exist for all t ^ 0 and are asymp-

totically almost periodic.

System (1.1) arises in a natural way from the partial differential equation

u, = uxx (t > 0, 0 < x < L) (1.2)

with initial conditions

u(0, x) = F(x) (0 < x < L) (1.3)

and nonlinear boundary conditions of the form

ux(t, 0) = gS, u(t, 0)), ux(t, L) = -g2{t, u(t, 0)), (1.4)

for all t > 0. Indeed, if Ai(t) = ux(t, 0) and A2(t) — ux(t, L) are assumed to be known

functions and if Af t C[0, °°) C'(0, <») with A, (<) absolutely continuous in a neigh-

borhood of / = 0, then well-known elementary methods imply that

u(t, x) = F0/2 + F„ exp ( —(nir/Lft) cos (n-rcx/L)
n-0

— L~' ^ |l + 2 2 exP f ~ (nir/L)2(t — s)j cos (nirx/L)| A,(s) ds

+ L'1 f (l + 2 X(-l)" exp j —(mr/L)2(t — s)J cos (nnx/L)\ 42(s) cfe
Jo { J (L5)
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where

Fn = (2/L) f F{x) cos (n-rrx/L) dx (n = 0, 1, 2, • ■ •) (1.6)
J 0

is the sequence of Fourier cosine coefficients of F. Setting x = 0 and then x — L in (1.5)

and using (1.4), one obtains the integral equations

u(t, 0) = Fq/2 + jr Fn exp { -(rnr/L)2t}
n= 1

- ZT1 f {l + 2 X) exp \-{mr/L)\t - s)}g1(s, u(s, 0)) ds
Jo K n=1

- L~l [ (l + 2 X) (" 1)" exP i-(W^)2(< - s)\g2(s,u(s, L)) ds, (1.7a)
Jo l n = 1

and

u(t, L) = F0/2 + ± F„{— l)n exp {-(n:r/L)2fS
n = 1

- L"1 ^ |l + 2 X (-1)" exp |-(7i7r/L)2(< - s)l|^1(s, xt(s)) ds

- L~l [ jl + 2 X) exp {— (mr/Lf(t - s)s}^2(s, a:2(s)) rfs. (1.7b)
Jo V n+1 J

Eqs. (1.7) clearly have the form (1.1) with Xi(t) = u(t, 0) and x2(t) — u{t, L). On the

other hand, if u(t, 0) and u(t, L) are the known unique solutions of (1.7), then u(f, x) may

be obtained using (1.4) and then (1.5). This formal equivalence of (1.2)-(1.4) and (1.7)

will be made precise in Sec. II below.

Eqs. (1.2)-(1.4) and also our assumption of almost periodicity may be physically

motivated using C. C. Lin's theory of superfluidity of helium, cf. [1]. In three-dimensional

space with coordinates (x, y, z) let the planes x = 0 and x — L represent two infinite

plates. Suppose the region 0 < x < L between these plates is filled with liquid helium

initially at rest. If the boundary plates x = 0 and x = L are both given signosoid oscilla-

tions in the y-direction, then a one-dimensional flow will be set up in the liquid. Let

u(t, x) be the velocity profile at time t > 0 of any point (x, y, z) with first coordinate x.

Then u(t, x) satisfies (1.2) and (1.3), Fix) = 0. Lin's theory implies boundary conditions

of the form (1.4); indeed

<7i(<, u) = B(u — C sin (fc,<))3 (1-8)

for i = 1,2 where P> and C are positive constants. For this problem we prove the following:

Theorem 1. Suppose F z C2[0, L\. Let gr, (i, u) be given by (1.8) where B > 0, C 0

and k< 0. Then (1.7) has unique continuous solutions Xi(t) — u(t, 0) and a:2(0 = u(t, L)

defined for all t ^ 0. Moreover, there exist two almost periodic functions X, (t) with Fourier

series of the form

CO

X,(t) ~ exp (iimki + nk2)t) (1.9)
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such that

lim \xi(t) — X((0) =0 as t—» oo.

This result follows as a special case of more general theorems which will be proved

below. These more general theorems concern a two-dimensional system of the form

x(t) = f(t) - f A{t - s)G(s, x(s)) ds, (E)
Jo

where A (<) is a matrix of the form

_ ®i(0 ̂ (0
a2(t) a,(<).

In Sec. 3 we use the special form of A(t) to show that system (E) may be transformed

into an equivalent system of the form

2/(0 = f Rx(t - s){y(s) - G„(s, y(s))} ds (EN)
Jo

where RN(t) is a positive definite, diagonal matrix of class L'(0, »). Subsequent work

deals with equations of the form (EN) rather than directly with (E).

Sec. 4 contains results concerning the global existence and boundedness of solutions

of (En). In Sec. 5 we study the existence and uniqueness of almost periodic solutions

of a related equation of the form

Y(t) = f R, (t - s) | Y(s) - G\(s, Y(s))} ds. (1.10)

In the last section we show that the solutions y(l) and Y(t) of (EN) and (1.10) are asymp-

totic, that is

lim [y{t) — y(£)} = 0 as t—>

Transforming (EN) back to (E) then yields Theorem 1 as a corollary. Sec. 6 also contains

results concerning the mean values of the solution x(t) of (E). This information on mean

values is important in any study of the behavior of the nonlinear problem (1.2)-(1.4).

If L — +°= and if the second boundary condition in (1.4) is dropped, then (1.2)-(1.4)

and (1.8) model the limiting case of a one-dimensional flow in a half space. This problem

has been studied by Levinson [2]. Some of Levinson's results have been generalized in

papers of Friedman [3], [4] and Miller [5]. A similar problem involving heat flow has

been extensively studied by Mann and Wolf [6] and others [7], [8], [9]. The methods

used in this paper are extensions of the methods used in [5]. The main tools in our analysis

will be the "variation of constants" equation (EN) and invariance results similar to

those used in [5, Sec. V].

2. Equivalence of the problems. Let R2 denote real Euclidean two-dimensional

space of column vectors x = col (xi , x2). Throughout the remainder of this paper the

norm |i| in R2 will always mean |x| = max {|zi| , |x2|}. Many of our results are explicitly

dependent on the use of this norm rather than some other equivalent norm.

Define

A(0 = Fo/2 + Z Fn exp i ~(nr/L)2t}, (2.1a)
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and

m = F0/2 + £ F„(-l)n exp {-(nT/L)a<| (2.1b)
n= 1

where F, is defined by (1.6). Define

Oj(<) = 7T (l + 2 g exp j -(,m/L)2«}) jL (2.2a)

a2(0 = f(l|2 j (-1)" exp j-(nx/L)2<}) / L (2.2b)

and

x(<) =

Let A (t) be the matrix

Xi (0

z2(0

A(<) =

Then Eq. (1.7) has the form (E) where

(?(£, x) —

, /(0 =

di( o a2(i)

a2(0 aj(<)

/.(<)

/2(0

ffl(<, Zl)

^(i, ^2)

(2.3)

(2.4)

(2.5)

Theorem 2. Suppose u{t, x) is a junction which satisfies the follovring conditions:

(i) u{t, x) is continuous on {0 ^ t < ",0 | 1 5 L|.

(ii) u, and uXI exist and are continuous for all (t, x) in the set {0 < t < 00,0 < x < L\.

(iii) u(t, x) satisfies (1.2), (1.3) and also (1.4) in the sense that

lim «,(<, x) = gi(l, u(t, 0))
x-»0 +

and

lim ux(t, x) = — g2(t,u(t, L)), (t > 0).
x—*L ~

(iv) The functions A At) = g(t, u(t, 0)) and A2(t) = — g2(t, u(t, L)) are of class

C[0, t») r\ C'(0, <=o) and are absolutely continuous in a neighborhood of t — 0.

If F t C2[0, L) and if gx , g-i £ C1 for all (t, <»), then the functions

Xi(t) = u(t, 0), x2{t) = u{t, L)

satisfy (1.1) for all t 0.

Proof. Define functions a(x) = x2/2L, K(t, x) = a{x)A2(t) — a(L — x)Ax(i) and

v(t, x) = u(t, x) — K(t, x). Then

V, - v„ = Q(t, x) = a(x)A'2{t) - a{L - x)A[{t) + \A2{t) - At(t)}/L,

vx(t, 0) = vx(t, L) = 0,

and

v(0, x) = H(x) = F(x) — a(z).A2(0) + a(L — x)yli(O).
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The functions H and Q are sufficiently smooth in order to solve uniquely for v(t, x) in

the usual way (cf. [10, Theorems 1 and 2]). Therefore

u(t, x) = K(t, x) + v(t, x) ^

= K(t, x) + H0/2 + Hn exp [ —(nir/Lft\ cos {nirx/L)
n- 1

+ [ [ )L~l + exp { -(nir/L)\t — s)} cos (rnry/L)
*'0 ^0 V n-1

• cos (nirx/L) fQ(s, y) dy ds.

Here H„ is the sequence of Fourier cosine coefficients of H. By the definition of a(x) it

follows that

and

a(x) =1/6+2^ ( — l)"L2(nir)~2 cos (rnrx/L)

a(L — x) = L/6 + 2 L2(nir) 2 cos (titx/L)

when 0 < x < L. Therefore, the definitions of K, Q and H together with integration by

parts suffice to put the above expression for u(t, x) into the form (1.5). Since u{t, x) is

continuous, then setting x = 0 and x = L in (1.5) yields (1.7). Q.E.D.

Theorem 3. Suppose (2.1)-(2.5) are true, F t C2[0, 1] and the junctions gi(t, u) and

g2(t, u) are of class C1 for all (t, u). If the solution x(t) of Eq. (E) exists for all t 2: 0, then

u(t, 0) = Xi(t) and u(t, L) = x2(t) are the boundary values of a function u(t, x) which

satisfies conditions (i)-(iv) of Theorem 2.

Proof. The conditions F t C2[0, L] and (2.1) are sufficient to insure that / e C[0, °°)

C\0, 00) and that f is locally of class L1 on 0 ^ t < °o. Since gi and g2 e C1, then it

follows from results in [11] that xx(t) and x2(t) have these same smoothness properties,

that is x(t) e C[0, °o) C\ C^O, «=) and x'it) t L1 near t = 0.

Define 4i(£) = gi(t, Xi(<)), A2(t) = —g2{t, x2(t)) and define u(t, x) by line (1.5).

Condition (i) of Theorem 2 can easily be verified directly using (1.5). Since A^i) and

A2(t) are smooth, the steps in the proof of Theorem 2 can be reversed to obtain (2.6).

Therefore, the results in [10] imply (ii), (1.2), (1.3) and the boundary conditions

lim ux(t, x) = ^4,(0, lim uz(t, x) = A2(t).
x—*0 x—*L

Setting x = 0 in (1.5) and using the present definitions of Ai and A2 it follows that

u(t, 0) = ft(t) — f a^t — s)gl(s, x^s)) ds — f a2(t - s)g2(s, x2(s)) ds.
Jo Jo

(There is a similar formula for u(t, L).) Comparing this with (1.1a) one sees that u(t, 0) =

Xi(t) for all t ^ 0. Similarly u(t, L) = x2(t). Q.E.D.

3. Preliminary transformations. Given any matrix A(t) the resolvent R{t) of A{t) is
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defined to be the solution of the linear equation

R(t) = A(t) - [ A(t — s)R(s) ds. (3.1)
J 0

If the entries of A (t) are locally of class L1 on 0 g t < co then it is known [12, Chapter IV]

that R(t) exists a.e., is locally I1 on 0 ^ i < and R(t) also satisfies the equation

R(t) = A(t) - f R(t — s),4(s) ds (3.1')
•>0

a.e. on 0 < t < <=°.

Let Q denote the symmetric, unitary matrix

Q = 2" (3.2)
1 1

1 -1.

Then clearly Q diagonalizes any matrix of the form (2.4), that is QA(t)Q is diagonal.

Lemma 1. Suppose A(t) is any matrix of the form (2.4) where o,(<) and a2(t) are

locally L1 on 0 ^ t < °o. For any N > 0 define

AN(t) = NQA(t)Q

and let RN(t) be the resolvent of AN(t). Then the following statements are true:

(i) AN(t) = N diagonal (a^t) + a2(t), Oi(f) — a2(t)).

(ii) Rn(t) = diagonal (XliV(0, X2.v(/)).

(iii) If a^t) and a2(t) are defined by (2.2) then \,N(t) and \2N(t) are positive and con-

tinuous on 0 < t < °o and

[ X1V(0 dt = 1, [ \2ff(t) dt < 1.
J 0 ^0

Proof. The first two parts follow immediately from (3.2) and Eq. (3.1) for the

resolvent. Indeed, X1W(<) is the resolvent of the scalar function W,(if) = N{ai(t) -f a2(t)}

and \2N(t) is the resolvent of the function W2{t) = N{ai(t) — a2(t)}.

If (2.2) is true, then

TF,(<) = iV{2 + 4 X exP {— (nrr/Lft]},
n even

W2{t) = AM4 Eexp | -(nr/Lft}}.
n odd

These formulas show that Wj and W2 are nonconstant, locally integrable, and completely

monic on 0 < t < eo, that is ( —l)'(IFt)!,)(0 > 0 for 0 < t < <*>, j = 0, 1, 2, • • • and

k = 1, 2. It follows from a theorem of Reuter [13] that XiAr(<) is completely monic on

0 < t < 0°. The results in [5, Sec. II] immediately give the two integral estimates

in (iii). Q.E.D.

Lemma 2. Suppose (E) satisfies (2.3)-(2.4), Q is defined by (3.2) and both a^t) and

a2(t) are functions which are locally L1 on 0 ^ t < oo. For any fixed N > 0 let RN be the

resolvent of the matrix valued function AN{t) = NQA(t)Q. Then the transformation

V = Q{x - f{t)} (or x = Qy + f{t))
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may be used to transform (E) into the equivalent system

y(t) = [ RN{t - s) {y(s) - GN(s, y(s))} ds (EN)
Jo

where

G„(f, y) = QG(t, Qy + f{t))/N. (3.3)

Proof. Define 5(t) = diagonal (5d(t), 8d(t)) where 5d(t) is the Dirac delta function.

Let * denote the convolution operation. Then the resolvent equation

R„(t) = A.w(t) — f AN(t — s)Rn(s) ds
Jo

may be written in the symbolic form

Rff — An As * Rn ,

or equivalently,

(5 — Rn) * (5 + An) = 5. (3.4)

Eq. (E) has the form x = f — A * G(x). If y — Q(x — /) then (E) becomes

y = -(QA) * G(Qy + /) = —N(QAQ) * {QG{Qy + f)/N) = —AN * GN(y).

Adding AN * y to both sides of this equation yields

y + AN * y = (5 + AN) * y = An * [y — GN{y)).

Applying <5 — RN to both sides and using (3.4) one obtains

y = 8* y = (5 - RA-) * (5 + AN) * y = (5 - RN) * A„ * {y - GN(y)}

or y = RN * {y — GN(y)}. This is Eq. (EN). The calculation is completely reversible so

that (En) also implies (E). Q.E.D.

4. Existence of bounded solutions. Assume the functions f, G and A of Eq. (E)

satisfy the following conditions:

(Al) /, A and G satisfy (2.2)-(2.4).
(A2) j £ C[0, c°) and j(t) is bounded on [0, <»).

(A3) G(t, x) e C(R3) and G(t, 0) = 0 for all t ^ 0.
(A4) There exist positive numbers N and K such that if |?/| ^ K then |y — GN(t, y)\ ;S

K uniformly in t e R1.

Note that more generally one could assume the existence of a vector-valued function

r(t) such that G(t, r(t)) = 0 for all t ^ 0. (This is the situation in Theorem 1 above.)

However, the transformation X = r — r(t) puts (E) in the form

X(t) = |/(0 - r(t) j - f A(t - s)G(s,r(s) + X(s)) ds.
J 0

If r(t) is continuous and if \f(t) — r(/)| is bounded, then the new equation satisfies (A3).

Theorem 4. Suppose (A1)-(A4), (3.2) and (3.3) are all true. Then there exists a

solution x(t) of (E) such that \x(t)\ ^ K for all t S: 0.

Proof. Let C — C([0, «=), R2) be the space of all continuous functions <p : [0, <») —*R2.



560 R. K. MILLER

Let C have the topology of uniform convergence on compact subsets of the interval

0 g t < oo. Define

S = \vz C: IvKOI ^ K for all t S: 0}.

For any <p t S define

= [' R,-(t - s) Ms) - GK(s,«>m
Jo

ds.

Clearly, M: S —* C and M is completely continuous. Since the norm \z\ = |(zt , z2)| is

defined by |z| = max {|z!| , |z2|}, then (A4), Lemma 1 parts (ii) and (iii) and the defini-

tions of S and M easily imply that \{My)(t)\ ^ K for all t 2: 0. This means that M<ptS

if <p e S. By the Schauder fixed point theorem the operator M has at least one fixed point

x(t). This fixed point solves (EN) on 0 i= t < °o and thus also solves (E). Q.E.D.

It can be shown that if G is defined by (1.8) then (A4) is true. More generally assume:

C^4') G(t, Xi , x2) = col (g(t, x,), git, x2)) for all (t, , x2) t R3. Moreover, g(t, z)

is an odd, nondecreasing function of z and is bounded in t1 R1 uniformly for z

on compact subsets of R1.

Lemma 3. Suppose G satisfies (A3) and (A4'). Let B = sup {|/(£)| : t 0}. Then

for any M > V2B and for any & in the range 0 < E < B there exists N > 0 such that

(A4) is true with K = M + £.

Proof. Fix any such values of M and £. Pick N > 0 so large that 2 |§r(<, z)\ < N&

uniformly in t ^ 0 and |z| 5S 5M. The map w = u — GN(t, u) may be written in the form

Wi - «, = — [g(JL, (u, + uJ)/v/2 + /i(0) + g(t, (ui - u2)/"s/2 + f 2{t))} / {V 2N) (4.1)

and

— u2 = —{g(t, («! + u2)/V2 + /j(0) - git, (ui - u2)/V2 + /2(<))}/{V2N) (4.2)

for all t ^ 0.

If \u\ = max {|ui| , |w2|} 5= M then for any t one has

|(i*i + u2)/V2 + Fi(0| , |(tti - u2)/V 2 + F2{t)| ^ a/2M + M < 5M.

Thus (4.1) and the choice of N imply |u>i| < |wi| + {S/V'2 + fi/\/2}/v/2 g M + S.

Similarly, |u>2| < M + £.

Now consider the region D — {u t R2: M < \u\ ^ M + £}. We must show that if

u t D then |w>i| , \w2\ < M + £. For j = 1, 2, 3, • • • , 8 define

Sj = {(wt , u2) e R2: Ui + iu2 = re'9 for some r > 0

and some 6 in (j — 1) (tt/2) g 6 g jir/2}

and define Dj = D C\ Sf . Since g(t, x) is an odd, nondecreasing function of x with

git, 0) = 0, then the map G(t, z, , z2) = col (g{t, Xi), g{t, x2) maps each region <S, into

itself. Also recall that GN(t, z) — QG(t, Qz + f(t))/N.

If u t Z)i , then (3.2) implies that v = Qn t . Since B < M/y/2 and |/(0| ^ B,

then y = v + f(t) lies in Si , S2 or <S8 . Again Q maps Si —> Si , S2 —> S& and Ss —* S2

so that
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Z = Qx = QGit, Qu + f(t))/N = GN(t, u)

is in Si , S2 or Ss . Finally, (4.1)-(4.2) show that Z = GN(t, u) = w — u.

If Z = GN(t, u) is in Si or S2 , then the right-hand sides of (4.1) and (4.2) both lie in

the range ( — 8, 0). Since utD1} then M < Ui ^ M + S and 0 ^ u2 ^ M + 8. There-

fore, Wi = Mi + Zi lies in the range 0 < M — 8 < < M + 8 and w2 = ut + z2 lies

in the range — S < w2 < M + 8. Therefore, |w| :£ M + 8.

Now suppose u t D1 and Z = GN(t, u) e Sa . Since ^ B < M/\/2 one must

have M < Ui ^ M + & and 0 S u2 ^ \/2B < M in order that Z e Ss . Therefore, the

right-hand side of (4.1) is in the range (—8, 0) and the right-hand side of (4.2) in the

range (0, 8). This and u: t Dt mean that M — 8 < Wi < M + 8 and S < u>2 5= V25 +

8 < M + 8.

The analysis of the other seven regions S2 , S3 , ■ ■ ■ , Sa follows in a similar manner.

The various maps involved in the analysis are illustrated in Fig. 1. Q.E.D.

Corollary 1. Suppose (Al-3), (A4'), (3.2) and (3.3) are true. If G is sufficiently
smooth to insure the uniqueness of the solution x(t) of (E) then x(i) exists for all t 0

Fia. 1
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and satisfies

\Q{x(t) — /(£)} | g V2B (0 t < oo)

where B = sup {\f(t) | : 0 ^ t < °o }.

Proof. By Lemma 3 and Theorem 4 above the solution x(t) satisfies

sup {|Q{:r(0 - /(Oil : t ^ 0} ^ M + 8

for each S > 0 and each M > V2B. Q.E.D.

5. Almost periodic solutions. The purpose of this section is to study the existence

and uniqueness of almost periodic solutions of equations of the form (1.10). First, we

give appropriate definitions and background information concerning almost periodic

functions. The first result in this section (Theorem 5) asserts that if Y(t) is an almost

periodic solution of (1.10) for some fixed N0 > 0 then it is also a solution of (1.10) for

all other N > 0. This result will be important since one value of N will be needed to prove

existence of almost periodic solutions of (1.10) and a second value of N will be needed

to obtain uniqueness and prove the asymptotic relationships between solutions of

(En) and (1.10).

The rest of the section is devoted to the existence and uniqueness of almost periodic

solutions of (1.10). Lemma 4 is an invariance theorem for bounded solutions of (1.10).

Lemma 5 asserts the uniqueness of bounded solutions of (1.10). The last result of the

section asserts that the unique bounded solution of (1.10) is almost periodic.

Definition. A continuous junction S(t, x) defined for all (t, x) e Rn+l is called almost

periodic in t (uniformly for x on compact sets) if and only if given any sequence {<„) of real

numbers there exists a subsequence \tnk) and a function S*(t, x) such that

lim S(t + tnk , x) = S*(t, x)
h—*oo

with convergence uniform in (t, x) for all t e Rl and x on compact subsets of R". In this case

we write S e AP.

The set of all functions S* which may be obtained in this way is called the closed hull of S,

written CH{S).
As general references on almost periodic functions see the books of Favard [14] and

Besicovitch [15] or the original papers of Bohr [16]. The results listed below are well-

known results in this field.

Given a function S(t, x) which is almost periodic in t uniformly for x on compact

sets define FM(S) to be the set of all almost periodic functions /(<) with range in the same

space as S and satisfying the following condition:

If {<„} is any real sequence such that {S(t + t„ , x)} is a Cauchy sequence uni-

formly in 11 R1 and x on compact subsets of Rn, then {f(t + 0} is a Cauchy

sequence uniformly in 11 Rl.

The set FM (S) is called the function module of S.
Given S e AP there exists a countable set of Fourier exponents {X„} C Rl and a set

{S„(z)} of continuous nontrival functions such that S has Fourier series

CO

S(t, x) ~ X) S"(x) exp (i\nt).
1

If S is independent of x, then so are the functions S» . The module of S, written M (S),
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is the additive group of real numbers generated by the sequence {X„} of Fourier ex-

ponents. In other words M (S) is the smallest additive subgroup of R1 containing the

set {X„}. An almost periodic function / is in the function module FM(S) if and only if

the Fourier exponents of / are contained in the module M(S).

Let the functions /, A and G satisfy (A1)-(A4) and in addition some or all of the

following conditions:

(A5) There exist almost periodic functions p(t) and h,(t, x) such that

lim {/(/) - p(t)\ = 0, lim {g^t, x) - h^t, x)} = 0
t *00 t —*00

with the last limit uniform in x on compact sets of R1.

(A6) For each t i Rl and for j = 1, 2 the function hj(t, x) is nondecreasing in x.

(A7) The functions hx{t, x) and h2(t, x) are locally Lipschitz continuous in x with

Lipschitz constants independent of 11 R1.

In Theorem 1 above gi(t, x) - g2(t, x) = hi(t, x) = h2(t, x) = Bx3. Moreover, (2.1)

implies that

/,(<) + C sin {kjt) —> F0/2 + C sin (k,t)

as t —> co. Thus (A5)-(A7) are all true for this special case. Note that (A5) implies

that G{t, 2,'i , x2) has the special form (2.5).

Under the above assumptions the invariance theorem in [17, Theorem 1] implies

that the equation

y(t) = f R,v(t - s){y(s) - GN(s, y(s))} ds (EN)
«'o

has the limiting form

Y(t) = [' Rx(t - «) {F(«) - Hn(s, 7(s))} ds (5.1)
J — CO

where H(t, y) = H(t, yx , y2) = col (h^t, yx), h2{t, y2)) and

HN(t, y) = QHit, Qy + p(t))/N. (5.2)

Theorem 5. Suppose (A1)-(A5), (3.2) and (5.2) are true. Suppose Y(t) is any

almost periodic solution of (5.1) jor some fixed N. If Y (E FM(H, p) then Y is also a solution

of (5.1) for all other values of N >0.

Proof. Pick any M > 0 with M ^ N. Let SN be the resolvent of NA(t) and SM the

resolvent of MA(t). Write (5.1) in the form

7(0 = h(t) + [ R.v(t - s)| 7(s) - Hy(s, 7(8))) ds
J 0

(5.3)

where

dsh(t) = J RN(t - 8)1 7(8) - H\(s, 7(8))}

= J R\(s) [ Y(t - s) - H„(t - s, Y(t - s))} ds -» 0

as t —» oo. Let 5d(t) be the Dirac delta function and let o(t) = diagonal (Sd(t), Sa(t)).
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If * denotes convolution then (5.3) may be written in the form

Y = h + Rn* {Y — QH(QY + p)/N}.

Since QRnQ = SN = resolvent of NA(t), then the transformation Z = QY puts the

equation in the form Z — Qh + SN * {Z — H(Z + p)/N), or (5 — SN) * Z = Qh —

SN * H(Z + p)/N. Applying (5 + NA) to both sides, one obtains

Z = (5 + NA) * Qh - A* H(Z + p) = (5 + NA) * Qh - (MA) * H(Z + p)/M.

Add (MA) * Z to both sides and apply (5 — SM):

Z = (5 - S„) * (5 + NA) * Qh + SM* {Z - H(Z + p)/M\.

Letting Y = QZ, one obtains

Y = Q(a - SM) * (8 + NA) * Qh + Rm* {F - QH(Qy + p)/M\.

Note that

Q(5 - SM) * (5 + NA)Q = Q\b - SM + NA - (N/M)(MA - SM)\Q

= S + (1 - N/M)QSMQ = 5 + (1 - •

Therefore F = h + (1 — N/M)Rm *h-\-RM*{Y — IT M(Y)}. Writing this equation in

the usual form, one has

Y(t) = h(t) +['(!- N/M)Rm(1 - s)h(s) ds + f R„(t - s)j F(s) - H„(s, F(s))} ds
Jo Jq

(5.4)

for t ^ 0.

Let tn —> oo be an increasing sequence such that p(t + tn) —> p(t) and H(t + tn, y) —»

H(t, y) as n —* <*>. Since F t FM (H, p), then Y(t + tn) —> Y(t) as n —* «>. Note that

h(t) —» 0 as t —► oo and 7?^ £ L\0, oo) implies that h(t) + (1 — N/M)Rm * h(t) —> 0

as < —» oo. Replacing t by t + in (5.4) yields

Y(t + Q = /i(i + Q + (1 - N/M)Rm * h(t + tn)

+ J RM(t — s) j F(s + tn) — Hm(s + tm , F(s + tn))} ds.

Taking the limit as n —» oo gives (5.1) with N replaced by M. Q.E.D.

We now turn to the existence-uniqueness problem. The following lemma will be

needed.

Lemma 4. Suppose (5.2), (A1)-(A3) (and A5) are true. Suppose (5.1) has a bounded

solution 7/(<) on — oo < t < oo. Then given any sequence j<„| of real numbers there exists a

subsequence \t„i\, a junction (IIn)* t CH(HN) and a junction y*(t) such that

y(t + tnl) -> y*(t), HN(t + tnk , y) —> H%(t, y)

and

y*(t) = f RN(t - s)\y*(s) — H%(s, y*(s))} ds (—oo < t < oo). (5.5)
J — 00
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Proof. If {£„} contains a subsequence which tends to a finite limit point r, then the

result is trivial with y*{t) = y(t + x) and H%(t, y) = HN(t + r, y). Therefore, assume

tn—* ±0°. Since p(t) and H(t, y) are almost periodic in t, then there is a subsequence

(which we shall also index by n) and functions p* e CH(p), H* e CH(H) such that

pit + O —> p*(t) and H(t + tn , y) —> H*(t, y). Then

HN{t + tn,y) = QH{t + tn,Qy + pit + Q)/N - QH*(t, Qy + p*(t)/N = H%(t, y).

Since 2/(0 is bounded and H is almost periodic, then |y(t) — HN(t, 2/(0)1 is bounded on

— co < t < od. The convolution of a function in Ll( — co, oo) and a function of class

L°°( — oo, co) results in a bounded uniformly continuous function. Since y(t) solves (5.1),

then y(t) must be uniformly continuous. This in turn means that the sequence {y(t + O }

is a uniformly bounded, equicontinuous family of functions on each finite subinterval

of Rl. By possibly taking a subsequence we may assume that y(t + O —> y*(t) as n —► oo

for some function y*. Replacing t by t + t„ in (5.1) one obtains

y(t + «„) = [ RN(t - s){y(s + tn) - Hn(s + tn , y(s + 0)1 ds
J— oo

taking the limit as n —> oo gives (5.5). Q.E.D.

Lemma 5. Assume the hypotheses of Lemma 4. Assume (A6)-(A7) are also true. If

N > 0 is sufficiently large, depending only on a bound for y(t) and the Lipschitz constant

of H, then y{t) is the unique bounded solution of (5.1).

Proof. Suppose there exist two distinct solutions y(t) and z(t) of (5.1). Pick a

sequence tn such that

12/(0 - 2(01 -* L = sup {\y{t) - 2(01 : - 00 < t < oo}.

By possibly taking a subsequence we may assume that 2/(0 — 2(0 —> «o as n —♦ oo

where u0 is some point on the boundary of the square {u: \u\ ^ L}. By possibly taking

another subsequence Lemma 8 insures that IIN it + tn,y) —* H%(t, y), y(t + t.) —*■ y*(t)

and z(t + O ~* 2*(0 where II* t CH(HN) and y* and z* solve (5.5). Clearly II* satisfies

the same hypotheses as HN . Moreover, ua = 2/*(0) — 2*(0) = lim \y(t„) — z(0} as

n —» oo. Thus we have reduced the problem to the case where |y(0) — z(0)| = L —

sup {\y(t) — z(t) | : — co < t < oo }.

The two components of b(t, y) — y — HN(t, y) have the form

bi(t, y) = y, - [Kit, (y, + y2)/V2 + p,(0)

+ h2(t, (iu - y2)/V2 + p,m/(V2N)

and

bt(t, y) = 2/2 - {Kit, (i/, + 2/2)/ V2 + p,(0) ^ 7b^

- h2(t, (y1 - 2/2)/ V2 + p2m/(V2N).

Set w(0 = 2/(0 — 2(0 and define

m,(0 = {Kit, (2/i(0 + 2/2W)/ V2 + px{0) - Kit, (2,(0 + 2,(0)/V2 ^ ^

+ Pi(0)i?H(«i(0 +«,(0)/V2}-1

if «i(0 + ua(0 ^ 0 and mxit) = 0 if «i(0 + w2(0 = 0. Since u(0 is bounded and (A7)
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is true, then m^t) e Lm(— <», oo). Moreover, m^t) ^ 0 by (A6). Similarly define

m2(t) = {h2(t, (?/,(<) - y2(t))/V2 + p2(0) (5 8b^

- /i2(Z, (3,(0 - z2(t))/V2 + p2(t))r)} {(Ui(t) - u2(t))/V2}~1

if «i(<) ^ u2(t) and m2(t) = 0 otherwise. Since u(t) = ?/(0 — z(t), then (5.1), (5.7) and

(5.8) imply that

and

h(t) = f X,.v(/ - s)({l - (m,(s) + m2(s))/AT)«,(«)
J — oo

+ {(wi2(s) — m1(s))/Ar|w2(s)) rfs

m2(0 = f \2N(t - s)({(m2(s) - w,(s))/2V}m,(s)
J — CO

(5.9a)

(5.9b)

+ {1 — (»i,(s) + w2(s))/JV|tt2(«)) rfs

for all £ in R1. In system form (5.9) becomes

u(t) = J RN{t - s)(I - M(s)/N)u(s) ds (5.9')

where M(s) is the appropriate matrix.

Pick iV > 0 so large that 0 ^ m^l), m2(t) ^ N/3 a.e. on — «> < t < <». For any

fixed s the map H — (/ — M{s)/N)u maps the square S = {u: |«i| , \u2\ ^ L\ into the

region

S' = {u\ \ui\ , \u2\ ^ L max {1 — 2m1(s)/N, 1 — 2m2(s)}}.

Since 0 ^ 2mj(s)/Ar ^ 2/3 (by the choice of JV), then S' C <S. Using the properties

of \2N obtained in Lemma 2, (5.6) and (5.9b) it follows that

|w2(0| ^ J ^2jv(< — s)L ds — L X2.v(s) rfs =

Letting / = 0 we see that |w2(0)| < L. Therefore, w(0 is in the set

<S0 = {u: ImjI ̂  L, |u2| ^ L0}.

Since u = (/ — M(s)/N) u maps /S0 strictly inside of the square S, say

\u\ ^ 0L (0 < 13 < 1), then for any t line (5.9a) implies that

MO I ̂  J *uv(< - s)/3L d, = (^J XlJV(s) dsj(pL) = $L < L.

Therefore, |ui (0)| <Land|w2(0)| < L which contradicts |w(0)| = max {|wi(0)|, |w2(0)|} = L.

Q.E.D.

Theorem 6. Suppose the hypotheses of Lemma 4 are true. Then y(t) t FM(H, p) so

that in particular y e AP. Moreover, y{t) solves each equation (5.1) jor all N > 0 and jor

N sufficiently large is the unique bounded solution oj (5.1).

Proof. Fix N > 0 and large. Let [<„} be any real sequence such that { pit + t„)\ and

\H(t + t, , y)) are Cauchy sequences, p(t + tn) —» p*(t) t CH(p) and Hit + <„,?/)—*
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H*(t, y) e CH{H). It must be shown that {y(t + tn)} is a Cauchy sequence uniformly in

t £ R1. Suppose this is not true. Then there exists e > 0, subsequences nk and mk, and a

sequence r* such that nk > mt ^ k and \y(jk + tnk) — y(rk + t„k)\ 3; f. Define

Tk = rk + tnk , Sk = Tk + tmk (k = 1, 2, 3, ■ • •)•

By possibly taking a subsequence of the k's it follows that

H*(t + Tk , y) -» H0(t, y), p*(t + rt) -> pa(t)

for some functions H0 e CH(H*) and p01 CH(p*). Then p(Jt + Tk) = pit + rt + tnk) —»

p0(t) and

H(t -f- Tk , y) = #(£ + Tk + tuk) —* y)

as k —* co. Similarly p(t + Sk) —» po(0 and #(£ + S* , ?/) —> i/0(«, ?/).

By Lemma 4 there exists a subsequence (which will again be indexed by k) and func-

tions y,(t) and y2(t) such that y(t + Sk) —> yi{t), y(t + Tk) —> y2(t) and

1/,(<) = f R,v(t - s){j/,(s) - (Ho)x(s, y,(s))} rfs
J — x>

for j = 1,2 and j £ K1. Since

l2/i(0) - 2/2(0) | = lim \y(Sk) - j/(T*)| ^ S,
i—»00

then r/](0 ^ 2/2(0- But this violates the uniqueness asserted in Lemma 5. This contra-

diction shows that y t FM(H, p). Theorem 5 shows that y solves (5.1) for all N > 0.

The uniqueness of y is Lemma 5. Q.E.D.

6. Proof of Theorem 1 and generalizations.

Lemma 6. Suppose (Al)-(A7) and (3.2) are true. Then for any N > 0 Eq. (5.1) has

at least one bounded solution. In particular, then (5.1) has a solution Y t FM(H, p).

Proof. By Theorem 4 Eq. (E) has a bounded solution x(t). Since (E) is equivalent

to (En) for all N > 0, then each (EN) has the same bounded solution. The results in [17]

imply the existence of at least one bounded solution of (5.1) for any N > 0. Now apply

Theorem 6. Q.E.D.

Theorem 7. Suppose (Al)- (A7) and (3.2) are true. Then there exists a unique

junction X t FM(H, p) such that if x(t) is any bounded solution of (E) then x(t) — X{t) —> 0

as t —> co.

Proof. Let Y t FM(H, p) be the function given by Lemma 6. Define X(t) = QY(t) -f

p(t) and yit) = Q(x(t) — /(<))• We must show that x(t) — X(t) —♦ 0 as / —> °o 0r equiv-

alent^ that y(t) — Y(t) —> 0. If this is not true, then there exists an t > 0 and a sequence

tn—> 00 such that |y(tn) — Y(/n)| Si e. By Lemma3 we may assume that p(t + tn) —» p*(t),

H(t + t„,y) —* H*(t, y) and Y(t + tn) —> Y*(t) as n —> °° where p* t CH(p), H* t CH(H)

and Y* solves (5.5). Write (EN) in the form

2/(0 = E(t) + [ R„(t - s){y(s) - Hn(s, y(s)} ds,

where

E(t) = [' R,(t ~ s){Hn(s, y(s)) - G,(s, y(s))\ ds.
Jo
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Assumption (A5), (3.3) and (5.2) insure that HN(t, y(t)) — GN(t, y(t)) —» 0 as t —* °o.

Since RN t L\0, °°), then E(t) —» 0 as / —> m. Therefore, Theorem 1 of [17] implies that

by possibly taking a subsequence of t„ one has y(t + O —> y*(t) where y*(t) solves (5.5)

for the same value of N. By uniqueness of solutions of (5.5) for large N, y*(t) = Y*(t).

On the other hand

|</*(0) - F*(0)| = lim 1y(Q - Y(Q\ ̂  e > 0.
n

This contradiction proves the theorem. Q.E.D.

Theorem 8. Under the hypotheses of Theorem 7 the junction H(t, X(t)) has mean

value zero. Moreover, if the mean values of pi(t) and p2{t) are equal then the two components

of X (t) have equal mean values.

Proof. Recall that for any <p(t) t AP the mean value of <p is defined to be

m(<p) = lim r~1 / <p(s) ds.
T_»oo J o

Since Y(t) = Q(X(t) — p(t)), then Y solves (5.1) on — °° < t < oo. Taking mean values

of both sides of (5.1) one obtains

m(Y) = R$(0)(m(Y) - m(HN)), (6.1)

where R* (u) is the Fourier transform of Rx . By Lemma 1 above

■Kjv(O) = diagonal (1, iV/3(1 + N/3)~l)

where

P = [ {«i(0 _ «a(0} dl-

Write Y(t) = col (Y,(t), Y2(t)). Then the equation in the first component of (6.1)

is m(Y1) = miYi) — m(HN1). Therefore, m(HN1) = 0, that is the first component of

QH(t, QY(t) + p(t))/N — QH(t, X{t))/N has mean value zero. The second component

of (6.1) is

m(Y2) = 1 + Nf})~1m(Y2) — m(HN2),

m(HN2) = -N( 1 + Nf3)-lm(Y2) (0 < N < ~). (6.2)

Since the left-hand side of (6.2) is independent of N, then (6.2) can be true for all N > 0

only if m(Y2) = m(HN2) = 0. We have shown that the mean value of

HN(t, Y(t)) = QH(t, QY(t) + p(t))/N = QH(t, X{t))/N

is the zero vector. Since Q is not singular and N ^ 0, then H(t, X(l)) also have mean

value zero. We have also shown that m(Y2) = m(X, — X2 — Pi + p^/^2 = 0, that

is miXi — X2) = rn(p! — p2). Since m{pi — p2) = 0, then m{Xx) = m(X2). Q.E.D.

Theorem 1 follows as a special case of the results in this section. In this special case

g(x) = Bx3 is smooth so that the solution of (E) is unique. Assumptions (A1)-(A7) are

easily verified with p(t) = col p2{t)) having components p,(t) = i 0/2 + c sin
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If ki and k2 are linearly independent over the integers, then p(t) is quasiperiodic with

fundamental frequencies (fcj , k2). If fc, and k2 are linearly dependent then there exist

integers Mi and M2 such that k3 = Mlkl + M2k2 and k3/2ir is the least common period

of p(t). In this case the functions A'", in (1.9) will have the form

CO

Xf(t) = X) X,„ exp {in (il/+ M2k2)t\.
n*= — co

If u(t, x) is the function defined by (1.5) and X,- the functions defined by (1.9) then

u(t, 0) = X1(t) + E1(t) (6.3a)

and

u(t, L) = X2(t) + E2(t), (6.3b)

where Xi and X2 both have the same mean value, /?,(/) e C[0, co H C!(0, °°), d/dt E,(t)

is L1 near t = 0 and E,(t) —> 0 as < —> co. Therefore, one would conjecture that

limt-,„ u(t, x) = U(t, x) where U solves the problem

(6.4)
U, = Uxx (-co </< to, 0 < x < L)

U(t, 0) = Xt(0, U(t, L) = X2(i) (- 00 < < < oo).

Similarly u(t, x) satisfies boundary conditions of the form

du/dx(t, 0) = B{Xy(t) - C sin (fc^)}3 + E^t) (6.5a)

and

du/dx(t, L) = — B\X2(t) — C sin (fc2<)}3 + E2(t), (6.5b)

for all t 0. Here E, and E2 have the same properties as the corresponding terms in (6.3)

and the two functions B{Xj(t) — C sin (k,(t) j3 have mean value zero. If it is true that

u{t, x) tends to a solution U of (6.4) then U(t, x) should also satisfy the boundary condi-

tions

dU/dx(t, 0) = B{X1(t) - C sin (k, 0}3

and

dU/dx(t, L) = -B\X2{t) - C sin (k2(t)}3,

for — oo < t < co .
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