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Summary. We establish necessary conditions for the applicability of Poincar6-

Lighthill (or coordinate stretching) perturbation theory to ordinary differential equations.

The criteria are simple consequences of a unique modification of the classical theory of

coordinate stretching. The usefulness of the new approach and the role of the criteria

of applicability are illustrated by means of simple examples.

1. Introduction. Consider the system of ordinary differential equations

dy/dx = F(y, x; e), (1)

for x > 0 and initi.il conditions

2/d) = y, (2)

where y and F are real vectors, x is a real scalar and e is a parameter. If e is small and

F is analytic in e we expand Eq. (1) to obtain

dy/dx = f(y, x) + eg(y, x) + ■ ■ ■ . (3)

Throughout this work we neglect terms 0(e2) and higher.

Following I'oincare's work [1], Lighthill [2] has introduced an expansion of the

independent variable x in addition to an expansion of the dependent variables; thus

y = 1/0(2) + ty^z) + • ■ ■ , (4)

x = z + tXi{z) + • • • , (5)

where z is a new independent variable. The essence of the Poincar6-Lighthill (or PL)

technique is that the function x,(z) is arbitrary and can be chosen to facilitate the

solution of the problem at hand.

By use of Taylor series expansions about the point (2/0 (z), z), the Poincar6-Lighthill

expansions (4) and (5) give

e°: (dyjdz) = /„ , (6)

* Received December 18, 196S; revised version received September 1, 1969.

1 See note added in proof at end of paper.
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with summation occurring over repeated superscripts. Implicit in the use of Taylor

series is the assumption that f0 , g0 , ••• are nonsingular, where functions with zero

subscripts are evaluated at the point (2/0(2), 2). Initial conditions can be chosen to be

2/o(l) = Y, yi(l) = 0, (8)

2=1, x^l) = 0. (9)

The classical perturbation equations are recovered from Eqs. (4)-(9) by setting

X, = 0. (10)

Then

e°: (dy0/dx) = /„ , (11)

e1: dyjdx = yl(df/dy')0 + g0 , (12)

and

2/o(l) = Y, (13a)

2/i(l) = 0, (13b)

where functions with zero subscripts are now evaluated at the point (y0(x), x).

Recently we have shown [3] that the PL perturbation equations (6) and (7) may be

greatly simplified by means of the identity

4fX-*($.$■ (.4)
On substituting Eq. (14) in Eq. (7) and on using Eq. (6) we find

dyi/dz = y\(df/dy')0 + g0 , (15)

where we let

5i = 2/i- Z1/0 . (16)

Eq. (15) now has the same form as the classical first-order perturbation equation (12),

yet contains the PL feature through the newly defined dependent variables in Eq. (16).

Further, on considering the initial conditions it follows from Eqs. (8), (9) and (16) that

jfi(l) = 0, (17)

since by assumption /0 is finite at the boundary.

A comparison of the tilde system of Eqs. (15) and (17) with the classical non-PL

system of Eqs. (12) and (13b) reveals the interesting fact that they are identical but

for the interpretation of the dependent and independent variables. It follows that we

may define 2/1(2) to be the functional equivalent of the first-order non-PL function Vi{x)

when z is replaced by x. Similarly from a comparison of the pairs of equations (6), (8)

and (11), (13a), y0(z) is functionally equivalent to y0{x). We express these equivalences

as follows:

2/0(2) = y 0(x), y^z) = yi(x), z = x, (18)

and from Eq. (16) we have

2/i(2) = J/jfc) + Xi(2)/o{2/o(2), 2]. (19)
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The new PL method of coordinate stretching is more easily understood from Eqs. (18)

and (19) than from the usual PL formulation in which Xj occurs in the first-order dif-

ferential equations (7) themselves. As noted previously [3], the first step is to find

(if possible) the classical (non-PL) solutions y0(x) and yAx); this step is taken whether

or not it is apparent a priori that PL theory is needed. Then if inspection of yi(x) indicates

the need for coordinate stretching, Eqs. (18) and (19) are employed as a second step.

In the following section we derive necessary conditions under which this second step

may be applied.

2. Necessary conditions for applicability of PL theory.

A. Preliminary remarks. The essential point of this paper is that Eq. (19) also

allows us to establish criteria for the applicability of the PL method; for on considering

Eq. (19), we want y\ to be well behaved, and so we must use the product f0 to subtract

out that part of y[ that is badly behaved. However, in order to obtain Xi from one of

the k components cf y[ = y\ + xxj'0 , we must divide through by f0 which may be zero in

the domain of interest; it is this possibility that leads to necessary criteria for appli-

cability.

We consider the problem of the nonuniform convergence of k vector components j,

j + 1, • • • , j + k — 1 of the series representation of y(x) = y0(x) + tyi{x). In order to

avoid obscuring the essential points, we assume that these components of y\(x) are

badly behaved at just one point in the domain of interest of x, and that by suitable

transformations this point can be brought to the origin x = 0. Throughout this section

the superscript i denotes any of these k components.

13. Domain of interest in z. In problems of nonuniform convergence for which the

zeroth order solution ya{x) is singular at x = 0, the singularity becomes progressively

more severe as the solution is carried to successively higher orders [2], [4], The introduc-

tion of a stretched coordinate z must be made inter alia in such a way that the singularity

in the zcroth and higher order solutions is never reached; i.e., that z —> f > 0 as z —>0,

where f is real. From Eq. (5), this condition can also be expressed as Xi(z) —> ̂ = — e/f <

0 as x —> 0. Further, since x and 2 take equal values at the boundary we have that

0 < f < 2 < 1 in the interval 0 < x < 1. When the domain of interest 0 < x <

extends beyond the boundary at x = 1, we have 0 < f < z < =°. This condition can be

relaxed when the type of misbehavior in y0(x), y,(x), • ■ • is nonsingular, and by Eqs. (4)

and (5) we then require simply that z be finite or zero in the domain of interest. For

convenience, in the subsequent discussion we let D denote the domain of interest.

C. x, and the auxiliary vector 4>\ . Let us sketch the procedure involved in choosing

x, . When coordinate stretching is needed, the components y\(x), or equivalently (by

expression 18) y\(z), are more badly behaved than y'0(x) or y'0(z) at their respective

origins. We let y\ equal the sum of the badly behaved part y\,. and a well-behaved

part y'Uw

2A = yl.v, + y\., ■ (21)

Breaking up y\ in this fashion is possible since we can always choose y\:„ = 0. From

Eq. (19) we use Z1/0 to subtract out y'l},

yl = yl.rv + yl,. + zJo, (22)

and we let

<t>I =$!.. + zjo • (23)
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Hence

y'i = yl.»+<#>! • (24)

Since y\t„ is by definition no more badly behaved than y'0 at z = 0, and since we want

y\ to be similarly behaved in order to ensure uniform convergence, it follows that <f>\ must

be so chosen that it, too, is no more badly behaved than y'0 at z = 0. (This and subsequent

conditions on <f>\ and xx are summarized in Sec. 2E.)

In order to determine xx it is necessary first to decide upon the form of just one

component of <t>] , say <f>[ ; then

x, = (*; - yi..)/it, (25)

and the remaining components can be found from Eq. (23) whence all y\ are found

from Eq. (24). The derived components and y[>j must, of course, still satisfy the

conditions that they be well behaved for all values of z in D and, near 2 = 0, that they

be no more badly behaved than yf. Moreover, by Eq. (24), <t>[ must be such that the

initial conditions on Xi and y\ be satisfied.

To ensure that the initial condition on Xi is satisfied, it is necessary to let be

parametric in a constant C'; for on applying the initial conditions (8), (9) for Xj and y\ ,

to Eqs. (23), (24), and since /0 is finite at the boundary, we have

*1(1; C") = #..(!), (26a)

<t>i(l;C') = -y[.„(l). (26b)

Either one of Eqs. (26a, b) serves to determine C; these equations are not independent

since their difference always satisfies the initial condition on y[ by Eqs. (17) and (21).

While the constant C' arises through the necessity of satisfying the initial condition

on xt , it may also be regarded as an integration constant, because according to con-

ventional PL theory Xi must be determined by solving a suitably chosen scalar first-

order differential equation (cf. Eq. (7)).

The above procedure ensures that the initial conditions on y[ and xt are satisfied.

The initial conditions (8) on the remaining k — 1 components of yf at x = z — 1 are

then always satisfied through Eqs. (9), (17), (21), and (22).

D. Conditions on xx . From the expression (25) for xx is it necessary that

- yi..(z))/fo(z) ^ 00 (27)

throughout D in order for the unified perturbation analysis to be applicable.

Let us examine the conditions under which the expression (27) holds. By assumption

(Sec. 2A above), y\,,(z) is misbehaved only at z = 0 which lies outside D, and from

Eq. (24) and the discussion following it, <t>\ (z) can be misbehaved at z = 0 which also

lies outside D. Since /„(z) is never singular in D, it follows that <j>[ (z) must be so chosen

as to be nonsingular in D. But it is possible for one or both of the numerator and denom-

inator to have zeros in the domain of interest. We distinguish three cases:

Case 1.

/o(z) ^ 0, (28)

for all z in D. Hence xx is zero or finite in D and PL theory is applicable.

Case 2.

/o(z) = 0, (z) - y[.,(z) ^ 0, (29)
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where z lies in D. In this case xx{z) is singular leading to an infinite distortion of the

z-coordinate, and PL theory is not applicable in the vicinity of z.

Case 3.

m = 0, 4>[{z) - yi.M = 0. (30)

In this case PL theory is applicable only if the order of the zero of (4>\ — y\ ,„) is greater

than or equal to that of f'0 , i.e., if

lim - y[.,(z))/f'0(z) . (31)
z-*z

E. Summary and additional remarks. Let us summarize the conditions on 4>\ and xt

which were deduced in sections C and D above:

(1) <p[(z) must be chosen so that it is no more badly behaved than y'0(z) near z = 0.

(2Ea)
(2) <t>[ (z) must be chosen to be nonsingular throughout the domain of interest in z.

(2Eb)
(3) When, y0(z) is singular at z = 0, then <j)[(z) must be chosen so that xy(z) —> £i < 0,

z—>f>0asz —>0, where £i and f are real. (2Ec)

(4) <t>\(z) must be parametric in a constant C' determined from one of Eqs. (26a, b)

in order to satisfy the initial conditions on Xi and y[ . (2Ed)

(5) 4>\"{z) derived from Eq. (24) must satisfy the same conditions on <p[(z) as stated

in (2Ea, b). (2Ee)

When (2Ea-e) are satisfied, then PL theory is applicable provided the condition (27)

holds. These conditions are necessary for the applicability of Poincar6-Lighthill theory

to problems of nonuniform convergence.

We note that (2Ee) is redundant in the scalar case and also in the vector case when

the number of misbehaved components k = 1. The conditions under which (2Ee) will

be satisfied when k > 1 depend ultimately on the nature of the original problem through

Eqs. (3), (G), (15), (21) and (23); this question is not investigated here.

3. Wasow's criterion. Wasow [5] has considered the case

(x + ty)(dy/dx) + q{x)y = r(x), 2/(1) =6, (0 < x < 1), (32)

with the functions q and r regular near the origin. By use of the classical PL perturbation

theory he finds a necessary condition for convergence

tfOOj/o — r(z) 9^0, (0 < z < 1). (33)

If we consider Eq. (32) in zeroth order we see that in this case

/o(2/o , z) = - [r(z) - y0q(z)],

so that criterion (33) is a special case of Eq. (28).

4. Iilvstrative e. aropies. To illustrate Cases 1-3 of Sec. 2D, we apply the new

formulation to three simple problems of nonuniform convergence of series solutions.

A. We illustrate Case 1 above by means of the scalar problem (x + ey)(dy/dx) +

y — 0, y(l) = 1 for e > 0, x > 0. The zeroth and first order solutions are [4] y0 = 1/x,

yx — (1/2jc) — (l/2.r3). Since the order of the singularity in yx at x = 0 is greater than
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that of y0 , the classical perturbation solution is nonuniformly convergent at the origin.

According to the new formulation, we let ylit = — 1/2z3 and yUw = 1/2z. From Eq. (24)

we choose 4>i = —1/2z + C1 /z to be parametric in a constant C1. Applying the initial

conditions (26a, b) we find C1 = 0. Hence by Eq. (23) = (\/2z)(l/z~2 — l)//0(z) where

/o(z) = -1/z2. (34)

Thus y = l/z and x — z + %ez( 1 — (l/z~2). As x —> 0 +, z —* + [e/(2 + «)]I/2 = f, and

£i = — [t(2 + «)]-1/2. From Eq. (34) it follows that /0(z) is never zero in the domain of

interest 0 < f < z < °°. The PL method is necessary for small x and by Eq. (28) it is

applicable for all x.

B. We illustrate Cases 2 and 3 by means of the scalar problem

(x + ty)(dy/dx) + y = 2x, y{ 1) = b > 1 (35)

for 0 < x < co, e > 0. (This is a special case of the group of equations in [6].) The

zeroth and first order solutions are

y0 = x + (b — l)/x, (36)

Vl = (l/2x)[b2 - 26 + 2 - (b - l)2/x2 - x2]. (37)

The non-PL method gives nonuniform convergence for small values of x since from

Eqs. (36) and (37) y0 ~ x'1, yt ~ x~3.

We proceed in accordance with Sec. 2 to eliminate the singular portion of yx by

letting ylf, = —(6 — l)2/2z3 and yUw = (b2 — 2b + 2 — z2)/2z, where

u = 1 - (b - 1 )/z2. (38)

We have by Eq. (23)

0, = -(b - 1)2/2z3 + X\(1 - (6 - l)/z2). (39)

According to 2Ea, <£i must be no more singular than y0(z) ~ z"1 as z -> 0. Thus as z —* 0,

we must have the asymptotic dependence xt ~ — (b — l)/2z in order to eliminate the

third order singularity in Eq. (39). By 2Ed, xx must be parametric in a constant C1 in

order that Xi(l) = 0. Multiplication of the asymptotic form by C1 does not suffice, and

neither does the addition of C1, since then there will be a term in z~2 in <pi which violates

2Ea. Hence we add a term — (1/2)(£> — l)C'z to the asymptotic form and the initial

condition on Xi(l) gives Cl = —1. Thus

x, = - ((6 - l)/2)(l/z - z). (40)

Eq. (39) then gives

=-((&- 1)/2)(6A - z), (41)

which is nonsingular in the domain of interest, thereby satisfying 2Eb. From Eq. (24)

we find

Vl = ((2 - 6)/2))(l/z - z),

which satisfies the initial condition y^l) = 0. The solution for y(x) to first order in e

is thus given by

y = z + (b - l)/z + (e/2)(2 - b)(l/z - z), x = z + (e/2)(l - 6)(l/z - z),
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from which it follows that as i -> 0 + from the boundary at x = z = 1, then

f + [(e/2)(b — 1)]1/2 > 0, and ^ — [(e/2)(6 — 1)]~1/2 < 0 thereby satisfying 2Ec.

Also y + [(2/e)(b — 1)]1/2 which agrees with the asymptotic value of y derived from

the exact solution to Eq. (35), viz

xy + \ty2 = x2 + b — 1 + ieb2.

Let us now examine the role of criterion (27) in the light of Cases 2 and 3 of section

2D. From Eq. (38) we see that /0 = 0 at z2 = b — 1, and we might expect therefore

according to Case 2 (Eq. (29)) that PL theory is inapplicable in the vicinity of

z = + (6 — 1)1/2 > f. It is clear from Eq. (40), however, that xx is nonsingular everywhere

in D, so that PL theory is everywhere applicable. The apparent contradiction is resolved

by the fact that both j0(z) and (4>l — yi,.) have cancelling zeros in z in accordance with

Case 3 (Eqs. (30) and (31)), as can be verified by substituting expression (41) in Eq.

(39), and it follows, therefore, that PL theory is applicable throughout D.

Another solution to this problem provides an instructive illustration of Case 2

(Eq. (29)). It can be shown that a PL solution is also

y = z+(b-l)/z+(e/2z)(z + b2-2b + 2)(l-z), x = z +(e/2)(b - 1)2(1 - z3)/z3f0(z),

which as required is accurate in the vicinity of the origin x = 0 at which z = f +

[(e/2) (6 — 1)]1/2, but breaks down at 2 = +(b — 1)1/2 by virtue of Eqs. (29) and (38),

where z > f lies in D.

C. We illustrate Cases 2 and 3 by means of the vector system

dy'/dx = -(1 + 2e),/y, y\ 0) = 1, (42a)

dy2/dx = (1 + 2e)1/y, y2( 0) = 0, (42b)

for — co < x < co. The exact solution is

y1 = cos (1 + 2e)1/2a;, (43a)

y2 = sin (1 + 2e)1/2x. (43b)

The applicability of PL perturbation theory to this type of problem is classic, since the

effect of the perturbation is purely a coordinate stretching.

We rewrite Eqs. (42a, b) in the form of Eq. (3)

dyl/dx = —y2 — ty2 — • • • , dy2/dx = y1 + ey1 +

and by the method of Sec. 1 we find

yl0 = cos 2, (44a)

and

yl = sin z. (44b)

Hence

f0 = —sin z, (45a)

and

f0 — cos 2. (45b)
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In first order we have

y\ = — zsinz, (46a)

and

y\ = z cos z, (46b)

which satisfy the initial conditions §|(0) = 0, (i = 1, 2). In terms of classical perturbation

theory (z = x), the secular-periodic terms in the first order solution (46a, b) will ade-

quately represent the true solution only when | tx\ is small, as can be seen by expanding

the true solution (43a, b) and comparing it with equations (44a, b), and (46a, b). It is

well known that the difficulty with the classical approach arises through attempting

to use a finite number of terms in an infinite series to represent the true solution, as noted

toward the end of the last century by Lindstedt, Poincar6 and others [7],

To discuss this problem in accordance with the development of Sec. 2, we should

apply a transformation of the kind x = a(l — v) in order to bring the boundary of the

new coordinate to v = 1; this corresponds merely to a shift of origin with a scale factor

|cct| > 1 chosen to bring the point of misbehavior to the origin. However, unlike the

previous problems the misbehavior here occurs for all finite |ez| > 1, and is nonsingular,

so that no special significance need be attached to the origin v = 0 (cf. Sec. 2b). Con-

sequently we retain the Eqs. (42a, b) in their original form, and condition 2Ec reduces

in this case simply to the requirement that x and 3 be finite or zero in the domain of

interest.

From Eqs. (46a, b) we let y\= 0, y'Us = y\ (i = 1, 2) and Eqs. (21)-(24) give

<j>\ = y\ = -2 sin z + xjl , (48)

<t>2i = V2i = 2 cos 2 + xjo , (49)

where /J is given by Eqs. (45a, b). One or the other of these equations serves to determine

x, once ?/i for that equation has been chosen subject to the initial conditions

2/1(0) = 0 (50a)

and

x,(0) = 0. (50b)

Moreover, yi must be chosen to be as well behaved as the zeroth order solutions (44a, b)

which are purely periodic, and also so that xx remains finite in D.

To illustrate the role of criterion (27) let us first choose for y[ the simple periodic

function sin z which satisfies Eq. (50a). Then from Eq. (48) we have Xt = — (1 + z)

which does not satisfy the initial condition (50b) on x^ , while from Eq. (49) we have

Xi = tanz — z which satisfies Eq. (50b) but is singular at z = ±(2n+ l)ir/2, (n = 0, 1, • • •)•

This illustrates Case 2.

Next we try

y[ =0, (j = 1 or 2) (51)

which satisfies Eq. (50a) and is well behaved, and both Eqs. (48), (49) give

xi= -g (52)
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while the other component of y\ is also identically zero. Eq. (52) satisfies Eq. (50b),

and is nonsingular for all finite z and conditions (2Ea-e) on </>, = yl are all satisfied.

Thus, for this choice and with reference to Eq. (31) (Case 3) and the expressions (45a, b)

for /„ we see that both the numerator and denominator of Xi derived from Eqs. (48)

and (49) have zeros at z — ±mr and ±(n + %)t, (n = 0,1, • • •) respectively but these

zeros cancel and PL theory is applicable throughout the domain of interest. This illus-

trates Case 3. Finally, using Eqs. (44a, b) and (51) we have x = z( 1 — e), y1 = cos z,

y2 = sin z, and y\ y2 agree with the exact solution (43a, b) up to terms of first order in e.

5. Concluding remarks. We have discussed a method which represents a great

saving of effort in problems which are of the Poincar6-Lighthill type. The method enables

one to obtain the PL expansion and an ordinary expansion simultaneously. A criterion

for the applicability of the PL method is established which is an elementary consequence

of our method and some new insights on the theory of coordinate stretching are given.

In particular, the violation of the condition (27) shows up by our method as an extreme

distortion of the coordinate system and thus appears to be a fundamental limitation

of the PL method.
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Note added in proof: This section summarizes some results of reference [3] which were

arrived at independently by M. F. Prituio, J. Appl. Math. Mech. 26, 661 (1962) (Prik-
ladnaia Matematika i Mokhanikn 26, 444 (1962)).
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