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Introduction. A solution to a boundary value problem in the classical two-dimen-

sional theory of plates is generally accepted as an approximate solution to a corresponding

boundary value problem in the three-dimensional theory of elasticity provided that the

plate is sufficiently thin. This conclusion is supported by several exact solutions for

plates in the theory of elasticity [1] and by the fact that the equations of plate theory

can be obtained from the equations of elasticity theory as the leading terms in parametric

expansions [2], [3], Further, Morgenstern [4] has shown that the stresses and strains

obtained from a solution in plate theory converge in a mean-square sense to a solution

in elasticity theory as the plate thickness approaches zero. Related theorems on mean-

square convergence of parametric expansions for a problem in beam theory are stated

by Babuska and Prager [5].

In the present paper we derive an explicit expression for the mean-square error in

the components of stress obtained from a solution in plate theory with respect to the

exact solution of a corresponding problem in the theory of elasticity. In addition, a

precise bound is given for the relative mean-square error. The derivation employs the

hypersphere theorems of Prager and Synge [6] in the theory of elasticity. In the course

of the derivation the equations of plate theory are obtained in two ways by minimization

of portions of both the potential energy and the complementary energy. The general

expression obtained for the error contains only quantities which are available from a

solution in plate theory.

Our results and the previous investigations of convergence [4], [5] show that the

relative mean-square error in plate theory is proportional to the thickness of the plate

in general. This is somewhat surprising since the exact solutions for plates in elasticity

theory [1] give a relative error proportional to the square of the thickness. This form

for relative error also is indicated by the parametric expansions [2], The discrepancy in

our result can be attributed to the expression obtained for the components of transverse

shear stress, which differs from the classical expression. We have been unable to derive

the classical expression by the present method. (See note added in proof at the end of

this paper.)

I. Function space concepts in elasticity. We consider a three-dimensional elastic

body R bounded by a closed surface S. With reference to a system of rectangular Car-

tesian coordinates z,- (i = 1, 2, 3), the field equations of the linear theory of elasticity

read as follows [1]:

equilibrium (in the absence of body force)

* Received January 5, 1970.
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fn.i = 0, o\, = <7,,; (1-1)'

strain-displacement

e<i = + Uj,,); (1.2)

generalized Hooke's law

c>i = Aijillcrki , era = BijHeki , (1-3)

where c,, is the stress tensor, et, is the strain tensor and tt, is the displacement vector.

The elastic constants ^4 and Biikl satisfy

A i i k I = 4 i i 11 — A itik — A kin ,

Bijki = Bjiti = Bijik = Bknj , (1-4)

AiiklBklmn = K^.m<5in + 5in5,m)

and are such that the strain energy density W is positive definite where

W = iAim<ru<rki = 5Batieueti . (1.5)

We consider boundary value problems where the boundary S is divided into two

parts Su and S, on which boundary conditions are

u, = u* on Su , (1.6)

= <r,,n, = a* on S, , (1.7)

where u*( is the prescribed displacement vector on Su , o-* is the prescribed stress vector

on S, and n, is the outward unit normal vector to S. Somewhat more general linear

boundary conditions may be treated without difficulty.

Following Prager and Synge [6] and Synge [7], for states of stress au such that

[ Auklffij<rki dV < oo (1.8)
J R

we consider the vector space with componentwise addition and inner product defined by

d'-d" = [ Aiikia[,<j'k[ dV, (1.9)
J R

where d' and d" denote two states of stress with components <r', and <r-' which satisfy

(1.8). The norm of d is defined as

INI = M"2- (l.io)

It can be verified that the foregoing definitions satisfy the basic postulates for a linear

vector space [8].

In what follows unprimed quantities denote the actual solution to the boundary

value problem (1.1) to (1.7). For this same boundary value problem, primed quantities

satisfy (1.1), (1.3) and (1.7), and double-primed quantities satisfy (1.2), (1.3) and (1.6).

1 Commas denote partial differentiation and repeated indices imply summation.

1 The Kronecker delta 5,,• takes the value 1 if i = j and 0 if i t6 j.
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Then, with use of the divergence theorem, it follows that

d'-d" = [ U*a',dS+ [ u'i'a* dS. (1.11)
Js, J s.

Since d' or d" in (1.11) can be replaced by d, we have

d-d — d'-d - d-d" + d'-d" = 0,

which is equivalent to

l|d - d^ll = E> (1-12)

where

«A = w + d"), E = ||i(d' - Oil •

Thus, if 6a is considered an approximation to d, (1.12) gives the error E of this approxi-

mation in the integral-square norm (1.10). In vector space geometry (1.12) implies that

d lies on a hypersphere with center at iA and radius E.

In order to investigate relative error we recall the inequalities [7]

II^aII — E < ||d|| < Ik^ll + E, (1-13)

which follow from (1.12) and the triangle inequality. By (1.13), assuming that E < ||d^||,

we have the following bounds on the relative error .E7/I|d11 :

E <_K_< 1 
— lull — n_ ii __ v' (1-14)lk.ll +2? - ||d|| ^ I kill | — E

Since, by (1.12),

||dj|2 = d'-d" + E\ (1.15)

(1.14) can be written as

^(V7(1 + v2) — v) < E/||d|| < i?(\/( 1 + v2) + v) (1-16)

where

v = E/(d'-d")l/2. (1.17)

From (1.16) we see that tj is the leading term in an expansion of the relative error in

powers of t\.

A convenient method of obtaining d' and d" follows from the easily verified relation [7]

E2 = i(F. + V.) (1.18)

where

dSVe = / iAima'jCr'u dV — / u\a\
JR J Su

V, = f Wtm'SMldV - f u''a* dS
JR J S.

are the complementary energy and the potential energy, respectively. Thus, the usual

methods of energy minimization can be interpreted as minimizations of the error E.
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2. Boundary value problems for plates. We consider an elastic body in the form

of a plate bounded by the faces x3 = ±/i and the edge surface S which is generated by

normals to the middle plane S through the edge curve C. Attention will be confined to

plates of constant thickness 2h although there is no difficulty in extending the results

to variable thickness.

Stress boundary conditions are imposed on the faces of the plate. For simplicity we

consider the faces to be subject only to prescribed normal components of stress, i.e.

o"i3 = o"23 — 0 on x3 = dbh, ^2 ^

Oisfcl > t ft) — "3(^1 , £2)1 ^33(^1 1 £2 , ft) — (T 3(.T1 , X2) .

The edge surface of the plate is divided into two parts Su and S„ which have displacement

and stress boundary conditions of the form (1.6) and (1.7), namely

Ui = u* on Su , (2.2)

VicWa — on S„ , (2.3)

where na is the normal to C in the middle plane and Greek indices take values 1 and 2.

Here, we restrict u* and a* to the forms

u* = PZx3 , (2.4)

u*3 = w* + g*x\ , (2.5)

a* = J3 M*ax, , (2.6)

'*• - i (' - i«-- (2J)

where 13* , w*, g*, M* and Q* are independent of x3 . The constants in (2.6) and (2.7)

have been chosen so that M* and Q* represent the stress couple and the shear stress

resultant, respectively, i.e.,

f a%x3 dx3 = M* , [ <r% dx3 = Q*. (2.8)
J-h J-h

We now have a boundary value problem in the theory of elasticity for a plate with

boundary conditions (2.1) to (2.7). The aim of the theory of plates is to reduce this

three-dimensional boundary value problem to a two-dimensional problem involving

quantities which are independent of x3. Here we will derive the equations of the classical

theory of plates by consideration of both the complementary energy and the potential

energy (1.18). Then, (1.12) will yield an expression for the error in an approximation

for the stresses in the plate. Since the well-known edge conditions for the classical

theory of plates [1] are not as general as (2.4) to (2.7), we expect to obtain restrictions on

the quantities on the right-hand side of these equations.

For convenience we restrict attention to anisotropic plates for which the middle

plane is a plane of elastic symmetry. Then (1.3) takes the form [1]

Ca$ = 4"" •4o^33"'33 , 633 = A33-fi<?yl "I" ^3.3330"33 I ^ it = 2A a3fl3<T03 , (^ .9)

and

<T a0 = BaP-ri^yS 4" Bap33&33 i °33 = B33yb&yb "I" B3333e33 , <T a3 = IB aip3C0 3 . (2.10)
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3. Potential energy. Here, (1.2), (1.3) and (1.6) must be satisfied and F„ in (1.18)

is to be minimized. Guided by the three-dimensional solution for pure bending of a

plate [1], we assume displacements of the form

u'J = — w.„x3 , u3" = w + gxl , (3.1)

where w and g are independent of x:i . The first of (3.1) represents the classical Kirchhoff

assumption that normals to the undeformed middle plane remain normal to the deformed

middle surface.

By (1.2) and (3.1), the strains are

c'«'e = -w.atx3 , e," = \g,a.r:i2, <*„"= 2gx» ■ (3.2)

If we take

•633 a 0
w.„e , (3.3)" 2 B3

then, by (2.10) and (3.2)

°33 = 0 (3.4)

as in the solution for pure bending. The discrepancy between (2.1) and (3.4) is admissible

since aneed not satisfy stress boundary conditions on S„ . By (2.10), (3.2) and (3.3),

the remaining stresses are given by

Cq/3 = SngySW.yiX^ , u'J-1 = B azg3g ,gX:1 , (3.5)

where

B„$y a = B apyi B a033B yS33/B3333 .

The displacements (3.1) must satisfy (2.2) with (2.4) and (2.5), i.e.,

w = w*(s),

Tn =

9 = 9*(s),

dw*

on C. (3.6)3

€ a a

where s is the arc length on C and dw/dn denotes the normal derivative of w. Since g is

determined by (3.3), the function g*(s) cannot be specified arbitrarily but must be

compatible with (3.3). Thus, g*(s) is not known until w has been obtained for a particular

problem.4 The last of (3.6) is a compatability requirement on w* and as a consequence

of the Kirchhoff hypothesis.
By (2.1), (2.3), (2.6), (2.7), (3.2) and (3.3), the potential energy (1.18) can be written

' The components of the <-symbol eap have the values en = = 0, eI2 = 1 and e21 = —1.

4 It is possible to avoid this unpleasantness by not invoking (3.3) and leaving g as a basic variable

akin to w. However, classical plate theory does not result.
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V, = C + V^h2 (3.7)

where

V*0) = J — pw] dx, dx2 + £ [M*w,a — Q*tp] ds,

V™ = £ l^h3Ba303g,ag,p - pg] dxx dx2 - | ^ gQ* ds,

p = <T3 + <ri> ■

On minimization of V(v0> by standard techniques of the calculus of variations we obtain

the Euler equation

lh3Sa0ysW.afy, = p in S (3.8)

and the natural boundary conditions

MN = M%

- aJt - o* - f1
on C. (3.9)

where

(3.10)
M% = M*na , Af? = eapM*np ,

My = Maltnan» , Afr = eSyMaftnany .

Maf = —%h3BapySw.yi , Qa = -%h3Ballylw,i,yS . (3.11)

The quantities MoS and Qa may be interpreted as stress couple and transverse shear

force resultant, respectively. The subscripts N and T denote normal and tangential

components of stress couple on C. The derivatives in (3.9) should be understood in the

symbolic sense of the theory of generalized functions, i.e., a jump discontinuity in MT

gives a Dirac delta symbol for dMT/ds which represents a concentrated force.

4. Complementary energy. In this approach Vc is to be minimized for admissible

stresses which meet (1.1) and (1.7). If we assume that the x3 variation of stresses is of

the form

/   3xs f
® a 0 2^3 a& 1

-hi1- i)Q- ■ «■«

'»- s ('- + «•
where

P ~ + *3 , q = Ko-3 —

then (1.1) are satisfied provided that

Mat.f - Q'a = 0, -Q;.„ = p. (4.2)
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Further, (4.1) satisfies (2.1) identically and guided by (3.9) we impose the boundary

conditions

M'n — M% , Q'jia — dM'T/ds = Q* — dMf/ds on C, (4.3)

where

M'N = M'aPnanf , M'T = tfyM'afnany

As mentioned in Sec. 2, classical plate theory requires a restriction on M* and Q* in

(2.6) and (2.7). Namely, we can specify only the two quantities M% and Q* — dM%/ds

on C, and we must accept the results of the plate theory solution for M* and Q*. With

this restriction on the elasticity problem, the stress (4.1) under (4.2) and (4.3) are

admissible as <r'a in the formulas of Sec. 1.

On substitution of (4.1) into (1.18), Vc can be written as

Vc = + V'e2)h2 (4.4)

where

V,a) = fs^j~s AafytM'apM'y, dxx dx2 - £ + w*Q'ana\ ds,

y-" - I, [s? +1)
+ dx, dx2 - | £ g*Q'ana ds.

In order to minimize V[0' subject to (4.2), we introduce the Lagrange multiplier w' and

minimize

Vl0) — [ w'(M'a0,ag + p) dxt dx2 . (4.5)
J S

By the calculus of variations we obtain the Euler equation

^5 AafySM'y, + w[a$ = 0 in S, (4.6)

which, by (1.4), is equivalent to

M'af=-^jBa,ytw\yt, (4.7)

where Eafiy, is defined at (3.5). We also obtain the natural boundary conditions

w' = w*(s), ~~ - —pt(s)na on Cu , (4.8)
on

which agrees with (3.6). Substitution of (4.7) into (4.2) results in

Q'a = (4.9)
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and

^Ba,ltw:a,y, = p, (4.10)

which is identical with (3.8).

5. Approximate solution and error. Since the field equations and boundary condi-

tions of Sees. 3 and 4 are identical we make no distinction between primed and unprimed

quantities w, Mand Qa for the plate. Further, the equations and boundary conditions

for w, , Qa are easily recognized as those of classical plate theory [1],

In a particular boundary value problem of plate theory, after a solution has been

obtained for w, then g*, M* and Q* can be determined from (3.3), (4.3), and (4.7) and

(4.9). These values of g*, M* and Q* together with the prescribed values 0-3(21 , x2),

w* and fi*na define a three-dimensional boundary value problem for an elastic plate as

discussed in Sec. 2. For this problem we determine the error in the approximate solution

of plate theory by the method of Sec. 1.

For use in the error formula (1.12), by (3.4), (3.5), (4.1), (4.7) and (4.9), the approxi-

mate plate stresses are

B afi-f &XD . y 3X3 ,

A _ 1 Ba3g3B33yS 2 S a> _2\ ...
°*a3 4 t) *^3 &aP-r6\"' %3/ 1^.07$ »

L -O3333 J

0*33 = (1 - xl/3h2)x3p + ig,

(5.1)

where p and q are defined by (4.1). By (1.12), (3.4), (3.5), (4.1), (4.7) and (4.9) we find

that

^ = 2 Is - \h*g,aQa + A nSih{^ + f)

+ ^ dxi dXi , (5.2)

<*'•<»" = [ [lh3Ba0ySw,a$w,yi + \h\g.aQa + 4gp)) dxl dx2 .
J S

Thus, the error in the stresses (5.1) is given by (1.12) and (5.2). Bounds on the relative

error are given by (1.16) and (5.2).

By (3.8) and (3.11), (5.2) can be written as

E2 = Ctf + C2h\ d'-d" = C3h3 + CX, (5.3)

where Ci, C2, C3, C4 depend only on w and the elastic constants. Thus, by (5.3), we have

v = E/(6'-6")W2 = Ch + 0(h3), (5.4)

where

- ©" - (/.
1 r, J_ fj

jq &a303g , aQ ,P 9 . a& aPy bW ,0y t

+ ^ A^esBaySnW.y^B^^w.^^ dxt dx2 j | BaSySw,aew.y, dx, dx2j •
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Equations (1.16) and (5.4) show that the relative error in the approximate stresses (5.1)

is 0(h). This result is somewhat surprising in view of the elasticity solutions for plates [1]

where corrections to classical plate theory are 0(h2). A study of these solutions shows

that the relative error of 0(h) in our formulas arises from the shear stress in (5.1)

whereas and a3i contribute OQi) to the error. Since <rap are usually the largest stresses

in plate bending, (5.4) may be unduly pessimistic from a practical viewpoint.

Note added in proof: James G. Simmonds (in a paper accepted for publication in this

journal) has improved the bound on the relative error to 0(h2) for isotropic plates by

use of a more elaborate displacement field than (3.1). This result appears to hold for

anisotropic plates as well.
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