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Introduction. Solutions for the diffraction of a plane shock wave by general two-

dimensional weak disturbances are presented. The technique employed here is the

method developed by Ludloff and his associates for the aerodynamics of blasts [1],

They investigated the flow fields behind an advancing shock over stationary thin surfaces.

The flow fields ahead of the shock are uniform and undisturbed; the flow fields behind the

shock are disturbed only by the portion of the surfaces passed over by the shock. In

this paper, the diffraction of a shock wave by weak disturbances caused by moving

bodies are considered. The solution shows that the flow fields behind the shock and the

plane shock are disturbed not only by the portion of the body passed over by the shock

but also by the portion of the body ahead of the shock. For a stationary body the present

solution reduces to the corresponding solution in [1], Thus the present solutions can be

applied to many shock diffraction problems of practical interest, such as blast effects

on aircrafts and on wings at angles of attack, moving subsonically or supersonically,

diffraction of a shock due to nonsmooth moving walls in shock tubes, and diffraction of

sonic booms due to nonplanar moving surfaces on the ground.

Weak disturbances are assumed to be described by the distributions of sources,

doublets, and vortices in a two-dimensional problem, and by the distribution of point

sources in an axisymmetric problem (see Fig. 1). Since the prescribed disturbances are

weak, the plane shock is only slightly disturbed, and the disturbed flow behind the

shock is only slightly different from the undisturbed flow behind the shock. The dis-

turbance pressure p behind the shock wave is governed by a wave equation in three

variables (X, Y, T), where the coordinates are fixed with the undisturbed flow behind

the shock. The shock conditions across the slightly disturbed shock yield a boundary

condition Dx,Tp — G(Y, T) at X = UT. Dx T is a second-order linear hyperbolic dif-

ferential operator of X, T with constant coefficients and G(Y, T) is a given function

related to the prescribed disturbances ahead of the shock. By means of a Lorentz trans-

formation of variables, x, y, t, the wave equation is preserved and the shock boundary

condition reduces to D* ,p = G*(y, t) at the shock x = 0. The operator D*, is of the

same type as Dx, T .

* Received August 19, 1969; revised version received January 25, 1970. This work was carried out

at New York University under the NASA Grant No. NGL-33-016-119. The author wishes to thank Dr.

Ting for his suggestions, and also wishes to acknowledge the assistance of UTSI in the preparation of

(his paper.
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Fig. 1. Coordinate systems and prescribed disturbances

(a) Two-dimensional or axisymmetric source distribution

(b) Two-dimensional doublet or vortex distribution.

The prescribed general two-dimensional disturbances can be split into even, odd, and

axisymmetric functions of y; accordingly, the disturbance pressure p behind the shock

can be divided in the same manner into even, odd, and axisymmetric solutions. They will

be determined separately.

For the even solution of p, py(x < 0, y = 0, t) has to be determined from the portion

of the prescribed source distribution behind the shock (see Fig. 2). The disturbance

pressure, p(x < 0, y > 0, i), as a solution of the wave equation can be expressed as an

integral of the known distribution, p„(x < 0,y — 0+, t), and an integral of the unknown

distribution, pv(x > 0, y = 0+, t), which is determined by the shock boundary condi-
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tion [1], When the even disturbance is represented as an integral of the source distribution

/0(X, T) on the plane Y = 0, the shock boundary condition reduces to a differential

equation D*,py(x > 0, y = 0+, t) = G*(y = 0+, t), where G*(y = 0+, t) is a known

function related to jQ(X, T). Since the differential operator D*, can be written as

((d/dx) — Xf(d/dO)((d/d:r) — \%(d/dt)) with X^ , X^ real, distinct and positive, solutions

for p„(x > 0, y = 0+, t) and hence for p(x < 0, y, t) are obtained. For an odd or axi-

symmetric solution, the same technique is used with the source distribution replaced

by a doublet (or a vortex) distribution or a point source distribution respectively.

The disturbance pressure behind the advancing shock is expressed by integrals of

the prescribed disturbances. The shape of the diffracted shock and other disturbance

quantities behind the shock are expressed in terms of the disturbance pressure behind

the shock and the disturbances ahead of the shock. Applications to shock diffraction

of thin structures in still air are shown.

1. Governing equations for disturbances behind the shock. We choose a moving

coordinate system (X, Y, T) fixed with the undisturbed flow behind the advancing

shock wave (Fig. 1). The X-axis coincides with the shock propagation direction, and

the F-axis, being perpendicular to the X-axis, is the second coordinate of the general

two-dimensional problem. The origin is so chosen that, at T = 0, the shock hits the

leading edge of the distributions of the prescribed disturbances. Then the flow behind

the shock wave is governed by the usual general two-dimensional, unsteady Euler's

equations.

As stated previously, the flow behind the advancing shock is only slightly disturbed

due to the prescribed weak disturbances. We can linearize the Euler's equations to

obtain the governing equations for disturbance pressure p, density p, and velocity

components u and v. They are

f!+ A(Ru) + Y~' df{RvYi) = °- (Lla)

du - 1 dP /1 ,n
at ~ "Rd'x ' (Llb)

dD _ \ dp . .

dT RdY ^ )

= c2 —P. (i id)
dT dT 1 ;

Here j — 0 for the two-dimensional case and j = 1 for the axisymmetric case. P, R and c

are respectively the pressure, density and speed of sound of the undisturbed flow behind

the shock.

After elimination of p, u and v from the above equations (1.1), we have a wave

equation for p [1]:

□ p j! i y-> JL ( y< - -1
dT2 + dY V 9YJ c2 dT2 p = 0. (1.2)

p, u and v are satisfied by the following equations:

8 r-, 9 m d

dT p dT dT
SfO p = = -£=nv = 0. (1.3)
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Now it is necessary to find two initial conditions and one boundary condition for p

to uniquely satisfy the wave equation (1.2) [1], In the next section, we shall first pre-

scribe the disturbances ahead of the shock. Boundary and initial conditions for the wave

equation (1.2) will be given in Sec. III.

2. Prescribed disturbances. Ahead of the advancing shock wave, we choose a

coordinate system (X', Y') fixed with the undisturbed flow (Fig. 1). The X'-axis coincides

with the shock propagation direction (also X-axis) and the F'-axis is parallel to the

F-axis. The prescribed disturbances are generally weak in the sense that the disturbance

velocities are much smaller than the speed of sound of the undisturbed flow ahead of

the shock. We further assume that the disturbances can be expressed by a combination

of distributions of sources, doublets, and vortices along the X'-axis for a two-dimensional

case and by a distribution of point sources along the X'-axis for an axisymmetric case.

The disturbances are irrotational and stationary with respect to X', F'; then the dis-

turbance velocity potential and stream function exist and they satisfy the Laplace

equation [2], Since the problem is linear, we can treat the shock diffraction due to each

distribution separately.

Suppose that the source distribution along the X'-axis (in the plane Y' = 0) is

specified by /0(X'). It is well known that the velocity potential at any point P{X', Y')

can be written as

XX', Y') = ~ J" /„(Xo In [(X' - XD2 + F'2] dX[ . (2.1)

The above expression then may be written in the following "unsteady-like" form with

a time coordinate T'\

-KZ'-I.'l'tyi'/'/e

with

and

n . -I £ £ ■ ' + 4t., „

r[ = [c2(r - T[)2 - (X' - X,')2 - F'2]1/2

— o~ fjo(X;) In {A + [42 - (X' - X02 - Y'2]'/2}A-

Here, $<,» , which is due to the lower limit of the integration of T[ , is a number of very

large magnitude; however, all orders of its differentiation with respect to its argument

are zero. In the following analyses we shall be interested only in its differentiations;

therefore we shall disregard this quantity.

The prescribed disturbances will be used to find a boundary condition at the shock in

order to solve the disturbed flow behind the shock. The velocity potential is more

appropriately expressed in the moving coordinates (X, F, T) fixed with the undisturbed

flow behind the shock. The relations between the moving and stationary coordinates

X' = X + (Uo - U)T, Y' = F, T' = T, (2.3)

where U0 and U0 — U are respectively the velocities of the shock and the undisturbed

flow behind the shock with respect to X', F' coordinates. By changing the order of
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integrations, the velocity potential reduces to

-t-y/c ,.x+z

$ .(X, Y, T) = J dT, J dXl cf"^Xl + , (2.4)

with r, = [22 - (X - Xx)2]I/2 and Z = [c(T - Tl)2 - F2]1/2.

By using the same argument, we have the disturbance velocity potential or stream

function due to doublet, vortex or point source distribution:

*<(X, Y, T) = f Y/C dT, dZ, Ctlo[Xl + (r°° ~ £7)?T]- (2.5)

*(X, F, T) = ^ f dX, Cy°[X' + ~ , (2.6)

and

Now it is clear that Eqs. (2.4) —(2.7) represent the velocity potential or the stream

function at a point (X, Y, T) due to a moving source (jd), doublet (n0), vortex (e0), or

point source (g0) distribution.

The disturbance velocity components ahead of the shock are related to the disturbance

velocity potential and stream function by

Uo(X, Y, T) = d$/dX = d*/dY, (2.8a)

v0(x, Y, T) = = -a*/ax. (2.8b)

The disturbance pressure and density ahead of the shock can be found from the linearized

Bernoulli's equation [2], Since they are of the order of the square of the disturbance

velocity, they are neglected in the analysis.

When the shock wave passes over the distributions which represent the disturbances

due to a moving solid body, the strengths of these distributions are changed in the

(X, Y, T) coordinates. The strengths of the distributions passed over by the shock are

related to the shape of the body and the undisturbed flow velocity relative to the body

behind the shock. The expressions of the velocity potential and the stream function

behind the shock are similar to Eqs. (2.4) to (2.7), provided that /0 , n0 , "o and g0 are

replaced by /, n, v and g respectively, and the lower limit of the integrals is replaced

by a constant (T = 0).

3. Boundary and initial conditions.1

3.1. Boundary condition at shock. The shock boundary condition is carried out in

the same manner as in [1], Relative to the shock the prescribed disturbances are moving

with constant velocity —(U0 — U), while the undisturbed shock front can be expressed

by

X = UT + s(Y, T). (3.1)

Since the disturbances are weak, s is a higher-order quantity in comparison with the

1 For detailed analyses, readers are referred to [3].
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first-order quantity UT. The shock angle is given by

e = -dX/dY = -Sy(Y, T), (3.2)

a higher-order quantity. The shock velocity components are

U. = dX/dT = U + St(Y, T), (3.3)

v, = U. tan 6 = Ud. (3.4)

By using the oblique shock relations we find that the undisturbed quantities satisfy

the usual normal shock relations and the disturbance quantities are related by the

following linear equations:

c2p = (1 + 00)p, (3.5a)

ft,
u — p 4- Wo , (3.5b)

/TT n\ - 2c M2 - 1 ,
(Uo U)sT — ^ P "I- ̂  _j_ j uo , (3.5c)

— (i/o — C/)sy = v — v0 , (3.5d)

where R is the undisturbed flow density behind the shock,

_ (7 - 1)(M2 - l)2 = (37 - 1)M* + (3 - 7) , 0 = M2 - 1

0 M2[(7 - 1)A/2 + 2] ' 1 2M[(t - 1 )M2 + 2] 2 2M2

u, v, p and s in Eqs. (3.5) can be eliminated by linear acoustic equations; a boundary

condition for p alone to be applied at the shock X = UT can be formulated:

Dx.tV(X = UT, Y, T) = G{X = UT, Y, T), (3.6)

with

32 , „ , „,2 , d2
Dx.r = (a, + M + 02M) ^3 + (1 + M2 +

d
+ M( 1 + 0,Af - ft2)c2 ̂ 5 (3.7)

and

~d2w0 . ,, d2U0 2(1 - M2) 2 d2u0
G(X = C/T, F, T) = -flc * + Mc c2 • (3.8)

8T2 , —dXaT ' T+1 ]■

3.2. Boundary condition on the X-axis. Since prescribed disturbances are split as

even, odd, and axisymmetric disturbances, the disturbances behind the shock can be

considered as even, odd and axisymmetric respectively. In the two-dimensional problem,

we can solve the wave equation in the region — m < X < UT and 0 < Y < °o. Further-

more, the prescribed disturbances, being stationary with respect to X', Y', may be over-

taken by the advancing shock. Therefore, a boundary condition on the X-axis behind the

shock should be specified.

As stated previously, the disturbances considered are due to the motion of a solid

body. The strengths of the distributions are changing while their velocities are unchanged
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across the shock. The velocity potential at any point behind the shock due to the source

distribution /(X, T) is

4>„(X < UT, Y, T) = [ dTi f dX, C/[Z' + (j7° ~ , (3.9)
Ztt Jq J x-z

where T = 0 is the instant that the shock hits the leading edge of the source distribution,

and

/[X + (U0 - U)T) = 0 for X > UT,

i.e. the velocity potential at (X < UT, Y, T) is affected only by the distribution behind

the shock. As F —* 0, <£, can be found as [4]:

<J>,(Z < UT,Y-> 0, T) = i(cT - Y)j[X + (£/„ - U)T] (3.10)

and the disturbance velocity v is

v(X < UT, Y —» 0, T) = |/[X + (U0 - U)T}. (3.11)

The boundary condition for p on the X-axis is then

MX < UT, 0, T) = -y Uo ~ U j'[X + (J7„ - U)T], (3.12)

where the prime denotes the differentiation of a function with respect to its argument.

Similarly, the boundary condition on the X-axis behind the shock can be obtained

for a doublet distribution:

p(X < UT, 0, T) = -y U0 ~ U M'[X - (U0 - U)T], (3.13)

for a vortex distribution:

p(X < UT, 0, T) = ^ ~ U V\X - (Uo - U)T], (3.14)

and for a point source distribution in axisymmetric case:

Ypy(X < UT, 0, T) = Uo ~ U g'[X + (U0 - U)T]. (3.15)

3.3. Boundary cortdition at infinity.

p(X-» — 00, 7—> 00, T) = 0. (3.16)

3.4. Initial conditions.

p(X < UT, Y,T - ®) = 0, (3.17)

pT(X < UT, Y, T —> — oo) = 0. (3.18)

4. Solution for disturbance pressure.

4.1. The Lorentz transjormation. We may introduce a new coordinate system

(x, y, t), such that the plane x = 0 corresponds to the plane shock X = UT. The new

coordinates are related to the old coordinates (X, Y, T) by the Lorentz transformation
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x = (X - TJT)(1 - My1/2, y = Y, t = (cT - MX){ 1 - M2)~u\ (4.1)

The wave equation (2.1) remains unchanged in (x, y, t):

f d2 a2 d (
[_d£2 dx2 V dy r

The boundary conditions become:

p -> 0 as (x2 + ?/2)1/2 -» oo, (4.3)

D* tp{x = 0, y, t) = G*(x = 0, y, t). (4.4)

Here Z)* , is a linear differential operator of hyperbolic type,

D*' = mfe + 2M^et + ̂ ' ™

with M20 = [2yM2 — (y — 1)]/[(t — l)M2 + 2] the Mach number of undisturbed flow

ahead of the shock. G*(x = 0, y, t) is related to the prescribed disturbances by (3.8). For

an even disturbance (source distribution)

G*(x = 0, y, t) = —
7T

4(7M2 + 1)

L(t + i)2^ J f "dr f d£ (4.6)
J— CO J— z \I l/i-O

where

and

= [Mr Up — U * , n f2 Uo-U+ t + M " t + M
U ' U

(1 - A/2)1/2 (4.7a)

= [22 - (X _ 0T/a = _ T)2 - y2 - (X - (4.7b)

For an odd disturbance (doublet or vortex distribution)

"4(7M2 + 1)"

G*(x = 0, y, I) = - —
X _(7 + 1) M _

d_

dy («)
t/-co J_x V l/x = 0

where F0(f) = — Mo(f) f°r doublet distribution, and F0(f) = j>0(£) for vortex distribution.

For an axisymmetric disturbance (point source distribution)

Rr
G*(x = 0, y, 0   

IT

4(t M2 + 1)

.(7 + 1) M(1 - M ) } [|2 + ?/2]1/2 ( }

The boundary conditions on z-axis for an even disturbance from Eq. (3.12)

P.(x < o, 0, t) = -y U° ~ u 1'[a*(Kx + 0], (4.10)

where

a* = U,M 1 - M2)l/2] X* = (1 — M2 + (4.11)
Uo

For an odd disturbance, from Eqs. (3.13) and (3.14),
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p(x <0,0,0=| —   na*„(X*0z + <)]• (4.12)
z c

For an axisymmetric disturbance, from Eq. (3.15),

Rc U0 - U ,

2 7T C
m(z < 0, 0, t) = ?'[«*o(X*oX + <)]. (4.13)

Z7T

The two initial conditions Eqs. (3.1) and (3.18) are now

p = p, — 0 for <—> — c°. (4.14)

4.2. The Possio integral—two-dimensional problem. In general, the solution of such

two-dimensional boundary initial value problems as the one defined by Eqs. (4.2), (4.3),

(4.4), (4.14) and (4.10) (or (4.12)) can be solved in terms of "temporary sources (or

doublet)" spread over a certain area in the x — t plane characterizing the motion of the

disturbances. Such solutions can be written as Possio integrals [1]. For the even solution,

, ^ 1 f'v , f < 0, 0, r > 0)
p(x < 0, y > 0, t) = — / dr di, ̂   

7T J — 00 J x — 3 T 1

(4-i5)

For the odd solution,

/ ^^ i d r'~", r° ,.p(i < o, o, r > o)
p(x<0,y>°^ 

-if f" rd(A>AAA. (4.16)
7T ay Jo rt

The integration area in the £, r plane is confined by the hyperbola (see Fig. 2) t — r =

[(z — £)2 — i/]in and the straight line r = — «>. Here, p„ or p is given for the left half

of the plane y = 0 (x < 0) while it is unknown in the right half of the plane (x > 0).

The next step is to find an equation for pv(x > 0, 0, t) or p(x > 0, 0, t) which will replace

shock boundary condition Eq. (4.5) prescribed at the plane x — 0.

For even disturbances, by substituting Eq. (4.10) into Eq. (4.15), we have

P(,<o,,>o.o = -a r^"'dr r
7T Jo r*

+ f£ 2^ r dr f d£ msm+jjl. (4.17)
—7T C J — co * x — z T 1

To find an equation for p„(£ > 0, 0, r), let us apply the shock boundary condition, Eq.

(4.4):
f t-v

dr[d(D" ^

afm-K) f'dr
J — as J0 V l)x-0

Rc Up - U
+ 2 c

/_

t-v

dr

[p„£(0+, o, r)+2MPvr(0\ 0, r)+y ^ c u a*0(\*0+2M)f"(a*0t)
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_ K ^ + «"('■■-.)-], (4.i8)

where 11 (X'J) = M„2 — 2M\*0 + Xjf2. This shock boundary condition can be satisfied

provided that

De.r Vti > o, 0,t)=% U\U a*H{—\*)y"[a*(r - X0£)]

(4'19)

- Re ̂ A+t)2M r°"[a*(T + X** + kt)] + /r[a*(T ~ ^ + W)]

with a* = C/o/c(l - M)1/2, a* = t//c(l - M2)1/2, X* = 1/M, and k = (U0 - U)/U; and

P„i(0+ , o, r) + 2il/p„r(0+ , o, r) = Lo~ U af(Xo* + 2M)j"(a*r). (4.20)

Now the problem is reduced to obtaining the function p„(£ > 0, 0, t) which satisfies

Eq. (4.19) and two boundary conditions at £ or x = 0+, y = 0. These two boundary

conditions can be obtained by a kind of "mean value theorem" at x = 0 [1] and by

Eq. (4.20). They are

p„(0+ , 0, t) = /?c

and

p„£(0+ . 0. r) = -tfcj

>1/2 L"„ , £/„- U\„

M- 1 c 1 2c
/'(«o*r)

( 2M2 U„ \M V , ~|
U2 - 1 c 7 + l j^a° J ^4"21^

4/1/f/„ , f/0 - C/
+ ~r (X* + 4x1/)

M - 1 c ' 2c

471/3 , 8M

Oo/"(<lor)

a?/"(a?r)

(4.22)

U/2 - 1 c 7+1

It can be shown that the solution for Eq. (4.19) has the form

P.ft > 0, y = 0, r) = Iic\ £ -4,/'[«* (r - X,£)] + E S,.«[a0*(r - Xf{)]

(4.23)

+ £ c,/^k(t - \n + htm
i = 1 . 2

- ^ {sp^j «[<•*<' + x*f + *<»

+ fo[a*(r - X*£ + kl)l

Here X* and X? are two real, distinct, and positive roots of the quadratic equation

H(\) = X2 + 2 MX + M~l = 0. (4.24)

A0 = ((Uo — U)/2c)(H( — \*0)/H(\%)), Ax and A2 are the solution of the two simultaneous

linear equations

A 4- A = 2M' ^+U°~U
Al + 2 M2 — 1 c 2c

Mil
?) J '1 \ > (4'2,'>a)
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XM, + . _}ML a + ^ {4J/ + _ eg)]}. (taw

Bi and £2 are the solution of the other two simultaneous linear equations

p , r 2M2 U0 4M ,5l + 52 - ~m"i V ~ 7+T ' (4,26a)

X*B, + X2*B2 = ~ - (4.26b)

Ci and C2 are the solution of the other two simultaneous linear equations

4(7M* + j) _l r_i_ ,4 27a)
(T + 1) Af a*2 LH(-\*) + H(\*)J ' 1 j

x*r 4- x*r = 4(tm2 + 1) x* [ l i 1
11+22 (7 + l)2il/ a*2 |_H(-X*) H(\*)J ( j

For odd disturbances, we can find p(£ > 0, 0, r) in Eq. (4.16) by using a similar"

technique.

pft > 0, y = 0, r) = -Rc{ £ -4,F[a?(r - X?{)] + £ 5,-F„K(r - X?Q]
<-0.1.2 <-1,2

+ £ C,F0[a*(r - Xf? + kt)]}
< -1.2

+ ̂ tfw{^w(T + x*f+t,)1 (4/28)

+ Hii*') F,'(!'(■! — \*£ + 7

where At , Bt , C{ and X* are defined in the case for even disturbances.

4.3 Retarded potential—axisymmetric problem. By Kirchhoff's theorem, a solution

of axisymmetric wave equation can be written in terms of retarded potential [5]. By

using the boundary condition Eq. (4.13) on the z-axis, we have

P(x < 0, V, ,) - -i /" a W-'i > 0,0, I - 1)
w J0 T 2

Rc Up - V r g'[aH(K£ + t - rj)] ^ 2g)
4ir c r*

where = [(a; — £)2 + t/2]1/2. As stated previously, we can apply the shock boundary

condition Eq. (4.4) to find ypv(£ > 0, 0, /)• The result is

> 0, 0, t - r2) = -- j Z A,.p'[a?(( - (£2 + </2)1/2 - X*?)]
If i-0,1.2

+ £ - ft2 + 2/2)1/2 - X*£)] + £ Dtg'0[a*(t - X*?)]}
<-1.2 <-1.2

~ "7 op (1 - M2P2(7 +} 1)W {tf(-X*3) + X*")] + Hfr-|j ^[a*o(* ~ X*?)]} '

(4.30)
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where = c/U0 = X* U/U0 ■ X* , and B, are defined in the case for even disturbances.

Di and D2 are the solution of the following two simultaneous linear equations:

n , n _ _L 4(7il/2 + 1) f 1 1 "1 (, ,, ,
Vl + V2 ~ af (1 - M2)l72(v + 1 ?M L+ H(\%)J ' ^la)

_ _X?3 4(yM2 + 1) f 1 1 1 .. _1M
+ A 2^2 (1 _ + 1)2a/ 1 "jlbJ

5. Final results. The results of p(x, y, t) for even, odd and axisymmetric disturb-

ances can be obtained by substituting Eqs. (4.23), (4.28) and (4.30) into Eqs. (4.16),

(4.17) and (4.29) respectively. By using the Lorentz transformation, Eq. (4.1), the

disturbance pressures p(X, Y, T) can be obtained from p(x, y, t). From the linear relations

(1.1) and the shock relations (3.5), the following disturbance quantities are obtained: the

disturbance density

c2P(X, Y, T) = p(X, Y, T) + QoP(X, Y, T = X/U), (5.1)

the form of shock front

x -UT ~ I'.p(X'Ur- Y',)ir

- W=Tj C~P^3J £ ».<* - V'. V.Vir. (5.2)

and the disturbance velocity components,

u(X, Y, T) = -J{ pY(X, Y, r) dr + p(x, Y, T = I) + u0(X, Y, T), (5.3)

and

V{X, Y. T) = f pY{X, Y, r)dr + § f" py(X = Ur, Y, r) dr
ft J X/U 11/ J-co

• v m2 _ i rx/u
+ M I Uor(X = Ut' Y' t) dT + Vu(X' Y' T)> (5'4)

where u0(X, Y, T) and v0(X, Y, T) are related to the prescribed disturbances by Eq. (2.8)

VI. Concluding remarks. Solutions for the diffraction of a plane shock by general

two-dimensional weak disturbances are obtained analytically by a method developed

for the aerodynamics of blasts. The disturbances which are caused by moving bodies

are described by a combination of distributions of sources, doublets and vortices in the

two-dimensional case, and by a distribution of point sources in the axisymmetric case.

The solution for the disturbance pressure behind an advancing shock in each case is

expressed as integrals of known distributions. The shape of diffracted shock and other

disturbance quantities are expressed in terms of disturbance pressure and disturbance

velocity ahead of the shock.

The present solutions can be applied to many shock diffraction problems of practical

interest. The simplest example is the diffraction of a shock by a thin structure, e.g., a

wedge with small wedge angle, in still air. Suppose that the shape of the thin structure

is given as Y = h(X') or h[X + (U0 — U)T]; we can determine the corresponding source
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distributions based on this shape. Ahead of the shock, the air is still and there is no dis-

turbance caused by the presence of this structure. The source distribution f0[X +

(U0 — U)T] for X > UT is zero. Behind the shock, the undisturbed flow velocity is

U0 — U relative to the structure. The disturbance due to the structure can be measured

by the ^-component of disturbance velocity

v(X < UT, Y —> 0, T) = (Uo - U)h'[X + (U0 - U)T]. (6.1)

This disturbance velocity component should be equal to the value due to a distribution

of sources on the X-axis given by

v(X < UT, Y —► 0, T) = if[X + (Uo - U)T]. (3.11)

Equating Eqs. (6.1) and (3.11), we have the corresponding source distribution behind

the shock:

j[X + (Uo - U)T] = 2(Uo - U)h'[X + (Uo - U)T\. (6.2)

If we substitute Eq. (6.2) and f0 = 0 into our general solution in Sees. IV and V, we will

have exactly the same result as the two-dimensional solution given in [1].

Using a similar procedure, we can determine an equivalent point source distribution

that represents a slender axisymmetric body. The results of diffraction of a shock by

this slender axisymmetric body is consistent with those in [1], For the case of moving

bodies, the distributions ahead of a shock is no longer zero. Their strengths can be

determined from the relative flow velocity and the body shape. Results for shock dif-

fraction of moving bodies will be presented later.2
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