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Abstract. A solution to the radiation interaction problem between two solid half-

spaces is obtained. A Green's function method reduces the problem to the solution of

two nonlinear integral equations for the surface temperatures which are solved by

utilizing analytical and numerical techniques.

1. Introduction. The unsteady heat conduction problem in a homogeneous medium

becomes a nonlinear boundary value problem once a surface condition of the form

kdT/dn = aE(T4 — Te4) is used. The single half-space problem, representing a solid-gas

radiation interaction, has been previously considered by Jaeger [1] and by Mann and

Wolf [2], In the latter paper an integral formulation has been employed and uniqueness

and existence of solutions have been extensively discussed. A similar integral approach,

using a Green's function rather than the Laplace transform employed in [2], is utilized

here in order to solve the problem of the surface temperature for two facing semi-infinite

solids at a radiation interaction. Since the separation between the two surfaces does not

enter either the differential equation or the boundary conditions it is possible to formulate

a heat conduction problem for either one of the solids as if it fills up the positive half-

space, with the surface temperature of the other acting as a variable external driving

force originally unknown. Under a special choice of the parameters the solid-solid

radiation interaction problems may be shown to reduce to the solid-gas problem studied

in [2]. The surface temperatures, which are the main concern in this paper, are obtained

by applying the integral formulation at the origin of the coordinate (i.e., x = 0). This

results in a system of two coupled nonlinear integral equations of the Volterra type.

A closer examination of the equation shows that uncoupling could be accomplished by

simple algebraic manipulation of the equations.

As a numerical example the case where the material properties of the two half-spaces

are the same and the initial temperatures are constants has been studied in detail. An

interesting feature of this example is the fact that the order of nonlinearity is reduced.

Both analytical and numerical techniques for the solution of the integral equation are

presented and applied to cover the complete range of initial temperature differences

between the two surfaces.

2. Analysis. The unsteady heat conduction problem for one of the interacting

media, assumed to occupy the positive half-space x > 0, is formulated as the boundary

value problem consisting of the differential equation [3]
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ar1 dTl/dt = d2Ti/dx2 x > 0, t > 0, (1)

the initial conditions

r,(z, 0) = U(x) x > 0, t = 0, (2)

and the boundary conditions at the interacting surface

fc, dTi/dx = - T\(t)] x = 0, t > 0. (3)

The function 7\(a:, 0 is furthermore taken to be bounded at infinity, and the standard

continuity requirements on Tx(x, t) at the origin are granted.

In the above equations Tx(x, t) is the absolute temperature of the first medium and

hence a nonnegative quantity, at is the thermal diffusivity, ky is the thermal conductivity,

Ei the surface emissivity, and u is the Stefan-Boltzmann constant. In Eq. (3) Ti and its

derivative dTi/dx are taken as indicated at x = 0, while T2(t) represents the surface

temperature of the second medium—another unknown.

In formulating the boundary value problem for the second medium an advantage,

may be taken of the fact that the spacing between the two media does not enter either

the differential equations or the boundary and initial conditions. Thus for the second

medium the boundary value problem becomes identically the same as the first, but with

the subscripts 1 and 2 interchanged. In particular, there is no change in sign in Eq. (3)

although physically the two surfaces are placed one in front of the other and thus their

normals are pointing in opposite directions.

Reverting to a Green's function approach, the differential formulation is now trans-

formed into an integral formulation. The Green's function which solves the auxiliary

problem d2g/dx2 — a~1 dg/dt = o(x — xa) 8(t — ta), vanishes at infinity, and satisfies

the adiabatic boundary conditions dg/dx = 0 at the origin is easily constructed from a

fundamental solution to give

g(x, t/x0 , Q = (a/ir)W2H(t - <„)[4« - t0)]~l/

exp
(x — Xq)2

4a(t - t0).
+ exp

(x + x„f
4 a(t — t0).

(4)

where H is the Heaviside function.

The general integral formula for the homogeneous equation in terms of the adjoint

Green's function g*(:r, t | x0t0) = g(x0 ,t0\x, t) has the form

T(x0 , t0) = f" (g* dT/dxUo dt - a"1 f (Tg*)t.0 dx (5)
J 0 « 0

where t„ is a parameter the only requirement on which is that it should be larger than t0.

Inserting the initial and boundary conditions, Eqs. (2) and (3), into Eq. (5), then

interchanging the parametric (x0 , ta) with the active (x, t) variables, we obtain the

integral representation for 7\(x, t)

(0, t) - Tj(t)] exp
4a, (t - t0)_

(t - toyl/2 dto (6)

'/,(xo) dx0
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where i = 1, or 2; J = 1, or 2 and i ^ J. Once Tx(t) = 7\(0, 0 are determined, as will

be done presently, Eq. (6) becomes an explicit formula for the temperature distributions

within the solid as function of x and t.

3. Surface temperature. With the continuity conditions with respect to x at the

origin satisfied by TiixJ), the surface temperature is obtained as an integral equation

by setting x = 0 in Eq. (6). Introducing the notation

= (Trait)'1'2 ^ exp (-^)/<(*o) dx0 , (7)

(aSE'Y* •
(8)

we may write the two integral equations for the surface temperatures Ti(t) and T2(t) as

T,(0 + m, f [T*(to) - rj(i„)](* - Q"1/2 = T,.„(0 (9)
Jo

where i = 1, or 2; / = 1 or 2 and i 7* J, with T<„(0 at most a known function of i.

It might appear on a first sight that Eq. (9), consisting of the two equations (i) i = 1,

J = 2 and (ii) i = 2, J = 1, represents a coupled system of nonlinear integral equations

that must be solved simultaneously. On second thought, however, uncoupling is facilitated

by multiplying Eq. (9) by rrij and then adding the two resulting equations. Written

explicitly, the equivalent uncoupled two equations become

TM + m, I" {ri(fo) - | —T10(<0) + tm 2s r,(<0) | }(< - t0yW2 dt0 = Tl0(t) (io)
Jo l L^i "li J J

and

^ ?\(0 + t2(o = ^ Tio(0 + r2o(0 (11)
7/ll Tlli

where m1 , representing the material properties parameter of the first medium, is taken

as a nonzero quantity. Eqs. (10) and (11) reveal that aside from the initial temperature

distributions T10 and T20 a single parameter

a = m2/m] (12)

defines the solutions for any material combination of the two media since the value of

nil can always be absorbed in the time variable by using m\t as a new independent

variable. The special case a = 0, in which Eq. (10) reduces to

T,(m?0 + r [T\{r0) - Tto(t0)](t - r0)-,/2 dr0 = (13)
Jo

represents the solid-gas radiation interaction case which has been thoroughly investigated

by Mann and Wolf [2] using Tl0 = 0 and T20 = 1. In the following section solutions for

the case a = 1 will be obtained using analytical and numerical techniques.

4. Examples. Identical material properties [a = 1], Solutions for the integral

equations will be generated now for cases where the material properties of the interacting

media are the same, i.e., a = 1, with different initial temperature distributions considered

as a parameter. The temperature distribution will be assumed uniform; thus, T10 and Tt0

are both constants representing the two initial temperatures of the two media respec-
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tively. It is of interest to note, before embarking on the solution of the specific examples

below, that in the special case a = 1, and only in this case, the order of the dependent

variable in the equation reduces from four to three. The mathematical or physical

implications of this observation will not be considered here. Convenient variables for

the present case are the dependent variable

Ui = (Tt - T,)/(Tl0 - Tf) i = 1, 2 (14)

and the independent variable

f = (2T,fm2t (15)

where Tf = %(T 10 + T2o), m = mi = m2 , and f7, and £ both dimensionless quantities.

With the above change of variables Eq. (10) becomes

+ f tfi(fo)[l + «2C/?(fo)]ft - ?c)"I/2 „ = 1 (16)
Jo

and Eq. (11), £/, + U2 = 0 where the temperature difference parameter e is defined by

6 = (Z\„ - T20)/(T10 + T20). (17)

A solution of Eq. (16) will be sought for a continuous (7i(£). By definition (Eq. (14))

J7i(£) at £ = 0 is equal to 1. The behavior of Ui in the neighborhood of £ = 0 and thus

the nature of the continuity at £ = 0 can be determined from the expansion

= l + r £ 0 < £ < 6, (18)
n = 0

where <5 is a small parameter and a > 0. Substituting the expansion (18) into the integral

equation (16) and equating coefficients yields,

UidO = 1 - 2(1 + t2)?'2 + 0(53/2). (19)

Thus Ui(£) belongs to the class of Holder continuous functions with an exponent a >

We shall show now that Ui , satisfying the above continuity requirement, has the range

defined by the inequality

0 < Ui < 1. (20)

First, at £ = 0, Ui(£) = 1. Then for £ > 0 there exists a neighborhood over which

C/i(S) remains positive. Thus let Ui(£) > 0 in the interval 0 < £ < £i . Since the integral

expression

r£
tt/>-\n i .!rr2^ \i/i- >- \-i/a jm = [ u^0)[i + suborn - tor,/2 da0

*>0

is clearly positive over this interval, then from the integral equation (16) which may be

written in the form

tfiG) + /ft) = 1 (21)

it follows that f/i(£) < 1 in 0 < £ < Suppose that at £ = £j , L7, vanishes. The value

of the integral /(£) at £ = £i according to Eq. (21) is necessarily 1, i.e., ZftO = 1. Consider

next the neighborhood of £i for £ > £t. Let J7i(£) > 0 for £j < £ < + S. By the definition
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of the integral /(£) > /(£,) and therefore

t/i© + /© >1 in £,<£<{, + «. (22)

Similarly if t/a ($) < 0 for < £ < £t + S it follows that /(£) < Jfe) and therefore

tf.G) + '© <1 in Si <£<£,+ 5. (23)

Both Eq. (22) and Eq. (23) are in violation of the integral equation (21) and we must

conclude that once Uj becomes equal to zero, it will remain so indefinitely. In [2] a proof

for the inequality equation (20) was given utilizing much more elaborate techniques.

If follows from Eq. (11) that Tt(t) + T2(t) = Tia + T20 = %Tf, and since as t —* co)

(Ti(t) — T2(0) —> 0, the value of T, , in addition to being the average temperature,

represents the final temperature of either one of the two media. If furthermore it is

assumed, with no loss of generality, that 7\0 > T20 , the parameter e will satisfy the

inequality 0 < t < 1. A solution of Eq. (16) for U\ is sought now for all admitted values

of the parameter e with the cases c = 0 and t — 1 to be considered separately.

(i) The case t = 1. This case is regular and it may be realized when T20 is taken to

its lowest limit, absolute zero.

(ii) The case e = 0. This case is singular in the sense that with this choice Tl0 = Ti0

and Ui (Eq. (14)) becomes an ill-defined quantity. A solution of Eq. (16) for « = 0 can

be generated, however, by replacing Ui by the variable T = T{ — Tf where now no sign

restriction is imposed on T. With this variable Eq. (16) becomes the homogeneous

singular Volterra equation,

rm + f f({„)[ 1 + T\m - £o)"1/2 dio = 0, (16a)
«'o

for which T(£) = 0 is clearly a solution and by standard results on uniqueness [5], [6], [7]

also the only one.

It should be mentioned that the limit case e —> 0 (but not equal to zero) is a perfectly

valid solution of Eq. (16), a case to be taken up in the next section in connection with

the perturbation solution.

4.1 Perturbation solution. A perturbation technique is applied to the solution

of Eq. (16) for all values of the parameter € over the interval 0 < e < 1. Since e enters

the integral equation

' i(£) + [ f-'i(£o)U + f £;i(£o)](£ — ?o) 12 d% = 1 (24)
«'0

only as e2, it is convenient to expand Ui with respect to the square of e in the form

«/.(€, r) = r0(£) + rV,© + T2F2ft) + • ■ ■ + rnVn(Q + ■■■ , (25)

where r = t~.

The function F0©, representing the limit of Uife r) as r —> 0 is defined by Eq. (16)

with € set equal to zero and it signifies the leading term in the expansion valid for any

value of r. Substituting the series (25) into Eq. (16), with L defined as the operator

LV(£) = f V(m - So)"I/2 dto
Jo
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results in the sequence Vft)

F0ft) + LF„ft) = 1 = Liir-'C"),

V&) + LF.ft) = -LVl(p, n i _ (26)

F„ft) + LF„ft) = -L £ F.ft) "i:' Fj(^)FB_,_,_y(|),
»-o y-o

where the right-hand side of the zeroth equation has been written with the aid of the

identity

t"1 fV/2ft = 1. (27)
Jo

Taking the Laplace transform of the sequence (26) and using the notation £[Fft)] = F„(s)

for the transform results in the following expressions for the F„(s)

F„(s) + F0(«)® = -$$$$■
o 7Too

Fi(s) + F,(s) 5? = -£[F^)]-W
o o

F„(s) + F„(s) ̂  = -£p£ F,ft) °E F^F^-.w©]-^-
o Li-0 / ™0 Jo

Solving for F„(s)

v(8) mi/im)
Vow - gUa + r(i) ^ s,/2 J ,

and inverting with the aid of the convolution theorem

r(

F„© = f g(£ Uo) ~ &1/2 df.
JO

F,® = - f£ j/ft | |„)F03ft0) d£0
^0

F„© = - f g(Z | fo) E F,(|0) "e' F;(yF..l.j.,y
Jo t-0 /-o

where

!?ft I «o) - ft - ?o)'1/J - erfc [xft - So)]1

completes the solution.

(28)

F,(s) = --j^L^jBCFjft)], (28a)

?»(«) = F.ft)"F,ft)Fn.1_._Jft)] ,
s ~r i (2J L1-0 j-o J

(29)
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The zeroth-order term, which is given by

F0ft) = [ft - erfc [tt(| - ^o)]1^]^1^173 d£„,
Jo

reduces with the aid of the identity (27) to

K0ft) = 1 - f erfc [(^„)1/2]ft - ?„)-"2 ,
Jo

and utilizing another identity

f e'u erfc ~ So)'"2 df0 = 1 ~ e'£ erfc [(^),/2],
Jo

which is easily demonstrated by a Laplace transform, results in an explicit form for

F„ft),

F„ft) = e*£ erfc [fa)"2]. (30)

For small values of £ Eq. (30) has the expansion

Foft) = 1 ~ 2£1/2 + • , (30a)

while asymptotically it vanishes as

Foft) ~ 4/2 - ^-h?2 + ■■■ ■ (30b)
7Tq Ztt £

For all higher orders of F„ft) resort must be made to a numerical integration of (29).

4.2 Numerical solution. For the numerical solution of the integral equation

I7, ft) + [' t7,ft0)[l + tU*(HoM ~ fo)-,/2 dl„ = 1, (24)
»'0

the interval [0, J] is split into three regions

(a) 0 < £0 < m,

(b) n < < I - s,
(c) i - S < £0 < {,

where both /u and 5 are arbitrary small positive constants. For the regions (a) and (c),

assuming Holder continuity for Ui with an exponent > J over that region, one obtains

la

and

f t/.(£o)[l + r {/?«„)](* ~ rffo = 2(1 + r)ft,/2 - ft - m)'/2) + 0(fi3/2)
^0

h = f£ f/,fto)[l + r£7ffto)](£ - $o)~1/2^o = 2t/1ft)[l + rU\min + 0(S3/2)-
Je-s'e-s

The integral equation may be written then as

£7,(€)[1 + 25l/2(l + rU2M = 1 - 2(1 + r)ft,/2 - ft - nY"}

rl-i

[ 17, ft,o)[l + rt/?fto)]ft - W"1/2 #0 + 0(^2, 5s72). (31)
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The advantage in this form stems from the fact that on the right-hand side the values

of Ui needed to carry out the integration are for £0 < £ — 5. Hence this equation gives

an explicit formula for Ui(£) in terms of known values of Ui up to £ — 5.

Replacing the integral expression in Eq. (31) by a summation and using the notation

U(J) = U(JA£) with o = A£ yields

UX{J)[ 1 + 2(A£)1/2(1 + rU\{J))] = Fj(r; n) A?) + (A£)a/2), (32)

where Fj is given by

FAr;n; AO = l - (2(1 + r)[J1/2 - (J - M Ar'),/2] + J [~C(i)(,/ - ir1/s

+ c?(./ - 1) + 2 £ g(i)(j - irix (A£),/2 J = 2, 3, • • • , (33)

and

G(i) = tf.(i)[l + xl/?(*)]- (34)

For any value of the integer J, Fj is determined from known values of Ui up to UX(J — 1),

where Ui(l) has the special value

ux{ 1) = 1-2(1 + r)[ 1 - (i - vArymy2, w

where A£ > ju.

With determined the solution Ui(J) reduces to the solution of the cubic equation

(32). The nature of its solution is best seen by writing (32) as

Ul(J) + t"[ 1 + 1/(2(A£)1/2)]Ci - (2A^'rT'Fj = 0 (36)

where r and A£ are necessarily nonzero.

Comparing Eq. (39) with the equation z + axz + a„ = 0 and using the standard

criteria for cubic equations [8, p. 17] shows that there is only one real root to Eq. (32)

for any value of J.

In Fig. (1) the dimensionless temperature U1 , as computed from Eq. (32), is shown

as a function of £ using r as a parameter. In these calculations p. was taken equal to A£

and thus the solution is good to 0(A£3/2). As a convergence check three different values

of A£ have been used, i.e., Aij = 1.6 X 1(T3, 4.0 X 10~4 and 4.0 X 10~5, without signif-

icantly changing the result. In the same figure the zeroth-order analytical solution

(Eq. (30)) has been also included where it is appropriately seen to represent the limit

of J7i(£, e) as t approaches zero.

In Fig. (2) results are shown for larger values of £. The spread of £ as a function of the

parameter e is indicated there as the hatched area under the F0(£) line. This spread,

after an initial swalling zone, rapidly diminishes and at values of £ ~ 1.0 narrows down

into a line. At about the same neighborhood the two-term asymptotic solution (Eq. (30b))

becomes applicable. The one-term asymptotic solution has been also included there for

comparison.

The physical interpretation to the interaction process could be presented in terms of

a relaxation time defined as the time required for the temperature difference T, — T, to

drop to a fraction of its original value T10 — T, . With this definition the relaxation

time is given implicitly as
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Fit;. ]. The dimensionless temperature U, as a function of £ with c as a parameter.
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Fio. 2. The dimensionless temperature Ui as a function of £ with t as a parameter.



536 G. KLEINSTEIN

C/.&) = 0 (37)

where for /S = § the numerical solution yields, with deviations due to e effects, & =

0.15 + .05. Using dimensional variables the relaxation time is given by

b - , (38)

or by introducing the definition for the thermal diffusivity a = k/pCT (where p is the

density and Cv the specific heat at constant pressure) and after rearranging as,

t, = 2"V„a <38a)

In (38a) pCvT, is a measure of the heat capacity per unit volume of the solid and aET)

is a measure of the radiative heat transfer per unit surface. Excluding the coefficient of

proportionality which has been determined numerically by the analysis, the relation

(38a) can be also derived directly from energy considerations applied to an area element

A of the interacting surface. In a time tp an isotherm fi penetrates into the solid to a

depth ~(a^)1/2, a being the thermal diffusivity. The energy released in the solid in this

time interval is ~pCpTfA(atp)'/2; while the energy removed at the surface by radiation

is ~aET4At0 ■ A proportionality of these two energies results in a relation of the form

(38a).

5. Summary and conclusions. The radiation interaction between two media has

been formulated with the aid of a Green's function and it has been shown that the surface

temperatures satisfy a system of two nonlinear integral equations of the Volterra type.

By a simple algebraic manipulation the system has been uncoupled and solutions for

the case where the material properties of the two media are the same have been obtained

with the results depicted in Figs. (1) and (2). The spread in the dependent variable

Ui — (Tt — Tf)/(Tio + T2o) is seen to be small, with the maximum value of about 15%

reached between £ = 0.05 and £ = 0.3. Thus the zeroth solution may serve as a good

approximation for the solution, viz.

Ui ~ e" erfc [(ir£)1/2]

for any value of e.

The physical aspects of the interaction are obtained in terms of a relaxation time t$

(Eq. (38a)). The relaxation time was shown to increase with the heat capacity of the

solid (pCpTf) and with its thermal diffusivity, while it decreases with the ability of the

surface to radiate (aET)). Another feature of the solution is the fact that tB is very

strongly dependent on the temperature level of the interaction, as determined by

T, = 0.5(T10 + T2o), and only weakly on the temperature difference. The effect of the

temperature difference enters through the parameter e, which has a small insignificant

effect on the numerical value of & , while the interaction level T, reduces the relaxation

time by a factor (Tf)~a. This last remark could be better appreciated by considering the

two interaction problems (a) Tl0 — 1000°K; T2o = 0°K, and (b) T10 = 1500°K; T20 =

500°K, with both materials being the same. The maximum temperature drop in the two

cases is 500°K; however, the time required in (b) to drop 250°K as compared with the

time required in (a) to drop 250°K is 26 = 64 times faster.
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