
QUARTERLY OP APPLIED MATHEMATICS 473

JANUARY, 1971

DYNAMIC ELASTIC-PLASTIC BUCKLING OF RECTANGULAR
PLATES IN SUSTAINED FLOW*

BY

HILTON RAMSEY and HENRY VAUGHAN

The University of British Columbia, Vancouver, Canada

1. Introduction. A characteristic feature of dynamic buckling of simple structures

(rod,, plates, shells) is the significant effect of lateral inertia in restraining growth of

buckling mode amplitudes during the early stages of the motion. This effect is such that

the resulting instabilities may be quite different from those caused by quasi-static

loading.
In the case of dynamic buckling of axially compressed bars, rectangular plates and

cylindrical shells, the restraint of lateral inertia on the growth of lateral deflections

permits large compressive strains to develop before the instabilities can become dominant,

even though the instabilities may be initiated at an early stage of loading. For slow

loading the inertial effects disappear and in this case the buckling process may be such

that instabilities become large for very little increase in axial strain. The wavelengths

of the buckled form are then usually much larger than for dynamic buckling. Clearly

the transition from the dynamic case to the quasi-static case is a gradual process that

depends upon the rate of loading.

For relatively high rates of loading, Florence and Goodier [1] have demonstrated

that plastic buckling of cylindrical shells under axial compression is characterized very

early in the motion. They obtained a series of high-speed photographs which show that

the wavelength of the instability remains fixed and only the amplitude changes as time

increases. The nature of the buckling, at least during the early stages, is of the Shanley

type; that is, the dominant motion is one of uniform compression which is rapid enough

that small perturbations can be introduced without causing any unloading in the plastic

sense.

A satisfactory theory for small-amplitude buckling may be obtained assuming

Shanley buckling. The mode numbers obtained from this theory will then correspond

to large-amplitude buckling in which some unloading does occur, since the results of [1]

show that mode numbers do not change with increasing load.

The particular problem considered here is that of a rectangular plate impacted

between two converging heavy masses. For sufficiently heavy masses, longitudinal

inertia of the plate may be neglected and the compressive strains in the unperturbed

state are then uniform along the length of the plate. This problem has been examined

both experimentally and theoretically by Goodier [2]. In his analysis, Goodier assumed

rigid-plastic material behaviour. Since the final strains involved far exceed strains at

the elastic limit it is probable that elastic motion may conveniently be neglected. Cer-
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tainly the extension (to cylindrical shells) given by Vaughan [3] predicted results that

were in very good agreement with experiment. However, the shells were of aluminum

and final strains were upward of 10%. As mentioned above, even if final strains are

large, plastic buckling is characterized very early in the motion when total strains are

of the same order as elastic strains. Thus it is possible that elastic behaviour is important

in initiating the instability and it remains to be seen what influence elastic strains have

on the motion.

In this investigation a theory is developed for a general elastic-plastic material.

Thus plates may be considered in which final strains may be entirely elastic or composed

of 'elastic' and plastic parts of any relative magnitudes.

The constitutive equations used correspond to a general elastic-plastic continuum

which, it is felt, is necessary to describe correctly the flow of metals. A general theory

developed by Green and Naghdi [4] has been used as a basis for the particular case of

plate buckling. Their theory provides a satisfactory link between the thermodynamic

and mechanical considerations and does not limit the size of the strains. Ramsey [5]

has previously specialized the general theory to account for instabilities in rectangular

plates under tension and compression.

The constitutive postulates envisage small elastic strains in the presence of plastic

strains which may be small or large. The constitutive equation for elastic strains is

nominally the same as Hooke's law, yet takes account of the result established by Green

and Naghdi that during unloading, the strain tensor depends on the current plastic

strain, and is not just a function of stress and temperature. This aspect of the constitutive

equation for elastic strains is essential in describing elastic-plastic deformations of

metals. The plastic strains are related to the von Mises yield condition, suitably gener-

alized for finite deformations.

In this particular analysis the plate deformation is assumed to be uniform up to

some instant t0 at which time a flexural perturbation of the form wn(t) sin (nirdJL) is

introduced, where is a convected coordinate. The lateral inertia effects produced by

the flexural motion w„(l) are important and are included in the equation of motion.

At this instant it is assumed that some plastic straining has occurred, although it need

not necessarily be large. The response (growth with time) of wn is examined for a range

of values of n. It is possible to find a particular n which shows a strong preference to

amplify and this value is taken as the theoretical buckling mode. This method has been

used successfully in [3] to predict the response of cylindrical shells under axial impact.

2. Constitutive equation for elastic strains. The general theory of an elastic-

plastic continuum in [4] is now followed in deriving constitutive equations for isothermal

deformations of metals in a state of plane stress. One of the principal stresses is then

always zero, restricting the "elastic" part of the strain, the dilatation in particular, to

be small. The notation used in [4] is followed where appropriate. The original coordinates

of a particle referred to fixed rectangular cartesian axes are XK . As the motion proceeds,

the coordinates XK define a convected curvilinear coordinate system. We denote the

covariant metric tensor referred to the convected coordinate system XK by gKL ■ For

continuing motion, the components of gKL depend on time t. The strain tensor may be

defined by

gKL — &KL + 2eKL , (2.1)

where eKL is the covariant strain tensor referred to the convected coordinates XK .
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The total strain is split into two parts, a symmetric plastic strain tensor , and an

"elastic" strain tensor e'KL such that

eKL = V'kL "H eKL • (2-2)

Stress is specified by the symmetric contravariant Kirchhoff stress tensor, which is

denoted by SKL when referred to the coordinates XK .

When the general theory is restricted to isothermal deformation, the part e'KL of the

total strain depends on SMN and e'^N . The particular constitutive equation adopted

here is

Ee'KL = [(1 + v)g'K'Mg'LN ~ vg',lLg'liN\SMN , (2.3)

where

Qkl = 5kl + 2e'K'L . (2.4)

The covariant metric tensor gKL referred to the coordinates XK may then be written

Qkl — Qkl + 2e'KL ■ (2.5)

The constitutive relation (2.3) takes account of the result established in [4] that during

unloading the strain tensor depends on the existing plastic strain. If the body can be

unloaded without residual stresses arising or reverse plastic flow occurring, then g'K'L

becomes the covariant metric tensor referred to the convected coordinate system XK in

the unloaded state, since the strains e'KL go to zero with the stresses. During reloading

from this unloaded state, (2.3) describes elastic strain according to Hooke's law for a

linear isotropic material, E and v being Young's modulus and Poisson's ratio respectively

(compare Eq. (5.4.32) in [6]). This constitutive relation implies that these elastic con-

stants are not altered by plastic deformations. In particular, under uniaxial loading

as in a standard tension or compression test, the slope of the physical stress (force/

current area) versus logarithmic strain curve during unloading is equal to the constant

value E, at least for the small reversible strains that occur in metals (Fig. 1).

The constitutive equation for the strain rates e'KL , where the superposed dot desig-

nates differentiation with respect to time holding the convected coordinates XK constant,

0 9kL STRAIN

Fiq. 1. Physical stress versus logarithmic strain.
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is obtained by differentiating (2.3). Since continuing plastic flow is envisaged, the tensor

depends on time through the plastic strains e'K'L . Hence, differentiating (2.3) with

respect to time yields

Ee'KL = [(1 + v)(g'K'Mg'L'N + g'luM«) ~ vWLg'iK + g'drf'isW"

+ [(1 + vWkWl'x - vg'Ag'MK\SMff. (2.6)

The strain rates e'KL are seen to depend on the stress rates £MN, as to be expected from

the usual elementary form of Hooke's law, and in addition on the plastic strain rates e 'K'L.

When the material is in a neutral state or is unloading, that is, when (df/dSMN)$MN < 0,

for isothermal deformations, then g'K'L = 0, and (2.6) reduces to the usual form of Hooke's

law provided g'K'L is understood to refer to the convected coordinate system XK in an

unloaded state.

3. Constitutive equation for plastic strains. The constitutive equation for the

plastic strain rates is based on an approximation to the von Mises yield condition. The

approximation is formulated in terms of the tensor invariant function

/ = Wkmq',:* - WAgUSMNsKL, (3.1)

which is taken as the yield function. In view of (2.4), / depends on the plastic strains

e'K'L as well as SKL. For a rigid-plastic material, g'K'L is the current covariant metric

tensor referred to the convected coordinate system XK . A second convected coordinate

system can be found for which the metric tensor is currently the Kronecker delta. If,

in addition, the material is incompressible, the stress components SKL when referred

to this second coordinate system coincide with the usual cartesian components of stress.

The correspondence between (3.1) and the usual statement of the von Mises yield

condition is apparent, / coinciding with J'2 , the second invariant of the deviatoric stress

tensor. For an elastic-plastic material, a yield condition based on (3.1) is a close approxi-

mation to the von Mises yield condition, provided the part e'KL of the total strain is

small.
We note that, in terms of ShL, J'2 may be written1

J'i — §(p/po) (OkmQln ~ %gKLgMN)SKLSMIf, (3.2)

where p is the current density of the material and p0 the initial density. J'2 does not

satisfy the general requirements of form postulated in Sec. 5 of [4] for the yield function

/, inasmuch as gKL incorporates dependence on e'KL, from (2.1) and (2.2). Hence J'2 could

not be used for / in the constitutive Eqs. (3.3) and (3.4) to follow, which relate the

plastic strain rates e'K'L to e'/!N , S'"*v, and SMN.

The constitutive equation for the plastic strain rates given in [4] is, for isothermal

deformations,

= o). (3.3)

For / defined as in (3.1), the normality condition

1 In the infinitesimal theory, eKLt e'KL, and e','L are all of 0(e), where 0(e) refers to an infinitesimal

of first order. Then it is apparent that g'K'L — + 0(e), gKL = Skl + 0(e) and p/p„ = 1 + 0(e),

and the right-hand sides of (3.1) and (3.2) both reduce to the usual expression for the von Mises yield

function when terms of 0(e) are neglected.
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Pkl — df/dS = (QkmQ'ln \QklQmn)S (3.4)

is a generalization of the Reuss flow rule to arbitrary curvilinear coordinate systems.

For an incompressible rigid-plastic material, when (3.4) is referred to rectangular

cartesian coordinates, g'K'L is replaced by the Kronecker delta and S"N by the cartesian

stress tensor. Then pKL is recognizable as the deviatoric stress tensor. Provided the

strains e'KL are small in an elastic-plastic material, (3.4) affords a close approximation

to the Reuss flow rule.

In the general theory [4], X is a scalar function of SKL and e'K'L when the temperature

is constant. A result due to Hill [7, Eq. (30), p. 39] suggests an appropriate expression

for X which relates X to the slope H (the prime in Hill's notation is dropped) of the

equivalent stress/plastic-strain curve. With respect to current rectangular cartesian

coordinates, e'< is the plastic strain rate tensor and is the deviatoric stress tensor.

When the equivalent stress a is replaced by \/{ZJ2), Hill's relationship for the plastic

strain rates may be written

■II 3 1 J 2 , M rt
e"' ~ 4 H J'2 aii ' ( )

We identify the scalar factor 3/4HJ'2 in (3.5) with X in (3.3). Hence, in (3.3) we now put

X = 3/4 Hj. (3.6)

11 can be deduced from the uniaxial stress-strain curve, and is a function of stress. For

multiaxial states of stress, since the constitutive theory for the plastic strain rates is

based on J2 , it would be appropriate to regard H as a function of /. It would not be

appropriate in the context of the general theory in [4] for H to depend on a functional

of the entire history of the deformation.

4. Motion of the plate. A thin rectangular homogeneous plate is oriented with

respect to fixed cartesian axes ym so that the middle surface of the plate lies in the plane

t/3 = 0. The edges of the plate are parallel to the yY and y2 axes. The plate is deformed

by uniform finite extensions due to compressive stress acting parallel to the yi axis.

This compressive stress increases continuously with time, and at time t0 the plate thick-

ness is 2h and the length parallel to the yt axis is L. The width parallel to the y2 axis is

unspecified but is very much greater than the thickness 2h. At time td the plate is tested

for instability by imposing on it a transverse velocity which varies only with yt . The

plate bends, the middle surface forming a cylindrical surface whose generator moves

parallel to the y2 axis. During this motion, the bending of the plate superposes a plane

strain perturbation on the uniform finite extension of the plate. The growth of the

perturbation is followed for a small time interval t — t0 .

The method developed in [6, Chap. IV] is now followed in formulating the mathe-

matical description of the motion of the plate. A system of convected coordinates 6, is

chosen by imagining that the plate, deformed by uniform finite extensions, is unloaded

at time U • This convected coordinate system is taken to coincide, in the hypothetical

unloaded state, with the fixed rectangular cartesian coordinates ym . This specification

of convected coordinates differs somewhat from that used in [6] in that the convected

coordinates used there coincide with fixed rectangular cartesian coordinates when the

body is in the loaded state. During the motion subsequent to time t0, the middle surface

of the plate lies in the coordinate surface 0Z = 0, and the coordinate curves d2 are straight

parallel to the y2 axis (Fig. 2).
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y,
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©3

Fiu. 2. Convected coordinate system

The transformation relating ym and d, at time t > ta is

2/. = [1 + e.(0R - 03 dw/d6l, y, = [ 1 + e2(i)]0* , 2/s = [1 + e,(0]®» + w, (4.1)

where w = w(0t , t) and w = 0 at t = t0. The function w in (4.1) describes the transverse

displacement of the middle surface of the plate from the plane y3 = 0. If w remains zero,

(4.1) describes continuing uniform extension of the plate, and hence w describes the

superposed perturbation on the uniform deformation. Consequently, dw/dOl is restricted

to be small compared to unity. The functions «i(/), «2(0> «s(0 at time t0 are the uniform

elastic strains. For a sufficiently small time interval subsequent to time t0 , these three

functions remain small compared to unity, independent of the magnitude of total strain

at time t0 .

The covariant metric tensor referred to the convected coordinate system 0, is denoted

by Ga , and the covariant strain tensor by yi: . The strain rates yn and 722 are required

later in the constitutive equations and are now derived from (4.1). Since the coordinate

curves 6, lie in planes y2 = constant, the differential of arc length dsx along these curves

is given by

ds2, = dy\ + dyl (4.2)

where, from (4.1), for t > t0 ,

dy, = (l + «i - de' and dy3 = sfddl ■ (4-3)

When squares and products ofand d2w/ddl 301 are neglected compared to unity we have

c- - (f:)* -1 +2" -2e- ® <«>

and

dz .W

- JG11 - e. e»a0W (4-5)

Along the coordinate curves 02 ,

ds2 = dy? = (1 + e2) dd2, (4.6)
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giving

G 22 = (dst/dd2)2 = 1+2 e2 (4.7)

and

722 = 2 ̂ 22 = *2 • (4.8)

To the same order of approximation as in (4.4) and (4.7), we find from (4.3) that, along

the coordinate curves 6, ,

dyz/dyi = dw/dd\ (4.9)

and similarly along the coordinate curves 93 , that

dyi/dy-i = —dw/dd1 . (4.10)

Hence the coordinate curves 6i and 93 are orthogonal. The coordinate transformation

(4.1) describing the motion of the plate incorporates the usual hypothesis of plate

bending: that normals to the middle surface remain normal.

5. Constitutive equations for the perturbed motion. We denote the metric tensor

referred to the convected coordinates 9, in the original unloaded state at time t = 0

by . Then

aw = <£, + . (5.i)
G": and g"L in (2.4) are components of the same covariant tensor referred to coordinates

6. and XK respectively. From (2.5) it follows that

G,j = G<< + 27. (5.2)

We recall that the convected coordinates 6, were chosen to coincide with fixed

rectangular cartesian coordinates when the uniformly deformed plate is unloaded,

hypothetically, at time t0 . Hence,

G't = 5„ (t = t0). (5.3)

It then follows, from (5.2), (5.3), (4.4), (4.7) and the corresponding equation for G33 ,

and from (2.3), that

r

y'niQ

ei('o) o o

0 *2(^0) 0

. 0 0 €3(<o)_.

p

E

-10 0

0 v 0

0 0 Xj

where P is the Kirchhoff compressive stress in the yt direction, that is, the compression

force acting over unit area of cross-section in the unloaded state obtained by unloading

the uniformly deformed plate at time t0 . Thus it has been confirmed that «i(t0), {2(t0),

c3(t0) are the uniform "elastic" strains at time ta , referred to the coordinate system 9, .

A plastic strain increment tensor Ay" is now introduced, and defined by

A7IKO = ym - 7'.',(to), (t > to). (5.5)

Then

(7;; = 5,,- + 2Ayr; , (t > to). (5.6)
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At time t0, Ay" = 0. Since we are following the motion for a small time interval t — t0 ,

the components of Ay" are always small compared to unity. It is to be emphasized,

however, that the components of the plastic strain tensor y" are not restricted to be

small.

The symmetric contravariant Kirchhoff stress tensor referred to the convected

coordinates di at time t (> /,,) is denoted by

~(-P + s11) 0 0"

0 s22 0

0 0 0

(5.7)

where P is the aforementioned compressive stress in the yx direction at time t0 and s11

and s22, which depend on t, are the small changes in the stresses occurring over the small

time interval t — t0 . This representation admits the usual assumption of thin plate

theory: that stresses normal to the middle surface are negligible. Also, for the deformation

described by (4.1), the absence of r12 and t13 is a consequence of material isotropy.

The elastic strain rates y'u and y'22 at time t are now found by substituting (5.7) into

an equivalent form of (2.6) with g'K'M replaced by G" as given by (5.6). These substitutions

give

Ey'u = [ — 4P(1 + 2AT;0 + 4s11 - 2,S22]^ - 2,s22^

+ (1 + 4A7n)sn — v(l + 2A?n + 2A720S22 , ^

Ey'„ = [2vP(l + 2Ay22) - 2vs11]y'1[ + [4s22 + 2vP(l + 2Ay[[) - 2vS11]y'A

- HI + 2A7JJ + 2A7^)s11 + (1 + 4A722)s22 .

In the derivation of (5.8), squares and products of s11 and s22, and also of Ay[[ and A7^ ,

are neglected. Similarly, in all following expressions, these squares and products are

neglected, as are terms of order P/E compared to unity.

The plastic strain rates y[[ and y'2'2 are obtained from equivalent forms of (3.3), (3.4),

and also from (3.6). In particular, from (3.4), (5.6) and (5.7), we have

(5.9)

0: | [1 + 2a7;; + 2A722 - ^] ■

Substituting from (5.6) and (5.7) into (3.1) yields

P2 T 2s11 s22"l
1 = Yli + 4at;(+ (5.10)

Then, for / as given in (5.10), (3.6) becomes

[1 - 4a7;: + - p] ■ (5.11)A " 4HP2

Finally, substitution from (5.7), (5.9), and (5.11) into (3.3) gives

7u

.•V22J

A" B'

B" C' s22

(5.12)
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where

A" = (1 + 4A7;0/h,

B" = -(1 + 2&y[[ + 2Ay'2'2 + 3s"/2P)/2H,

C" = (1 + 4A722 + 3s22/P)/4//.

We note that the square matrix comprising the elements A", B", C" in (5.12) is singular.

Combining (5.8) and (5.12) in (2.2), we have

7n

-722.

A B

B C
p-
U22j

(5.13)

where

A = A" + (1 + 4a7;o /E,

B = B" - K1 + 2Ay[\ + 2AyiQ/E,

C = C" + (1 + 4A y'2'2)/E.

The terms in (5.8) in y[[ and 722 are neglected in (5.13) since they add contributions to

the total strain rates at most of order P/E compared to unity.

6. Differential equations governing material flow. Having established general

expressions for the strain rates, we now introduce simplifying assumptions common to

thin plate bending theories, namely, that stress and strain variations through the plate

thickness are linear. The coordinate transformation (4.1) introduces the condition that

total strain varies linearly through the plate thickness. In addition it is now assumed

that stress and "plastic" strain vary linearly through the thickness. Accordingly we

make the following expansions:

s — do @3ai i s — d3bi , ^ ^

A711 = Cq -f- 03C1 , A722 = do ~h $3 d\ .

The stress s22 does not have a uniform part because there is no resultant in-plane

force in the y2 direction. The functions a„(l), cu(t) and djj) describe the conditions in

the plate due to the continuing uniform compression and the functions a^t, 0,), b^t, d0,

c.,(/, 6i) and d^t, #0 account for the superimposed perturbation. Hence |ha^ <SC |a0| ,

|/(C,| « |c„l and \hd,\ « jciuj in order that there be no unloading; that is, everywhere

(df/dS"x)>b;"-v > 0.

In the present theorj' the amplitudes of the instabilities that arise from the perturba-

tions arc expected to be much less than the plate thickness during the small time interval

t — tn . Since the plate is thin and the dominant motion is sustained axial compressive

flow, the variation through the plate in the strain-hardening resulting from the instabil-

ities will be negligible. Consequently H is taken as constant through the plate thickness.

With this assumption the expansions (6.1) show, through (5.11), that the variation in X

through the plate thickness is also linear. Neglecting the variation in H through the

plate thickness still admits a dependence of H upon time; that is, H may change as we

proceed along the stress-strain curve. However, for the sake of simplicity, H is now taken

as an absolute constant over the small time interval t — t:> ; different values are later

assigned to this constant, corresponding to different values of t0 when the stability of
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the plate is tested. Substituting Eqs. (6.1) into (5.13) and taking a constant value for H

leads to two equations that hold for all 8.,. Partitioning the equations into d,t independent

and 03 dependent sets gives

«i = c0 + (1 + 4c0)a0/E,

e2 ~ d0 — i/(l + 2c0 + 2d0)d0/E,

2 (6.2a, b, c, d)

~ dd'dd* ~ ^ ^ 4C]d0/i? — v(l + 2c0 + 2d0)b1/E,

0 = dx — c(l -f- 2c0 + 2d0)a1/E — y(2ci + 2 di)a0/E + (1 + 4d0)61/2?,

where «i and i2 are the uniform parts of the total strain rates given by (4.5) and (4.8).

The above four equations are supplemented by two constitutive equations for the

plastic strain rates and are obtained from (5.12) and (6.1). Partitioning for 9S yields

the following four equations:

c0 = (1 + 4c0)a0/H,

d0 = -(1 + 2c„ + 2d0)a0/2H, (g ^ ^ c> d)

c, = (1 + 4c0)a1/tf + ^Cido/H - (1 + 2c0 + 2d0)b1/2H,

d, = -(1 + 2c0 + 2d0)dl/2H - (2c, + 2d, + 3b1/2P)d0/2H

+ (1 + 4d0)b1/4H.

Note that c0 = 0 at t — tQ , so that (6.3a) gives a0 = Hc0 , confirming that H is the

slope of the uniaxial stress-plastic strain curve.

The solutions of Eqs. (6.2 a, b) and (6.3 a, b) describe the continuing uniform motion

of the plate. For example, if «i is given, we easily obtain from (6.2a) and (6.3a)

= ^H/(H + E), do = H6o/( 1 + 4c„). (6.4a, b)

Eliminating a0 from (6.2a) and (6.2b) and using the binomial theorem gives

c0(l — 2c0) = 2d0(l — 2d0),

which, upon integration, gives

c0(l — c0) = — 2<i0(l — d0). (6.5a)

Hence d0 can be found in terms of <i through (6.4a). Finally, using (6.2b) we get

e2 = d0(l + 2 vH/E). (6.5b)

The perturbation is examined by solving Eqs. (6.2c), (6.2d), (6.3c) and (6.3d). These

four equations are not sufficient for finding the five unknowns ^ , bt , ct , di and w. One

more equation is provided by the equation of motion of the plate. To the order of accuracy

of linear plate bending theory, no distinction need be made between the components

of the Kirchhoff stress tensor and the physical components of stress, since the dilatation

is small, and the convected coordinates are orthogonal and differ only slightly from

rectangular cartesian coordinates. Accordingly, the bending moment M per unit length is

M = f suetde3 = ^ox. (6.6)



DYNAMIC ELASTIC-PLASTIC BUCKLING 483

The appropriate equation of motion for a compressed plate is obtained from [8] and is

5777 + 2H~P + °°> Jl? ~ 2k"" ' °- (67)

Eqs. (6.4), (6.5) and (6.7) are sufficient to describe completely the development of

the perturbation as time increase from t0 .

7. Solution for constant axial stress rate. We now let

d0 = Ha (7.1)

where a is a negative constant, since the axial compressive stress is increasing. Integrating

(7.1) with respect to time gives a0 = Ha(t — t0). Letting r = —a(t — t0) it follows that

a0 = -Hr (7.2)

where r is a positively increasing nondimensional time variable. From (6.3a) we have

c0 = (1 + 4c0)a. Since c0 « 1, a is approximately the axial strain rate. Upon integration

we have log (1 + 4c0) = —4r. Now c0 is the increase in the axial strain during the time

interval (t — t0) and will at most be a few percent. Hence we may take log (1 + 4c0) =

4c0 — 8c„ so that c0(l — 2c0) = — r; that is,

c„ = -r + 0(r2). (7.3)

From (6.3b) we now get

do = r/2 + 0(t2). (7.4)

In the following equations r2 and higher powers are neglected in comparison with

unity.

An inspection of Eqs. (6.2c), (6.2d), (6.3c), (6.3d), (6.6), and (6.7) shows that a

solution exists of the form

[a, , bi , c, , dt , w) = [fii , bt , ct , di , C] sin (titB^L) (7.5)

and upon making the substitutions (7.1)-(7.4) they become

C ~ (1 + 2vH/E)ti + (1 - 2f)(4H/E)Cj - (1 - 2„)(1 - 4r)d1/£ = 0,
1 j

d, + IvHdJE + 2vHcJE + (1 + 2r)bt/E - v(l - r)dJE = 0,

c. + 4c, + (1 - t)K/2H - (1 - 4T)aJH = 0, (7.6)

(1 + 2t%/E + 2vHcJE + d, + 2vHdJE - „(1 - r)d,/£ = 0,

f a' + 1?" H{-P/H + t)C ~ poctC = °'

where dots now denote differentiation with respect to t and where the bars have been

omitted for convenience.

Eqs. (7.6) are best solved numerically. There are five unknowns ai(r), f>i(r), c,(r),

d,(r) and C(t), and Eqs. (7.6) provide five ordinary linear differential equations. Since

initial conditions are known or can be specified, direct numerical integration is possible.

As previously mentioned, Eqs. (7.6) are to be integrated over a range of r corresponding

to a small time interval t — t0 for a range of values of n. Since a transverse velocity is
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given to the uniformly deformed plate at time t0 , the initial conditions for (7.6) at

r = 0 are

C(0) = 0 C( 0) = Cx

aj(0) = 0 6,(0) = 0 (7.7)

c,(0) = 0 d,(0) = 0.

The procedure for finding buckling mode numbers is similar to that used in [2].

The equations are integrated with respect to r for a range of values of n (C, independent

of n). As time increases a narrow band of harmonics can be found such that the response

of the corresponding amplitudes grows exponentially. In particular, a most responsive

mode can be found which is independent of time and this mode is taken as the theoretical

buckling mode. The time interval over which the equations are integrated is chosen such

that the amplitude of the most responsive mode grows to about one-quarter of the plate

thickness.

The first numerical results reported here refer to 10-inch aluminum plates of thickness -

0.5 inches and 0.7 inches, for which Young's modulus was taken as 107 psi. Three sets of

values of P and H were used which correspond to the three points A, B and G on the

stress-strain curve, (Fig. 1). These values are

A: P = 42,000 psi, H = 500,000 psi

B : P = 45,000 psi, II = 100,000 psi

C: P = 50,000 psi, H = 50,000 psi.

Ci , the initial value of C, was taken as — 1 /a, corresponding to a transverse velocity

dC/dt of 1 inch/sec at t — tu (we recall that the superposed dots in (7.6) and (7.7) denote

differentiation with respect to t, where r = —a(t — t0)). The initial conditions (7.7) are

somewhat arbitrary. In addition to a transverse velocity, the plate could be given an

initial transverse displacement in which case all the initial values in (7.7) could be

nonzero. One such set of initial conditions that has been considered is

C(0) = 0.01 inch C(0) = 0.01 inch

<Zi(0) = 5 psi/inch 6^0) = 10 psi/inch (7.8)

Ci(0) = 0.0001/inch c?i(0) = 0.

For given values of P, H and a, no change was obtained in the preferred harmonic

whether initial conditions (7.7) or (7.8) were used. Subsequent calculations were made

in which the initial values (7.8) were individually increased by a factor of 100 and it was

found that the preferred harmonic changed by at most one. The particular case for

a = — 100/sec, 2h = 0.7 in., P = 42,000 psi, II = 500;000 psi and initial conditions (7.7)
is illustrated in Fig. 3. The curves show clearly the development of the responsive modes

as time increases and are typical of all the cases that were considered.

Results of preferred mode number for three values of a (axial strain rate) are sum-

marized in Table 1. Note that if V is the relative inward velocity of the ends of the plate,

then —a = V/L. Hence, with L = 10 inches it follows that V = —a/1.2 ft/sec.

The critical loads for the plates, as calculated from Euler's formula for elastic buckling

(n — 1), are 25,000 psi and 50,000 psi respectively. Consequently the thinner plate will
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Fig. 3. Growth of preferred harmonic.

buckle elastically as an Euler strut for low values of a and in Table 1 it is not meaningful

to include results for a = — 1. However for the higher values of |a| the effects of lateral

inertia are sufficiently great to allow the compressive stress to exceed the elastic limit so

that plastic flow occurs. The thicker plate will always allow some plastic deformation to

develop even for quasi-static loading since the Euler buckling load exceeds the yield

stress of the material.

As the ratio of plate-length/plate-thickness increases the rate of loading must also

increase in order that plastic flow may occur. The results of Table 1 indicate that the

mode number will also increase. Plates with length/thickness ratios of 80 have been

examined by Goodier [2] for relatively high rates of loading. His experimental results

are compared in Table 2 with the corresponding results obtained using the present

theory.

TABLE 1

Preferred mode number for 10-inch plate.

E = 10' psi
a = — 400/sec

2h = 0.5" 2h = 0.7"
a — — 100/see

2h = 0.5" 2h = 0.7"
a = — 1/sec

2h = 0.5" 2h = 0.7"

P = 42,000 psi
H = 500,000 "

P = 45,000 "
H = 100,000 "

P = 50,000 ;
H = 50,000 '
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TABLE 2

Comparison of Theory and Experiment.

L/(2h) = 80, P = 30,000 psi, H = 50,000 psi, E = 107 psi

Experimental Results obtained from Reference [2], Table 2. Theoretical Results of Present Theory

Tube

Number

Impact

Velocity (ft/sec)

Mode

Number*

SAC-2
SAC-1
LAC-1
LAC-2

300
400

184
310

Impact

Velocity (ft/sec)

300

Mode

Number

11

400 1 12

200 j 11

15
10
12
10 | 300 | 11

10 I 300 | 11

8 i 50
100

100

10

LAC-3 j 344
4CSC-3 59
4CSC-3 | 100
4CSC-3 , 115 j 10

* obtained by dividing buckled length by half wavelength.

8. Discussion. Table 1 shows that the predicted mode numbers into which the

plates buckle are not affected by the chosen values of P and H. However, this does not

imply that the time t0 at which the perturbation is introduced is not important. It merely

means that accurate data for a stress-strain curve are not required and the only material

constant required for mode number prediction is the yield stress. This has already been

observed by Goodier [2] for rigid-plastic plates. He showed that bending is resisted

primarily by a moment independent of the hardening modulus and called it the direc-

tional moment. The relative magnitudes of the directional and hardening moments

(the latter due to strain hardening) have been examined by Vaughan and Florence [9]

for rigid-plastic cylindrical shells. For short shells (corresponding to the plane stress

state of the plate considered here) the directional moment was found to be dominant.

It is interesting to find the same effect for an elastic-plastic material for which the values

of H (point A) were many times higher than those considered in [9].

In the solution of the differential equations, the strain rate a was taken as a constant.

This is reasonable since the motion is followed for just a short interval of time. However,

in reality a changes with time. In particular, in the experiments reproduced in Table 2

the plates were compressed by a large uniform mass producing almost uniform decelera-

tion in the strain rates. The choice of t0 then corresponds to different a. However, Table 1

shows that the mode number is highly dependent upon a. The question therefore arises

as to which value of a to choose, or equivalently at what stage during the motion to

introduce the perturbation. The following argument may be used to obtain an answer

which agrees very well with existing experimental evidence.

Since plastic strains are residual in nature, we would expect that the initial buckling

mode numbers are the ones that develop throughout the ensuing motion. Thus one would

take the value of a which corresponds to the instant t0 when the load exceeds the yield

stress. In most cases this value of a may be taken as the initial value since the change

during the elastic deformation will generally be small. This conception certainly agrees

with the observations in [1] for cylindrical shells in which the buckled wave form was
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selected very early in the motion. More immediate verification is given in Table 2.

By choosing a to correspond to the initial impact velocity of the plates, very good

agreement has been obtained between the present theory and Goodier's experiments.

Any value of a less than this initial value could have been chosen and then the mode

numbers would have diminished.

It appears that mode number selection is insensitive to the slope of the stress-strain

curve but is sensitive to the rate of loading. Mode number prediction is accurate when

the theoretical rate of loading is taken equal to the rate occurring at the inception of

plastic flow.
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