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1. Introduction. In the numerical calculation of the integral

1(f) = f Kx) dx, (1)
Jo

by means of a linear quadrature formula

n

Qd) = Ha-ifiXi); a,i real, x,- £ [a, b], i = 1, ••• ,n, (2)
r — 1

when ] belongs to a certain Banach space B, it may happen that the error functional

EQ—defined by EQ(j) = I(j) — Q(j)—is bounded; and then an upper bound for the

quadrature error may be given in the form

|/(/) - Q(f)\ < P'lHI/ll (3)
(where "|| ||" stands for the norm in B or in B*, as appropriate).

Davis [1] introduced the idea of considering the bound (3) in the case that B is the

Hardy space H2 of functions analytic in the unit disk [z| < 1 and having finite norm

defined by

ll/l|2 = 2xZk|2 (4)
n-0

(where j(z) = XXo a»2")- For such /, the radial limit, lim,^i_ f(re'e), exists for almost

all 8, and may be taken to define / on the unit circle Ci ; / is then in L2 on the unit circle,

and in fact

11/112 = [ 1/(2)1" ds. (4')
J C1

In this case £ is a Hilbert space, and Davis considered integration over various intervals

[a, 6] with — 1 < o < 6 < 1. It seems more convenient, however, to fix the integration

interval as [—1, 1], and to consider functions analytic inside the circle CR:\z\ = R, for

values of R greater than one. I shall denote this space "H2(CR)"; if f(z) = anzn,

the norm is now defined by

ll/ll2 = 2rB ± MR2" = f \m\2ds (4")
n-0 " C R
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or, equivalently, the inner product is defined by

(/, g) = f 1(z)g(z) ds. (5)
•> Cr

Davis pointed out that an advantage of the error bound (3) over the classical error

bounds, in this case, is that it does not involve derivatives of the integrand / and so may

be much easier to use.

A little while later, Davis and Rabinowitz [2] made use of the spaces L2(&„) for the

same purpose. Sp , for p > 1, is the ellipse

x2/a2 + y2/b2 = 1,

where

a = J(p1/2 + p-1/2), b = Hp1/2 ~ P"1/2).

All these ellipses have their foci at ±1 on the x axis; if p' < p then SP- is inside S„ , and

as p decreases to 1, S„ shrinks down to the interval [— 1, 1] on the x axis. The advantage

of this family of regions is that any function that is analytic on the segment [—1, 1]

is necessarily analytic inside £„ for some p > 1, so that the resulting analysis applies to

the numerical integration of any function analytic on the (closed) interval of integration.

L2(Sp) consists of all functions / analytic in the interior D„ of £„ and such that

IfD I' dx dy < °° '

it is a Hilbert space with inner product

(J, 9) = JJd f(z)g(z) dx dy.

In this paper I/2(SP), like H2{CB), will always be used in connection with integration

over [—1, 1].

Davis and Rabinowitz, Hammerlin, and others have given a number of evaluations

and bounds for the error norms ||.E0|| , for the space H2(CR) and L2(ZP), and various

quadrature formulas Q [l]-[8].

A few years ago Wilf [11] considered the space H2(C:) in connection with integration

over the interval [0, 1]. This case differs greatly from those mentioned above, in that

the closed interval of integration is not contained in the region of analyticity of the

functions—integrands are admitted which are not analytic at one endpoint. I shall

refer to this case by the symbol "H2(Ci ; 0, 1)". The study of integration over [—1, 1]

of functions in H2(C0 is essentially the same [12].

In all cases a problem of obvious interest is the determination, for each specific number

n of quadrature abscissas, of that quadrature formula Q for which ||^c|| is as small as

possible. There is a unique Q with this property, whenever the function space B is a

Hilbert space, or, more generally, when B* is strictly convex. Such a formula is called

a "minimum-norm" formula (relative to the specified number n); we shall denote it by

uqmk" ancj -ts error functional by It is defined by

l-O = inf \\EQ\\ (6)
a<,xi ,x, . • • • ,xn<,b
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where Q is given by (2). The explicit determination of the a{ and aof such formulas is

quite difficult and has been done only in very few cases [8], [10]. Valentin [13] proved

that for the spaces H2(CB) the abscissas and coefficients of QH for any fixed n, approach

those of the n-point Gauss-Legendre quadrature formulas as R —> ; proof of the same

fact for L2(SP), as p —> can be found in [14]. (For information about the Gaussian

quadrature formulas see, e.g., [16, chapter 8].)

2. Bounds on ||.Z?HI- In some recent papers [11], [14], [15] bounds on ||i?HI> and

on the asymptotic size of PHI as n —> <=, have been derived by the technique of

calculation of the norm of the error functional of some convenient n-point quadrature

formula Q„ , using the inequality

PHI < PQ"II (7)

(which follows from (6)). Stetter [15] used the repeated midpoint (or "Euler's") rule,

; 5 ®
for the spaces H2(CS) and L2(SP), and showed that in both cases

PHI = 0(n2) (9)

for any R, p > 1. Barnhill [14] found a bound on \\EG"\\ for L2(&„), where G„ is the n-point

Gauss-Legendre quadrature formula, and applied it to PHI • For large values of p

his bound approaches zero exponentially as n —> =° (i.e., it is 0(c~"), for some c > 1)

and thus improves on (9); but for p < e2 it approaches infinity as n increases.

For the case H2(Ci ; 0, 1), Wilf showed that

PHI = 0(log n/n)1/2. (10)

This stands in considerable contrast to what can be shown in the other cases. I give a

slightly better result below, but I do not think any great improvement is possible.

Theorem 1. Let D be a simply-connected open set in the complex plane that contains

the closed interval [a, 6] = [—1, 1] on the x-axis. Let She a Hilbert space of functions analytic

on D with the following property: If Dc is any compact subset of D, there is a positive number

M = M(Dc) such that

max |/(2)| < M ll/H for all f £ S. (11)

Then if Q is of the form (2), the functional EQ is bounded; and if

p = P(D) = sup {p':SC D), (12)

and e is any number between 0 and p — 1, there is a positive number A = A(e) such that

PHI < Pc"ll < Mp ~ «)""• (13)

(This theorem can be applied to integration over any finite interval [a, 6], by a linear

change of variables. The interval [—1, 1] was used so as not to complicate the forms of

(12) and (13).)

Proof. Since the interval [—1, 1] is a compact subset of D, the assumption (11)

immediately implies the boundedness of the functional I and Q, and so of EQ. The rest
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of the theorem follows from a classical result on polynomial approximation: Any / £ S

is analytic on and inside £p-« ; it then follows from the proof of Theorem 7, p. 76, of [17](1)

that there is a constant Ai = A^p, e) such that for any positive integer m there exists

a polynomial Pm(z), of degree m, such that

max |Kz) - Pm(z)I < A^p - ....
*£[ — 1,1]

where p. is the maximum of the absolute value of / on . By (11), there is an M such

that p. < M ll/H , so that we can write

max |/(z) - Pm(z)| < A2(p - €)-/2 \\j\\. (15)
*G[—1,1]

Now Gn integrates polynomials of degree 2n — 1 exactly, and the sum of the absolute

values of the coefficients in Gn is 2; so that

\EG"(j)\ = |EG\j - P2„_x)|

< \l(j - P2„_.) | + |Gn(J - P2„->)|

< 4A2(p — e)~(2"_1>/2||/||.

(13) now follows, with A = 4A2p1/z.

I It is easy to see that the spaces L2(SP) and H2{CR) satisfy the hypothesis (11). If

/ G L2(&p), let z0 be a point such that

|/(z<>)| > max |/(z) |.
zZ.Dc

There is a neighborhood of z0—of area a, say—in which [/(z) ] > § |/(z0)| • Then

ll/l|2>f l/fe) I2-

A similar argument, using the maximum modulus theorem to locate z0 on CR , works

for H\Cr).
H2(Cr) has the orthonormal basis

<pn(z) = (2*R)-l/2(z/Ry, n = 0, 1, 2, • • • ; (16)

L2(SP) has the orthonormal basis

<pM = (2(" ̂  1})V' + r~ri/2u„{z), » = 0,1,2, • • •, (17)

where U„ is the nth degree Chebyshev polynomial of the second kind (see, e.g., [2]).

In each case, the functions in the orthonormal basis are real when z is real. For such

spaces, Theorem 1 can be given a more specific form. Define the "kernel function" K

(using a standard notation) by

K(z, w) = Z vM<Pr(v>). (18)

<« Note that in describing ellipses the "p" of [17] is the square root of the p of the present paper.

There is a slight misstatement in the proof in [17]: the function g used there is not necessarily analytic

on the ring B, as stated, but is only continuous on R and analytic in the subrings p-1 < \z\ < 1 and

1 < |z| < p- The rest of the proof is not affected.



NUMERICAL INTEGRATION OF ANALYTIC FUNCTIONS 415

K is real for real z and w; and we have

P°II2 = S \EC(<Pr)f

= Z EU<Pr(z))Et>(<Pr(w)) (19)
r-0

= EqmEqUK(z, w)).

(Here the subscript "(2)" or "(w)" indicates with respect to which variable the functional

is operating.) For 0 < e < p — 1, let M, be the maximum of jK(z, tD) | for 2, w £ £p_« .

By Theorem 4 of [19], it follows that

00

)E^(K(z, w))|
7T

for all z inside . Ef*) (K(z, w)) is itself analytic in D, and real for real z; applying the

same theorem again, we have

| (p-<n] Vir-ir <
and

I |£»MN 11 < 11E°' 11 < - MY\p - e)-\ (20)
7T

For H\CB)y the p of (12) is equal to 2R2 - 1 + 2R(R2 - 1)1/2, and

K(?' = 2tt(R2 - zw) ' (21)

K obviously attains its maximum on Sp_, at

z = w = max {Re (z):z £ Sp_,} = —  —-7^   

Since R = (p1/2 + p~1/2)/2, we have that

1/2 , -1/2
p + PM, =

<

Thus

(e p(p — «))

{'-ir-'-
p(p — e)J

1/2 , -1/2 / \-l -1 —1/2 1/2 , -1/2 /00\
P + p / e\ e P P + P (^4)

1/2 -1/2
7T p — p

/ 1/2 , -1/2X1/2

l^G"|] < 32T-3/2pI/4r1/!(Vf^) (P - «)-

This last expression is least when e = p/(2n + 1); if p > 1 + l/(2n) this is an admissible

value of e. Since

(P"2^l) =P""(1+^) <el/2p_"
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that value of e gives us the bound

||£C1I < Bi(2n + l)1/2p-

where
( 1/2 I -1/2X1/2
P + PBx = 32e,7V3/V1/4

For L2(SP), the p of (12) is just p, and

1/2 -1/2
P ~ P

K(z, U.) = - E (r + 1) F+[(z)U'^l- (23)
7T r_0 P p

For z£[— 1, 1], |E/r(z)| < r + 1, since then

TT .. sin [(r + 1) arccos 2]
^ r\^y r i >

sm [arccos z]

and it follows, by a classical theorem of Berstein [17, page 42] that

\Ur(z)\ < (r + l)(p - eY/2

throughout Sp_« . Thus

M. < - i: (r + I)3 if ~ e)-r-i < 7 3 3ir Z(r+ 1)3(1 - «/p)\
7T r-0 P P 7T(.P P / r-0

Since

V ( j- 1-13 ' _ 1 + 4z + z2 6
S (r + } * (1 - z)4 (1 - X)4 '

for |z| < 1, we have

M, < . 24 _t pV4.
T(p — P )

We can then minimize with respect to e, as was done above; and in sum we obtain:

Theorem 2: For H2(CR),

Pril < < B&n + l)l/2P"n (24)

if p > 1 + l/(2n), where p = 2R2 — 1 + 2R(R2 — 1)1Z2, and

/ 1/2 , —1/2\ 1/2

P _ -39ol/2 —3/2 —1/41 P ~T P I
^1 — TC P I 1/2 -1/2 )

\p — p /

For L2(S,),

PMN|| < | ̂ 11 < + 2)2p-, (25)

if p > 1 + 2/n, w/iere

2s61/2e2

•C>2 — 3/2/ -hl/2"
T (p — p )

3. The case H2(Ci; 0, 1). If 0 < X < 1, let Pz denote the "point functional"

defined by

PA) = Kx), f e H2(C0.



NUMERICAL INTEGRATION OF ANALYTIC FUNCTIONS 417

Then

JM-dz = ±r°x>d0«■>
xW 2Tt JCiz- x 2B- Jo e'9 - ®

So, applying the Schwartz inequality,

and it follows that Px is bounded. Thus quadrature functionals Q of the form (2) (with

[a, 6] = [0, 1]) are bounded, if we exclude the use of the point x = 1 as an abscissa in Q,

(This must be done in any case, if Q is to be used to integrate arbitrary functions in

H2(Ci), as these are not all well defined at 1.) To show that EQ is bounded, we show that

I is:

I (J) = f KO dt = lim f f(t)
JO x—1- Jo

dt

and

dzdt
J o J o J c x z t

Therefore

^ e
log» iO

e — x

2 \ 1/2

dej •

The last integrand is bounded except in the neighborhood of 0 and of 2ir, so we can

write (letting "C" denote a generic constant, different in different occurrences, but in

each case independent of x)

f de<c + cf |log (eiS — z)|2 (
J o J 6 X J o

< C + C r/2 [log sin el2 d6
Jo

< C + c f ' log2 ede < c*.
J o

Thus

If®Mo
dt <£ ii/ii,

for all x, and it follows that the functional I is also bounded.

A complete orthonormal sequence for H~(C0 is given by (16), with R = 1, and

K(z, w) = l/27r(l — zw). If we set

F(z) = /(„)(K(z, w)) = log YZTz (26)

(2) For the validity of the Cauchy integral formula for functions in H2 see, e.g., [21, p. 332].
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then F(z) = I(<Pt)<Pt(.z). Noting that

I(<pr) = I(&r) = I{<pT),

and similarly for Q, we may write

l!-E°ll2 = E |£°(^)l2 = ± (IM - QMT
r-0 r-0

= i imM - Q(J{<Pr)<Pr)] - i Q (*,)[/(*>,) ~ Q(<Pr)] (27)
r-0 r-0

= E\F) - QuMK).

Here I shall take, for the comparison formula Q, Euler's rule

(28)

To estimate EM" I shall use the Peano remainder form (see, e.g., [20, p. 108])

e-O) = t ['I nej/Sr2 -1Z* - dt= E er(J) (29)

where the sum 2* is over those values of k between 1 and n for which (2k — l)/2n > t.

(The statement of the Peano theorem in [20] assumes that /'"+1>—in the present case

f"—is continuous on the closed integration interval [a, 6], However, the usual proof is

valid whenever /("+1) is continuous on (a, b) and SI (b ~ <)n+I/(n+1) (t) dt is finite. F and K

satisfy these conditions.)

Looking first at e„ , we have

" C: - n (' - 1 - in)] dt + L„ '"<«[ V2]
/»1 /-t   i\ 2 -J «1 —l/2n -j pi —1/2 n

= / F"(t) dt-± (1 - t)F"(t) dt + £ F"(t) dt.
* 1 — 1/n " *1 Jl-l/n 1 —1/»

dt

(30)

Substituting■to

*"'» - i [w=T' - ?<rh>+1los rh] (31)

in the last 3 integrals and seeing that each of the last 2 terms in (31) contributes only

0(ri~2) to each of the 3 terms in (30), we obtain

o _ I f1 dt 1 r1-1'2" dt . J_ /,1_1/2n dt . Jl]

T6n{ } 2 LUn t n L1/n t( 1 - <) 2n2 J^1/n t{ 1 - t)2 + \n2)

if1 At _ i ri/2n dt jl r1"
2 n A-v, 1 - < + 2n2 J,.,

^-1/2" df , Jl

-l/„ /<- Jl-l/» J. I Jl-l/n (1 t)
3+Of-s (32)

+ olK
n \n



NUMERICAL INTEGRATION OF ANALYTIC FUNCTIONS 419

For r < n,

—1/2) /n V [1 — A2 1 JL to b — 1 \~

dt(i - if _ i v w-1 _ <
/♦ (r —l/2)/n P/■« ,\2 -i n

«,(F) - f F"(f) - i £
» (r—l)/n L ^ 11 k-r

•>(r-l/2)/n L ^ k"r +1 \

The quantities in brackets in (29), and so in (33), are nonnegative for all t; in the case

A" = 1 this can be determined by inspection, and it follows for all n by the corollary

on p. Ill of [20]. Therefore

dt. (33)

+ JL (ns^ -').

dt

_ i \~
dt

dt (34)

= EHM
24n3 '

where £i , £2 , and £3 are numbers in ((r — l)/n, r/n). Now

t , «2
1+2+3+

so that F"(<) is continuous at £ = 0, and increasing in t. It follows from (31) that

0 < F"(t) < C/{ 1 - tf

for some constant C, and this and (33) imply that

\en{F)\ < C/24n(n — rf, r = 1, 2, • ■ • , n — 1.

Thus

71-1 p 71 1 p,

this, together with (32), implies that |EM"(F)\ = 0(l/n).

To bound the other term on the right side of (27), we note that for z £ [0, 1]

E%,(K(z, *)) = f EfJ 12x l"Vl - zt

= j_ r 2/ rq - tf _iT,(2k-1 _
27r J0 (1 — z<)3 L 2 n ^ V 2n

dt.

Call this last quantity I:g(z)", for convenience. We have seen that the Peano kernel

of Mn—the bracketed quantity in the last integral—is nonnegative and its integral

over each interval (r/n, (r + 1 )/n) is l/(24n3). Furthermore it is continuous, and its

derivative, at each point of differentiability, is < 2 in absolute value. It is therefore

< C/n2, for some constant C, for all t in [0, 1], It follows that
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2z2 , C ( z \ , C
ls(z)l <§l (1 — zt) n \(1 — z) I (1 — z)\3 dt — 2 \ /I \2 Z) 2

'It, J0 yi — Zi

Then

|QU)E^{K{z, tf))| = 1 v (2r ~ A ^ C v
nS<"ar) n r- 1 1 2?i

< ^ 2 (2n - 2r + l)"2 < -•
n tri n

This completes the proof of

Theorem 3. In the case of H*(Ci, 0,1,),

i tern* < i i^*i i2 = o(l

This looks very weak by comparison with the previous theorems, but I think that

it cannot be improved as to order.
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