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1. Introduction. We consider a thin circular elastic plate of constant thickness.

The plate is prestressed in the following manner: a slit is cut in the plate, a wedge of

small angle is inserted in such a way as to open out the plate fanwise, and the wedge

is then welded to the plate along its edges, as indicated in Fig. 1. If the plate is then

subjected to additional compressive stresses in its plane, it will not buckle until these

stresses are more than three times as large as they would be for buckling of the initially

unstressed plate, if the angle is properly chosen.

In a paper by Stoker [1], the critical values for the angle a at which buckling occurs

when the applied pressure is zero were calculated. Afterwards a rough estimate for the

critical angle ac at which the lowest critical compressive stress attains a maximum was

obtained.

It is the purpose of the present investigation to improve the above results and to

calculate the critical applied pressure which corresponds to a given wedge angle a.

In particular, an investigation of the singularity of the solution of the differential equa-

tions is carried out; this then aids in obtaining numerical results.

The mathematical formulation of the problem is based on the equation developed

by von Karman [2]. The deflection of the bent middle surface of the plate was taken

in the form

w(r, 6) = f(r) cos nd, n = 0, 1, 2, • • • ,

in which the integer n refers to the number of diametral nodes. The von Karman equa-

tion is then reduced to a fourth-order ordinary differential equation. This linear homo-

geneous ordinary differential equation, plus boundary conditions, constitutes an eigen-

value problem, where the eigenvalue corresponds to either the wedge angle a (if the

compressive pressure is taken to be zero) or the compressive pressure p (for any fixed

angle a). In both cases the smallest wedge angle a for p = 0 (or the smallest pressure

p for a fixed a) at which the plane state of the clamped circular plate becomes unstable

is determined by solving the ordinary differential equation numerically. For this purpose

a CDC 6600 digital computer was used. The method used in obtaining the numerical

solution is the so-called "shooting technique"; that is, parameters are introduced as

part of the initial conditions. Then these parameters are adjusted so as to make the

solutions satisfy the proper boundary conditions. With the help of other techniques

the desired results are obtained.

* Received April 2, 1971.
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WEDGE

Fig. 1. Circular plate with wedge inserted.

2. Mathematical formulation. The plane stresses1 due to the uniform compressive

stress p and the initial stresses which arise either from the insertion of a wedge of angle a

into a radial slit in the plate or from the removal of such a wedge followed by drawing

the edges together and welding them are

-*"iflog(i)•

o-« = -""jf [1 + l08l]

0 -100 0 100 200 300 400 500 600

Fig. 2. Curves for critical values of X vs. T for various values of n.

1 The initial stresses of the plate are obtained from those of a ring (see [3, pp. 63 and 69]) by letting

the inner radius of the ring approach zero.
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(a > 0 corresponds to the insertion of a wedge; a < 0 corresponds to a removal of a

wedge.)

The deflection w(r, 0) of the bent middle surface of the plate is taken in the form

w(r, 0) = /(r) cos nd, n = 1, 2, 3, • • • . (1)

We substitute w(r, Q) into von Kdrmdn's equation, and arrive at

_ 2 <H _ j~l + 2ri
s? -; 5? - L—?— + x log ̂

+H^+iiT+><i+iog*)|}! <2)

+ {"' ~.4"' - £ \T + X(1 + log lilj/u) - 0

where x = r/b, x G [0, 1], T = phb2/N, X = aEhb2/^N, N = M3/12(l - v2), v =

Poisson's ratios and h = thickness of the plate.

For n = 0, the differential equation (2) can be transformed into a second-order

ordinary differential equation by letting q(x) = (l/x)(df/dx); we have

;& + ii + <5' + xl°e*>«-0- <3>

The boundary condition for a clamped edge at x = 1 is

3(1) = 0. (4)

The regularity condition at x = 0 is

lim x (dq/dx) = 0. (5)
x-»0

To find the behavior of the solution of Eq. (3) at x = 0, where there is an irregular

singularity, we transform the point x = 0 to infinity by letting t = —log x. Eq. (3)

becomes

g —2|— (X«e-"-re-')9-0. (6)

The boundary and regularity conditions are

3(0) = 0, (7)

lim (dq/dt) = 0. (8)
t-* oo

It can be proved [5, p. 127] that there exists a solution q(t) of Eq. (6) such that

q(t) ~ exp [| (| - ie-2' - te~2') + | (1 - e"2')]

and q(t) satisfies the condition (8). Therefore, we have the asymptotic behavior of the

solution of (3)

q(x) ~ exp jj (i - ix2 + x2 log x) + | (1 - z2)J (9)
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which satisfies Eq. (5).

For the general case n = 1, 2, 3, • • • as denoted in Eq. (2), the boundary conditions

for a clamped edge are

/(l) = 0, df(l)/dx = 0. (10)

The regularity conditions are

/(0) = 0,

df(0)/dx = 0, if n > 2, (11)

d2K0)/dx2 = 0, if n = 1.

At the point x = 0, the differential equation (2) has an irregular singularity. The asymp-

totic expansion of the solution at the singular point is derived as follows.

We transform the singularity to infinity by letting t = —log x and then write the

equation in the form

dY/dt = (A + B(t))Y(t) (12)

where

Y(t) =
v&) = m y3(0 =

A =

Vi(t)

V2(t)

vS)

y*(t)

0 1 0 0

0 0 10

0 0 0 1

.4 n — ni 4ri 2n2 — 4 —4

0 0 0 0

B(t) =
0 0 0 0

0 0 0 0

[e~2tn2[T + X(1 - t)\ —e~2'[T + X(1 - *)] -e~2\T - \t) 0J

The characteristic equation of the matrix A is

/34 + 4j33 + (4 - 2n2)/?2 - 4A2/3 + (n4 - 4ft2) = 0.

The roots of the above equation are

h = 1, ft = -3, ft = -1, ft = -1, ft = 1

n>2, ft'"1 = -(n + 2), ft"1 = -n, ftn] = n - 2, ft"1 = n.

For n > 2, all the characteristic roots are simple, and the matrix B has the properties

lim ||B|| = 0, lim [ ||£||
t—* 00 t—* CO ^

dt < oo .
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It is known [5, p. 45] that the solution of Eq. (12) behaves at infinity as follows:

YM(t) ~ exp (0i"1$)£i*1> n = 2,3,4, ••• ,

where /3[nl are the characteristic roots of the matrix A, and ££"' are the corresponding

eigenvectors: I*"1 = (1, (3lkn], (/3i"1)2, (/S^"1)3). Thus, for Eq. (2), the corresponding solution

for n = 2, 3, • • • behaves as follows:

k-1

and

~dx ~ hi

To satisfy the regularity condition (11), — /3[kn] — 1 must be 0, that is, /3jf' < 1.

For the case n = 1, the root /3 = —1 is not simple; but with the help of a theorem

[6, p. 92] it can be shown that there exists a solution such that

fll,(x) ~ c[ux3 + c\u as x —* 0.

Therefore we have the expansion of the solution of Eq. (2):

fM(x) ~ c[Mxln+2] + 4"'xn, n = 1, 2, 3, • • • . (13)

3. Numerical solutions. The method used to solve this eigenvalue problem where

the eigenvalue corresponds to either X (for fixed T) or T (for fixed X) is known as the

"shooting technique". We consider the boundary value problem as an initial value

problem with initial condition obtained from the asymptotic expansion.

Cases, n = 1, 2, 3, • • • . For convenience, we transform the singular point x = 0

to z = 1, by letting z = 1 — x; then let yx = /(z), y2 = f(z), y3 = /"(z), lh = f"(z).

We adjoin to condition (10), which now serves as part of the initial conditions and

is in the form ?/i(0) = 0, y2(0) = 0, the following conditions: y3(0) = c, j/4(0) = 1.

The conditions at z = 1 are obtained from (9); these are

Z/i(l) = o,

j/2(1) = 0, if n > 2,

2/a(1) =0, if n = 1.

For our problem the point x = 1 is singular. Therefore we integrate at the point

z = 1 — From the asymptotic expansion (13) we have

2/i(l - «) = 0,

y2( 1 - e) = 0, » > 2, (14)

2/3(1 - e) = 0, n = 1,

with an error of order e.

The parameters are C and T (or X); they are adjusted so that conditions (14) are

satisfied. These conditions are now in the form

2/i(l — «; X, T, C) =0,

2/2(1 - e; X, T,C) = 0, n > 2,

1/3(1 - e; X, T, C) = 0, n = 1.
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In the four-dimensional spaces—(X, T, C, y,) and (X, T, C, y2) or (X, T, C, y3) if

n = 1—we are interested in the space curve in the (X, T, C)-space which satisfies

2/i = 0 and 2/2 = 0 (or y3 = 0 if n = 1) simultaneously. For a given X, we can obtain

the parameters C and T. Actually we are only interested in the value T, that is, in

determining the curve T(X) in the XT-plane. The point T0 = y2, corresponding to X = 0,

i.e. to the case of the unslitted plate (i.e. a = 0), where 7, in our case, is the smallest

zero of Jn+1(x). To obtain the curve T(X) we start at a value of X = Xj which is near

X0 = 0; the corresponding T(X 1) should then be close to T0 .

Let us fix a value for e and select four points (Tn , Cn), (TJ2, Cn), (T12 , Cl2), (Tn , C12)

in a TC-plane which form the rectangle Rl. [Tn , T12] is chosen such that T0 G [Tn , T]2];

[Cu , C12] can be chosen arbitrarily as the functions 1 — e; X, T, C)i = 1, 2, 3 are

linear in C (see Fig. 3).

Using a Runge-Kutta method with a mesh size m, we arrive at value of y,(l — e;

X, T, C) i = 1,2 (or 3 if n = 1) at the four given points. In the 2/iC-plane, we look for

the intersection of the C-axis with the straight line defined by the two points (t/x(l — «;

, Cn), Cu) and (yi(l — e; Xj , Tu , C12), CI2). We have thus found a C = C\ at

which 2/1 = 0. Similarly, we look for the intersection of the C-axis with the straight line

defined by the two points (2/1(1 — e; Xi, T12, Cn), Cn) and (2/1(1 — e; X,, T12 , Ci2), C12).

We have thus found a C = C\ at which 2/1 = 0. If we apply this procedure to the y2C-

plane, we can derive C\ and C2 at which y2 = 0. The points (TM , C\), (T!2 , C2) and

(Tn , C\), (T12 , C2) define two straight lines respectively in the TC-plane. The inter-

section of these lines, denoted by It , satisfies the conditions 2/1 = 0 and 2/2 = 0; and

h E Ri (if not, we can enlarge the size of (see Fig. 4).

To refine our estimate of Ii, we form a new rectangle R2 with /, as center and R2 C R\-

Following the same procedure, we find an intersection I2 such that I2 G R2 ■ In this way

we derive a sequence of intersections [Ik] and a sequence of rectangular regions (Rk]

(^121^12'

(T,2,C||)

Fig. 3. TC-plane at X = Xi .
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y,(C)sy,(i-«, X,T,C)

y2(C)=y2tl-e,X,T,C)

c

cf

(y.ic,, ),c„) c„

T = Ti;

C
c (yi(0|Z),cl2)
M2 /

c
^2^12^12^

y«

(y,(c,|).c„) *■» (fete,,), c„) c"

Fig. 4. At X = Xi, ?jC-planes for fixed T.

such that Rk C Rk-i and Ik £ Rk • If {/*} converges to a point I as we let e —> 0 and

the relations hold when m —> 0, then the point I(T, C) is the desired eigenvalue of our

problem.

As an example, we consider the case n = 7 and Xi = 100. Then'the point T0 =

T(0) = 147.5. Using T0 as reference, we let Rx be defined by the four points (Tn , Cn),

(T12 , Cu), (T12 , C12), (Tn > C12) where Tn = 1, ri2 = 200, Cn = —1, C12 = 1. A

Runge-Kutta method is applied. (In the interval [0, m] we use the mesh m; in [m, 1 — e]

we use the mesh size e.) The values of ?/,(1 — e; X, T, C) are obtained at the four points.

And the value of C at which y,(l — «; 100, 1, C), i = 1, 2, equals zero at Tn = 1 is

C\ = —0.0954, C\ = —0.0953. The value of C at which 1 — e; 100, 200, C), i = 1, 2,
equals zero at Tl2 = 200 is C\ = —0.1335, C\ = —0.1336. The two straight lines defined

by the two points (Tn , C\), (Tn , CI) and (Tu , CI), (T12 , C\) respectively have the

intersection (in the TC-plane) h = (130.7564, —0.1203). We let R2 be defined by
the points (T21, C2l), (T22, C2l), (T22, C22) and (T21, C22), where T21 = 110, T22 = 150,

C2i = —1, C22 = 1. The same procedure gives I2 = (111.6393, —0.1190). For R3 , we

use T3l = 90, T32 = 120, C31 = -1, C32 = 1, and I3 = (105.0932, -0.1177). We change

m to m — 2~n but keep e = 2~20. Choose R4 as TiX = 90, Ti2 = 110, C41 = —0.095,

= -0.121. Then = (108.1540, -0.1183).
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We list further results as follows:

R, = 100 = ~0-119 15 = (108.413, - .1184)
T52 = 110 C52 = -0.114

Tn = 108 Cai = -0.1186 = (1Q8 20j _ n84)

T& 2 = 109 C62 = -0.1183

Keep = Re and let to = 2"13 = 1.227 X 10~4, e = 2~20. Then/, = (108.286, -0.1184).

Next, we reduce the size of the rectangular region by letting Rs be defined by Ts! =

108.2, TS2 = 108.4, CS1 = -0.118397, C82 = -0.118356, with m = 2"11, e = 2"20.

Then /8 = (108.3, —0.1184). Let R9 = Rs . Change both m and e to

m = 2~14, e = 2'21, I9 = (108.2, -0.1184),

to = 2~15, e = 2~22, 7l0 = (108.2, -0.1184).

From the above results we obtain the estimate of the eigenvalue T. For our purpose

it is then reasonable to take T £ [108, 109] as a good approximation. For each n, we use

the same method and obtain the points (A, T) in the XT-plane. The points are indicated

by a cross sign in Fig. 2.

-20 O 20 40 60 X

Fig. 5. Curve for critical values of X vs. T for n = 0.
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IT

-(Xc,Tc)

-200 -100 0 100 200 300

Fig. 6. Critical angle X, .

Case, n = 0. In the three-dimensional space (X, T, q) we are interested in finding

the curve X(T) (or T{X)) in the XT-plane which corresponds to q(l) = 0. Using the same

procedure as in cases n = 1, 2, 3, • • • we list the following results:

(T, X) = (0, -20.2),

(T, X) = (20, 8.6),

(T, X) = (30, 26.5),

(T, X) = (40, 48.1),

(T, X) = (50, 72.3);

and the curve X(T) is drawn by connecting these points (see Fig. 5).

4. Conclusion. From Fig. 6, we find that by inserting a wedge into the plate

(corresponding to positive X), it is possible to increase the lowest buckling pressure,

corresponding to T = 14.7, to a value which can be estimated as T = 51 at which the

wedge angle a corresponds to X = 90; thus the critical value of T is more than tripled

by inserting a wedge. The critical angle ac would appear to correspond to a value in the

neighborhood of X ̂  90 and to a buckling mode with three diametral nodes. The wedge

angle a is given by the formula

a = \(4:irN / Ehb2).

As X = 90 and v = 0.3, we have a = 108(/i/6)2. For n > 4 the calculations make it seem

certain that they will not influence the critical value for a.
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