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1.0 Introduction. We will now consider the "escape" problem described in Part I

[1] modified by the addition of linear dissipative forces. All solutions now can be expected

to be of basically two types:

(1) Motions that constitute solutions decaying asymptotically down to the origin

(Xi — 0, x2 = 0).

(2) Solutions that "escape" with or without an initial decay process that is charac-

terized by amplitude reduction in the coordinates xx , x2 .

In Part I the conservative trapped motions were related to the stability transitions

along the loci of the families of periodic motions. In the presence of dissipation the

amplitudes of the periodic motions are progressively decreasing and the "escape"

problem will be related to the nature of the decaying periodic motion.

The contents of this study will be described in two sections. Sec. 2.0 discusses dis-

sipation effects in a simplified problem, the results of which will then prove helpful

in understanding the complete problem described in Sec. 3.0.

2.0. Simplified problem (in the absence of the "lip"). The phenomena associated

with the addition of dissipative forces can be understood more easily by considering

first the simpler problem where the cubic term in x2 is absent from the potential energy

function V(xt , x2) (For a definition of V(xy , x2), see (2.1) of Part I.) Thus, in the absence

of the "lip" the equations of motion with added linear dissipative forces are

W + it + ~ ev) = 2ea;iX2' (2-1}

^Jr + er, ̂  + 4x2 = ex! . (2.2)

Here n, rj are assumed positive and the small parameter e is taken as equal to 0.1.

For the weakly coupled conservative system (ij = n = 0) Kronauer and Musa [2]

have shown the existence of two adiabatic invariants of motion. These invariants are

found by truncating the series solution for the modal amplitudes and phases at some

order of the expansion parameter. The invariants obtained at the first approximation are
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Rh + 4/?o2 = constant = El , (2.3)

R01R02 cos (2<f> oi $02) 4:vR()2 — constant. (2.4)

Utilizing Gilchrist's transformation [3] to x> to coordinates defined by

• 2x^02 Roi J t rt
sm x = ' cos x = = ~~ ̂ 02'

we have from (2.4)

sinx cos2 x cos \f/0 — §r sin x = constant = K. (2.5)
■ft 0

Fig. 1 shows some typical integral curves in the x ~ io plane given by (2.5), for cases

with and without detuning. It may be noted that as the detuning parameter v increases,

the singular points P and Q move towards the limits x = 0 and x = vr/2 respectively.

At the same time the saddles S and V move toward each other. Identical behavior is

observed if E0 is decreased while maintaining v at some constant nonzero value.

In the presence of dissipation E\ and K are in general no longer constant. If Xi(t)

and x2(t) are assumed to be of the form

-7^ 0 **''11-o ^2 ^ '\-o ^2

+0 —

b)

C)

V * I/£ > I/|

E„" E,

d)

-7T/2 0 ir/2

Fio. 1. Integral curves onx - plane.
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x^t) = R0i cos (t + 0Oi) + 0(e) terms, (2.6)

x2(t) = R02 cos (21 + 002) + 0(e) terms, (2.7)

where R0i , Ron, <t>m , <t>02 are slowly varying functions of time, then a first-order analysis

with inclusion of dissipation yields:

dRoi/dt = ( e/2)[R01R02 sin (2<£0i <t>02) "t" m^oi], (2.8)

dR02/dt = (e/8)[i?oi sin (2<£01 — <£02) — 4^02], (2.9)

RMJdt) — ( e/2)[/20i-Ro2 cos (2<^oi 002) "t- 11R»1 ], (2.10)

R02(d(j)02/di) = ( t/8)/20i cos (20oi </>o2)- (2.11)

Assuming zero detuning for simplicity, the differential equations satisfied by E\

and K are now found to be

dE20/dt = sin2 x + n cos2 x), (2.12)

dK/dt = (-€K/2)(t? - M)(l - 3 sin2 x). (2.13)

The expressions (2.12) and (2.13) indicate that the average energy decay is proportional

to (17 + m) whereas the variation of K is dependent on (77 — fi). The integral curves

representation is now more complicated and the trajectories would have to be portrayed

in three-dimensional space with x, 'Ao and E0 as coordinates. However, we can still

consider x ~ to planes of successively decreasing energies and analyse the nature of

the trajectories. The differential equation for the x ~ to phase plane becomes

dx = [Ea sin to cos x ~ Q sin 2X] sin x ,2 14\

dto [E0 cos ^o(l — 3 sin2 x) — 4j> sin x]

where 0=7/ — ^.

Fig. 2 shows the trajectories in the x ~ to plane for different values of the parameter

q = (77 — fx)/'2Ea corresponding to a progressive decay of E0. The arrows marked denote

the instantaneous direction of motion within a X — to plane. Of course as time advances

we must also advance from plane to plane in a sequence of decreasing energy. We can

follow the character of the solutions approximately by considering successive x ~ to

planes.

In the sequence of diagrams in Fig. 2, two different decay processes can be seen.

Within each diagram the motions are converging towards stable singular points such

as P or Q in Fig. 2(a) or T in Fig. 2(e). This is the decay process characterized by (2.13).

In addition to this there is the general decay of energy which carries the system from

diagram to diagram and causes the singular points to move and coalesce. Fig. 2(d)

shows the coalescence of two foci and one saddle. Now in the full three-dimensional

phase space (x, to, E0) there are no true singular points except at E0 = 0; however,

these points of zero velocity for components measured in the x ~ to plane do characterize

regions of the three-dimensional field toward which trajectories converge. Note that

the final asymptotic state of the system is x —>> 0. This means that asymptotically the

residual energy of the system is in the x, oscillation, a fact consistent with the larger

dissipation in the x2 oscillator.

Fig. 3 shows the situation for n > j?. It is equally interesting that at the high energy-

level (Fig. 3(a)) there is no stable singularity in the two-dimensional field. This means
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b)

c )

e)

(7771) =1
-">2 O 7r 317'z

Fig. 2. Integral curves on x - #1 plane in presence of damping and zero detuning [ij > m]-

that during the early stages of energy decay from a high level the energy will tend to

exchange back and forth between the two oscillators. At lower energy levels (Fig. 3(c))

stable singularities arise at R and V and these persist down to E0 = 0. Once again -we

see that the residual energy ends up in the oscillator with the lesser dissipation (x2 here).

It is interesting to note that in both Figs. 2 and 3 the stable singularity at very low

energy is a node. This is consistent with the fact that the energy exchange process, being

nonlinear in origin, becomes progressively less important as the energy decreases and

in the limit the decay of the two oscillators proceeds quite independently.

An interesting case is obtained when there are equal damping constants in both

coordinates (rj = n). The integral curves are then identical to those for conservative

oscillations and the total energy decays exponentially as

El(t) = ^(0) exp (-«,<). (2.15)

The energy exchange process is no different from that for conservative oscillations but

occurs progressively more slowly at progressively decreasing amplitudes of xx and x, .

The addition of detuning modifies the integral curves considerably; Fig. 4 shows some
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typical examples. A decrease of the system energy causes a drift of the stable foci P, P'

toward the stationary saddles B and J respectively. In contrast, the unstable foci Q

and Q' drift toward the nonstationary equilibrium points S and E. There is a critical

value of the (q, p) pair when S and E coalesce with Q and Q' respectively, following

which S and E transform into unstable nodes. Furthermore, R and V drift along x equal

to w/2 toward E and S. Their subsequent coalescence occurs at an energy lower than

that necessary for the formation of nodes at E and S.

As the energy continues to decay the trajectories are eventually directed towards

the stable foci P, P' which in turn approach the asymptote x equal to zero. However,

the number of cycles of \[/0 executed before termination at the stable foci increases in

proportion to the initial value of x- In contrast to the case for zero detuning, the tra-

jectories are all parallel to the axis at very low energy levels, indicative of the fact

that the detuning which causes the steady change of phase is linear and hence dominates

over the nonlinear energy exchange process.

A reversal of the sign of Q = (q — ju) causes the trajectories to be directed eventually

toward x equal to t/2, as seen in Fig. 5.

b)

c)

e)

Fig. 3. Integral curves on x — to plane in presence of damping and zero detuning [ij < /J.
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a) Xt
p : .124

q ! .10

"27T -ZTT/Z -7T -T/2 0 Vz V 3^/2 277"

^0 —

E R

_ p : .177
b) xt q; 143

-27T -7T

E R s V

p : 0.236

q : 0.19

27r
P= 2^ f = l.24

Fia. 4. Integral curves ill X - 'ro plane in the presence of damping and detuning [7; > ju].

For equal damping constants (ij = n) the integral curves for fixed v are similar to

those shown in Fig. 1(b) and (d). If the initial conditions x(0), WO) coincide with either

of the equilibrium points P or Q the system decays towards the asymptotic values of x,

maintaining a constant phase of 0 or ir. The asymptotic behavior for very low energies

consists of trajectories parallel to the \f/0 axis.

3.0. Complete problem (including the "lip"). Having described the kinds of motions

that occur for the simpler problem, we shall now consider the complete problem in the

presence of the "lip".

The differential equations of motion in the presence of dissipation and with the

"lip" included are

^ + Xi(l — ev) = 2eXiX2 , (3.1)

W + tr> It + 4X2 + 3x2 = ex? • (3-2)

An examination of Fig. 6 (reproduction of Fig. 6 in Part I) suggests that the study

with dissipation might be most interesting for values of v in the range 2 > v > 0. In
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particular one could ask: "What is the character of decay for a solution which in the

absence of dissipation would be trapped at a high energy level corresponding to a Family 2

solution?" Since Fig. 6 shows the existence of divergent solutions at energies through

which the system must pass if it is to decay asymptotically to the origin, it might be

expected that escape from the potential well would be a necessary consequence of

dissipation. As we shall see, this is not always the case. There are two ways in which

stable decay to the origin can occur. One is with very large dissipation which removes

most of the energy from the system in very few oscillations. The other is with properly

arranged small dissipation that drives the system toward a decaying Family 2 type

periodic solution. Fig. 7 (Fig. 12 of Part I) shows that for v > 1.3 there are branches

of this family that extend from near the origin to high energy levels. Figs. 8a, 8b, and 8c

show approximate sketches of the trapped regimes for the indicated values of v. There

is a sharp narrowing at Q for v = 1.3 and a subsequent break-up of this region for lower

values of v.

Let us consider now the initial conditions z2(0) = £i(0) = (dx2/dt) (0) = 0 and

(dxi/dt)(0) 0 which were used to generate Fig. 6. If we assume that the analysis of

Sec. 2.0 can be applied in some approximate sense here, then we expect that for -q > n

solutions will decay toward the synchronized periodic motions. Then, if the initial

condition (dxi/dt) (0) is not too far removed from the locus of periodic solutions, we would

a) X t
p : .124

q : -.10

"27T -7T

  p : .177
b) Xt  ■— q : -.143

O x!

Fig. 5 Integral curves in x — plane in the presence of damping and detuning [ij < m]-
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-4-3-2-101234

DETUNING : v

Fio. 6. Plot of logarithm of normalized escape energy versus detuning v [—4 < v < +4],

expect this decay to take place quite rapidly and the system could then decay to lower

energies along or near the locus. If the locus proceeds continuously toward zero energy

as it does for v > 1.3 the trajectory can be expected to remain trapped throughout the

decay process.

Even if there is a break in the locus of periodic solutions, as at Q' in Fig. 8(c), a

modest amount of dissipation can permit the system to "jump the gap" and continue

to decay without escape.

5 6

DETUNING : v

Fig. 6a. Plot of logarithm of normalized escape energy versus detuning v [4 < v < 8].
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Fig. 7. Plot of family of periodic solutions for different values of deturning v. Legend: (x) : Position of

"lip"; : Family #1; : Family #2; : Family #3; —>|: Limit of trapped solution;
(a): Locus of vertical tangents to Family 2 solutions.

The problem at hand has two parameters, the initial energy (equivalent to (dxi/dt) (0))

and the detuning v. For any set of these we can determine values of 77 and p. which lead

to escape or stable asymptotic decay. The results are shown in Figs. 9a, 9b, 9c. The

figures show the demarcation lines (for different v) in the 1? — m space that separate the

stably decaying solutions from those that "escape." These results were obtained from

simulation studies on the analogue computer and each of the figures refers to a particular

initial energy level.

Considering Fig. 9a, we see that for ?? > n the dissipation necessary for asymptotic

decay decreases with an increase in v, in agreement with our earlier hypothesis. From

Fig. 9b we observe again that for v < 1.3 progressively increasing dissipation is necessary

Fig. 8. Regions of trapped solutions for 1.0 < v < 2.0.
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dx,/dt (o) = 6.4

'°9 10 = '1

A: V - 0 ^

□ V = 1.0

v i/ = 1.2

Stabie
' Decay

2 3 4
x, damping (/x) —>■

Fia. 9(a). Demarcation boundaries between "escape" and trapped solutions in the presence of damping

forces.

dx i/dt (o) = 8.00

'°9io eo/el= i-43
. Stable

y Decay

2 3 4
x, damping (fi)—*-

Fio. 9(b). Demarcation boundaries between "escape" and trapped solutions in the presence of damping

forces.
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dx, /dt Co) = 12.00

lOQio Ec/EL= I-78

o ■ v - 2.0 , Stable
*1 / Decay

A - V - 0 X

3 4 5
x, damping i/x) —

Fig. 9(c). Demarcation boundaries between "escape" and trapped solutions in the presence of damping

forces.

for stabilization. Fig. 9c corresponds to a very high-energy initial condition and shows

that even for v - 2.0 we require now relatively much heavier dissipation than in the

earlier two cases. Note the sharp "dip" in the locus for v = 2 (Fig. 9c), the significance

of which will be considered below.

Fig. 10a shows an example of a decaying solution in xx — x2 space. The solution

becomes unbounded after three or four cycles of oscillation. Remarkably, an increased

-5 5 *! xi

V- 1 -- v-\

dx,/dt(o)= 6.4 dx,/dt (o)= 8.0
x2 damping ij: 1.0 damping tj: 1.0

X] damping /j.' 1.0 Xi damping /i- 1.0

Fig. 10(a). "Escape" solution. Fig. 10(b). Asymptotic decay.

Fig. 11. Trapped regimes for v = 1.0 [Fig. 27 of Part I].



13S R. SUBRAMANIAN AND R. E. KRONAUER

value of the initial energy causes the solution to decay asymptotically to the origin

(Fig. 10b). From Fig. 11 we notice that when (dx1/dt)(0) is 6.4 the motion is quite far

removed from a Family 2 periodic solution and is in an adverse location for negotiating

the "jump" from region B to region A necessary for stable decay. In contrast, an initial

condition of dxjdt = 8.0 is very close to the locus of periodic solutions and the decay

proceeds in that direction. Note that the decay process has to make a transition first

from region C to region B and then another one from B to A. Both of these are accom-

plished with a dissipation that decreases the amplitude of the pseudo-periodic motion

by about one-third in each complete cycle. The solution shown in Fig. 10a is characterized

by a sizable transfer of energy to the x2 coordinate during the decay process and subse-

quent "escape."

Figs. 12a and 12b show examples of decay from a very high initial energy level. The

solution in Fig. 12a has an initial energy neighboring that for a Family 3 periodic solution.

The damping constants are of the right relative magnitude to cause the solution to

decay stably to the origin. A slight increase in /x, however, causes the solution to be

divergent, as seen in Fig. 12b.

The explanation is that the decay toward the periodic solution is caused by v — n,

so that raising n decreases this effect. Actually the process of stable decay to the origin,

as in Fig. 12a, is a complex series of events, requiring first a decay toward a Family 3

periodic solution, then a transition to a Family 2 periodic solution and finally a con-

tinuing loss of energy along the locus of Family 2 periodic solutions. In Fig. 9c it is clear

from the narrow "dip" in the experimental stability boundary for v = 2.0 that only a

precise balance between 77 and p. will permit this chain of events to occur for modest

levels of damping.

3.1. Influence of dissipation on the integral curves. The mathematical analysis

in Part I (Sec. 5.2) describing the amplitude and phase variations showed that the

quadratic term representing the "lip" had no effect on the variations when considering

first-order terms. Therefore it was necessary to consider a second-order analysis. Then

the effect of the "lip" was seen, but only in the phase variations. Detuning, which affects

the phase variations in the first-order analysis, has an added effect on the amplitude

variations in the second-order analysis. Here we wish to include dissipation in as simple

a way as possible. Thus we assume the damping constants to be sufficiently small that

quadratic terms involving them can be neglected while the analysis will include second-

order effects of the nonlinearities. In such a case the added terms due to dissipation

occur only in the amplitude variations and are identical with those in (2.8) and (2.9).

X2

5
5 M \ T z/ = 2

v = 2 n dx]/dt (0)= 12
dxi/dt (0) = 12 \ x2damping 77: 2

x2 damping 17: 2 \ X] damping /i- 1.4
xi damping /j.' 1.22

Fig. 12(a). Asymptotic decay. Fig. 12(b). "Escape" solution.
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Otherwise the equations appear as in Sec. 5.2 of Part I. If we introduce the variables
If

X and \p0 as in that section

(tan x = R0l(l +^025f<S)1/2 : = 2001 ~ </>02) '

the differential equation for the x ~ phase plane with dissipation included becomes

dx = [Ee sin yp0 cos x — ft sin 2X] sin x /o o\

dio [Ee cos ^0(1 — 3 sin2 x) + (Sk0/2)E2e sin3 x + (Sh — sin x]

Here Ee has a slightly different distinction from E0 in order to include second-order

effects due to the "lip":

El = 74(1 + .025.5) + 474 . (3.4)

In (3.3) k0 , ki are parameters depending on v, Ee and 5 is the perturbation parameter

(see Sec. 5.2 of Part I).

Relation (3.3) shows that for ft = 0(j? = n) the family of integral curves described

in Part I can again be used to study the dissipative system. Of course since the total

energy is decaying we would again have to consider x _ *Ao planes of successively de-

creasing energy.

Consider a value v = 2 and equal damping constants {-q = n). For an initial condition

close to A of Fig. 13 (Fig. 30 of Part I), the solution remains trapped close to A regardless

of the energy level. The ratio of x2 amplitude to Xi amplitude is small (since x is small)

and both amplitudes decay together as Ee decreases. For v = 1, there is a coalescence

of A with C at some low energy level and an integral curve that was closed around A

at a high energy level "opens" and exhibits a monotonically increasing phase (^0) at

low energies. In this case a high-energy solution can still decay to the origin but only

with a larger dissipation than that for v = 2. This is equivalent to jumping over the

INTEGRAL CURVES FOR X>40" ARE

ALMOST PARALLEL TO Vo AXIS

-90° 0° 90° 180° 270° 360°

ilyr0

Fig. 13. Integral curves in x — to plane.
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gap Q' in Fig. 8c. For v = 0, the coalescence of the singular points A and C occurs at a

still higher value of the energy, so that even greater dissipation would be necessary for

stable decay.
For ?? different from n the motion is more complicated.

Figs. 14, 15, 16 have been prepared by calculating singular points from (3.3) for

selected values of y — n and E„ and then sketching the trajectories qualitatively using

the linearized properties of each singular point. For v = 0 (Fig. 14), as the energy de-

decreases the stable singular point B moves toward the saddle at P. For a reversed

sign of rj — p. the focus at B becomes unstable and B moves toward Q with decreasing

energy.

Fig. 15 shows a typical example for v ^ 0. As the energy parameter E'0 decreases,

A moves toward the saddle at x = 0; <Ao = ir/2 while B and C drift toward each other.

The figures also show initial condition regimes that lead to an asymptotic decay, either

toward A or B. Note, however, that there is no guarantee that there will be a stable

decay. For the conservative case B corresponds to a Family 1 periodic motion and

for E] > 20 it is unstable, a fact not evidenced from the closed integral curves surrounding

B for the conservative case (the instability arising due to the generation of a one-half

subharmonic). Clearly in the presence of dissipation and for high-energy initial conditions

lying near B, asymptotic decay toward B as seen in Fig. 15 is not sufficient to prevent

"escape." However, if the point B is stable in the absence of dissipation then for initial

conditions sufficiently close to B decay toward B does ensure trapping. It has been

Fig. 14. Integral curves in the presence of damping (t; > n-v = 0).
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Fig. 15. Integral curves in the presence of damping (ij > n, v = 2).

ttzzzzzzzzzzzzzzi q H/4

Fig. 16. Integral curves in the presence of damping (i? < n, v = 2).



142 R. SUBRAMANIAN AND R. E. KRONAUER

experimentally observed that addition of dissipation extends the energy bounds for the

trapped motions to levels slightly above those obtained for the conservative case.

For i? < m the integral curves are shown in Fig. 16. The reversed direction of the

trajectories (spiralling from A) causes a buildup of the x2 coordinate and we can in

general expect a lower stability margin than that for ?j > /x.

4.0. Conclusion. The analysis in the presence of dissipation has revealed one

striking observation. The addition of small dissipation properly distributed between

the modes causes some of the high-energy solutions which are trapped in the conservative

case to decay asymptotically to the origin. A significant feature of this type of solution

is its passage through energy levels which in the absence of dissipation would have

caused divergence.
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