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1. A problem in linear regression. It is well known that often a theoretically best

statistical estimate may be of limited value in actual practice. The computation required

may be excessive, for instance, or more critically, a priori information may be needed

which is unavailable to the investigator. As a result, there has been considerable interest

traditionally in the formulation of other estimates which are close to optimal and at

the same time computationally feasible and less dependent on intimate knowledge of the

particular phenomenon being studied. The purpose of this work is to make such an

addition to an already rich branch of statistics—time series analysis.

Let us consider the simplest example of linear regression in time series. We have a

discrete time process

xk = m + yk, k = 1,2, (1.1)

where m is an unknown real scalar and the y process is

(i) real-valued,

(ii) wide-sense stationary (zero mean),

(iii) with continuous spectral density /(X).

The problem is to estimate the parameter m using observations of the x process

{xi , ■ ■ ■ , xn}. It is natural to consider linear estimates mEST = 22 CkVt where the ch's

are normed to eliminate bias, 2I ck — 1. The most important such estimate is the best

linear unbiased (BLU) estimate, which minimizes variance. It is possible to show that

if the covariance matrix R of the y process is invertible, then this estimate has the form

mBLc = (eTR~1e)~1eTR~1x (1-2)

where

e = x =

' Received August 7, 1970.
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Under our conditions for the y process, the BLU estimate exists, is unique, and has

variance which tends to zero as n —* °° (see Grenander and Rosenblatt [2]). However,

it illustrates the dilemma mentioned above. The covariance matrix R may not be known

in practice and even if it is, its inversion for high dimension will pose computational

problems. A common remedy has been to ignore the structure of the y process and to

use the straight arithmetic mean which has justification as the least squares estimate:

lTjXk. (1.3)»iL8
n

It has been known for some time (see Grenander [1]) that in certain cases the least

squares estimate is good in the sense that its efficiency tends to one (or its asymptotic

efficiency is one):

Var (jKblu) 1 /1 ,i\
»»->-. o-4'

This result does not hold for all spectral densities /(X). We may weaken our conditions

so that /(X) is only piecewise continuous but the restriction must be added that /(X)

be bounded away from zero in a neighborhood of X = 0. This restriction is fundamental

since the form of the regression distinguishes the frequency X = 0 (see Grenander and

Szego [3]). It is at this point that we depart from previous results to examine the case

where /(0) = 0.
2. An asymptotically efficient estimate. We shall restrict our discussion to the

class Y of spectral densities where /(X) is an even, continuous, positive function except

for a second-order zero at the origin. We shall often use the factorization /(X) = (2?r)-1

|1 — e*x|2 gf(X) in order to isolate the zero.

The first question to be answered is whether the least squares estimate is asymp-

totically efficient for the class Y. At this point it is natural to introduce the role which

the computer and automatic plotter played in this investigation. A certain amount of

preliminary experimentation is reflected in Figs. 2.1-2.8. Fig. 2.1 shows spectral density

/(X) = (27T)"1 (1 - .1 cos X) for which the least squares estimate is known to be asymp-

totically efficient (see Figs. 2.2-2.4). Fig. 2.5 shows spectral density /(X) =

(2ir)-1(l — .9 cos X) for which the least squares estimate is again asymptotically efficient.

But note the slower rate of convergence. This suggests that the condition /(0) = 0

might be a limiting case where the least squares estimate breaks down in some way.

This hypothesis receives substantiation in the next example. Fig. 2.9 shows spectral

density /(X) = (2ir)~'(l — cos X). Note that while the least squares estimate appears to

be tending to zero (in variance), its efficiency also is decreasing (Figs. 2.10-2.12). On the

other hand, the coefficients in ?raBLU appear to have a rather nice form (they are plotted

in Fig. 2.13 versus their subscripts). In fact, it is not difficult to make these observations

more precise.

Theorem 2.1. Let /(X) = (27r)_1(l — cos X) = ir~l |1 — e'x|2, then n3 Var (mBLU)

12.

Proof. The requirement Rc = ne from (1.2) gives a simple set of equations:

2ci — c2 = m, 2c„ — c„-1 = n,

2Ck (ck-\ Ct+i) = n, k = 2, •••, n 1.
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These can be solved with the side condition ^2 ck = 1 to yield

6
Ck n + 2

A straightforward calculation shows that

* i__A
n \ n + 1/J (2.1)

i o

Var (mBLV) = ^— 1)(n + 2j • (2-2)

Theorem 2.2 shows that the least squares estimate has a slower decrease in variance

which produces zero asymptotic efficiency.

Theorem 2.2. Letf{\) = (2tt)_1(1 — cosX) = ir-1 |1 — e*x|2. Thenn2Y ar (mLS) = 2.

Proof.

Var (mLS) = eTRe

i r+T " 1

i?'"'rii1-

1 C+T
= —2 / (1 — cos nX) cfX.

eiXl2 dX

Hence, n2 Var (mLs) = 2.

At this point in the investigation it seemed reasonable to abandon the least squares

estimate as asymptotically efficient over the class Y. A different approach was suggested

by the particularly simple form of the ?nBLU coefficients in Fig. 2.13. What about using

this type of estimate for all spectral density functions in the class Y? An analogy may

be made in the following way: the least squares estimate, being the BLU estimate for

/(X) = (2ir)~1, is invariant with regard to asymptotic efficiency under multiplication

of /(X) by an arbitrary positive function (i.e. for all densities (27r)~V(X)). That this type

of invariance might hold for the class Y received support in the next example investi-

gated. Figs. 2.14-2.19 show results for /(X) = (2tt)_1(1 — cos 2X). The parabolic estimate

mP is defined for computational convenience as a slight modification of the BLU estimate

for/(X) = (2ir)_1(l — cos X):

6 n
— 2

1
- (' - -)] ■
n \ nj J (2.3)

The next result shows that this modification is not too drastic.

Theorem 2.3. With the asswnptions of theorem 2.1, m„ is asymptotically efficient.

Proof. Straightforward calculation shows that

V" (m') "

and hence

Var (mBLu)/Var (mv) —> 1.

We are now prepared to show that the parabolic estimate is indeed asymptotically

efficient over the class Y. Theorem 2.4 gives a rate of convergence for the parabolic

estimate.
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Theorem 2.4. Let /(X) £ Y. Then

n3 Var (mP) —> I2g(0).

Proof. Letting {ck} represent the coefficients of the parabolic estimate, we set

Vn(z) =
1

6 n k

so that

Let

n2(n — 1) i n \ n)

n3 Var (m„) n3 1 f+T , iX ,2 , ,-X|2 7,

 12  =\22^L lMe }| 11 ~ 6 1 !7(X)dX-

W = ££ |1 - ea|2 |p„(e'x)|2

and we note that the statement of Theorem 2.3 is equivalent to

/+ T

hn(\) d\ 1.

If we can show that h„(X) —> 0 uniformly in X on Tt = \ — TT, — 6l W fe, it] for arbitrary
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but fixed e in (0, t), then the result of the theorem will follow. A bit of computation

will show this:

(jLY2 ^ _ 6n5/2 ^ k ( k\ ax
\247r/ TK(f} } ~ (247T)1/2(n2 - 1) £ n V1 nf

1 d ( >ix\ ,1 d2 I ^ .*x\6n3/2

\1/2/ 2
(247r) (n - 1)

 1 [(n - l)e'x + (n + l)ei(n+I,x

so

(24tt)I/2(n2 - 1) nil - eKf

- (n + l)e'2X - (n - l)ei("+2,x]

|(^(x))1/2| < 6n3/2 4n

(247r)1/2(n2 - 1) n |1 - e,x|2

We fix e, 0 < e < 7r and note that |1 — e'x|2 is bounded away from zero on I, , say

|1 - e'x|2 > 5. Then

/\ wi/21 ^ 6n3/2 4

l( '"(X)) I - (24tt)1/2(?i2 - 1) 8 °n ' '

Hence, /t„(X) tends to zero uniformly on It and the theorem follows.

Our main result is contained in the next theorem. The method of proof is similar

to that used in Grenander and Rosenblatt [2] for the case of positive spectral densities.

Theorem 2.5. Let /(X) £ Y. Then mv is asymptotically efficient.

Proof. In view of Theorem 2.4, we only have to show that

n Var (mBLu)/12 —> £7(0).

The proof will be in two steps: first we verify the result for a dense subclass of densities

in Y and then we perform an extension through a continuity argument.

Let us consider a y process of the form

b0y, + biy 1 + i + ••• + bayl + a = tt + a — e« + a_1 (2.4)

where Ee,t, = St, and with the roots of the characteristic polynomial XX o bkzk inside

the unit circle (this implies that Eyjei+k = 0 for all j and k > 0). We consider the space

spanned by yl , ■■■ ,yn. Now y i , • ■ • , ya-i are orthogonal to ea+1 — ea , ea+2 — €0_j ,

• • • , e„ — e„-i so that we can perform a change of co-ordinates (using Gram-Schmidt)

Ay = v

duyi dl2y2 4" ■ * * ~t" = Vi

d2iVi + d22y2 + • • • + d2,a-2ya-2 = t]2

^3i2/i "I- d32y2 -f- • • • -f- d3t<x-3ya-3 = tj3

baVa Va
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boVl ~f~ ̂ lZ/2 ~\~bay a + i = 7]a + l

€a+i €a

O'2/i "f" biUz "f" b2y3 ~\~ba+1ya+2 = t]a+ 2

= fa+2 «o+l

0 • Hi + 0 • y2 • • • + fcoj/n-a + • • • bay„ = ?7n

such that for i, j < a, Ey^t = 0 and for i < a, Erj] = 1. We note further that for

i, j > a, Et]iT)n = — 1 if i 9^ j and Er{\ = 2. Also for i > a + 1, Ei)at)i = 0. Fori =

a + 1, we have Eijatia+1 = — 1 since

Er]aT]a+1 = E[ — baya(ea + i — £«)] = —bEyaea+1 .

But b0y0 + • • • + baya = e„ — ea-i which implies that Eyaea = l/ba , hence

EricVa + i = —baEyaea+1 = — 1.

Therefore the covariance matrix of the vector i] is given by

[la-1 0

Q = =
0 Jn—a +1.

where

I.-i = (a — 1) X (a — 1)

and

J n-a+l

P -1

-12-10

_1 .

0 • • -1

-1 2

(n — a + 1) X (n — a + l)(/3 = Ei)l = blEyl).

Now the variance of the BLU estimate is given by (eTR~1e)~1 where R is the covariance

matrix of the y process. Since Ay = t], we have Aft A7 = Q or R'1 = ATQ~l A so that

Var (mBLu) = ((Ae)rQ-1Ae)-1. For convenience we let 7 = Ae,

a-1

7.- = XI hi i < a,
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= — ba i = a,

= ^2 bk = B i > a.
k-1

Now

n n

Va,(L„> * y'Q"y ' § £ yW""y'
We split this sum into four parts:

(i) Si = X Zr!?!,71^
i"a i = a

= |£|2 £ E g!,-u + ^
j = a j = a

= |.B|2 X) XI eWii^e,- + e
i = a j'-a

= \B\2eTJ~_a+1e + 6.

It is easy to show that = e where

a =

is given by

&h-a + l

n = t , Jl , (g - D(^2 + 0] _i_ (2 - /3)(Zz + D
a< 2 |_2 2[Z(/3 - 1) + 1]J ^ 2[Z(/3 - 1) + 1]

where I = n — a + 1. We have

r j-i T t-1 T 1 TW 1)(2Z + 1)1
e Jn-a+1e = eJie = ea = (2Ja, = — -    J

*(? + 1) [l Q8 - 1)(Z2 + Q] (2 - + f)

2 |_2 2[Z(/3 - 1) + 1]J ^ 2[1(J3 - 1) + 1] '

and hence lim^c, eTJl1e/l3 = 1/12 which implies that limn-.„ eTJ„*a+le/n3 — 1/12.

An auxiliary argument shows e = o{n) implying

lim 12 SJn* = \B\2. (2.5)
»-»oo

(") S2 = Y, £
t-1 |-1

a — 1 a — 1

= X) X) yhi ■
i"1 j-l
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Thus

lim S2/n3 = 0. (2.6)
n—»oo

(iii) £3 = £ £yTiQuVyi ■
i = l j — a

For i < a — 1, j > a, qlj1* = 0 so that

S3 = 0 (2.7)

(iv) = EE yWi7vyi ■
t = a j »1

As for S3 ,

St = 0. (2.8)

Combining (2.5)-(2.8), we conclude that

.. n3 Var (mBLU) 1_

12 ~ \B\2 "

Noting that the spectral density of the process defined in (2.4) is

|1 - ea

2tt
m ^ 'I e'1 - ^ 11 - «T ffW,

£ m"xi2 2x

0

we see that 1/|-S|2 = <7(0) so that by Theorem 2.4, mv is asymptotically efficient.

Now we suppose that /(X) E Y is of the general form (2x)_1 |1 — e,x|2 g(\). Given any

5 > 0 it is possible to choose two spectral densities of the type (2.4), ^(X) = (2tt)~1

|1 — e,x|2 ^j(X) and /2(X) = (2ir)~1 |1 — e'x|2 £?2(X), such that

0 < g(\) - ff,(X) < 5, (2.9)

0 < g,(K) - g(X) < 5. (2.10)

Expanding notation a bit, we let

Yar (m, /) = cTRc = /+' I Z c*e"x|2 /(X) dX, (2.11)

and mBLU , , m™,, be the BLU estimates under the hypotheses /(X), /i(X), and

/2(X) respectively. We have then evidently

Var (mBLU , fi) < Var (mBLu , A) < Var (mBLXJ , /) < Var (wblu , /) (2.12)

< Var (??Iblu > A))

where the first and third inequalities follow from the minimal nature of the BLU estimate

and the second and fourth inequalities follow from (2.11) and the fact that (2.9) and

(2.10) imply /i(X) < /(X) < /2(X). The first part of the proof of this theorem showed

that n3 Var , ft)/12 —» g,(0), i = 1, 2. Hence

gM < li^^VarK,,/) < lim n" Var(mBLTJ , /) < ^

10
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Since 5 > 0 is arbitrary in (2.9) and (2.10), we have

n Var (mBLU , /)/12 —> g(0)

and the theorem is proved.

An interesting consequence is the following asymptotic property of the least squares

estimate.

Corollary. Let /(X) £ Y. Then

n Var (mBLU) 12^^(0)

7 Var (mLS) g(\) d\

Proof. Theorem 2.5 showed that n3 Var (mBLu) 12^/(0). A generalization of Theorem

2.2 (requiring only a routine application of the Riemann-Lebesgue lemma) shows that

:Var (?nLS)->-[ g(\)
7r J — tt

d\

and the result follows.

3. Discussion. We have shown that for the class Y of spectral densities the

parabolic estimate is superior to the least squares estimate. It requires somewhat more

computation but not a prohibitive amount. Our opinion is that in actual practice the

parabolic estimate should be used when /(0) is known to be small and possibly equal to

zero. If, in fact, /(0) > 0, the following theorem shows that the results cannot be too bad.

Theorem 3.1. Let /(X) satisfy all the conditions of Y except that /(0) > 0. Then the

asymptotic efficiency of the parabolic estimate is 5/6.

Proof. First, we recall the fact that

£;Var (mBLU)-*/(0) (3.1)

(see, for instance, Grenander and Rosenblatt [2]). We have

Var (m„) = f* |p„(e'x)|2 /(X) d\, (3.2)

where again

, \ 6w k (1 k\ k

n

»'X\ 12Let Zn(\) = (5/l27r)n |pn(el )|2 so that

= f* Z„(X)/(X) d\. (3.3)
5n Var (m„)

12tt

We now use a singular integral argument similar to that of Theorem 2.4. From there we

recall that

b„(eiX)| < 24n/[(n2 - 1)| 1 - eiX|3],

so that
v»/» 24w3/2

KWI < (jfJ (n2 — 1) |1 — e
X 13 »
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and hence Z„(X) —» 0 uniformly in X outside any neighborhood (— e, «). The second step

is to show that

f 1. (3.4)
— x

It is easily seen that

C «x> 5 (l)X1 -!)" ~ 3o£ £ ©'(■ -•
The normalized sum is a Riemann sum which converges to

I Al~xTdx = ±-

Hence, we have shown (3.4) and conclude that

r LWm d\ ̂  /(0);
^ - T

or using (3.3),

5n Var (jriv)/12ir —»/(0). (3.5)

Combining (3.1) and (3.5), we have the desired result.

Figs. 3.1 and 3.2 illustrate this result for two spectral densities introduced before,

/(X) = (2tt)~1(1 — .1 cos X) and /(X) = (27t)_1(1 — .9 cos X)

respectively.
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We conclude with a conjecture in which there is certain experimental justification

and for which a proof by induction seems reasonable.

Conjecture. Let Yr be the class of spectral densities which are even, continouus,

and positive except for a 2rth order zero at the origin. Then the BLU estimate associated

with the spectral density (2ir)_1 |1 — e*x|2r is asymptotically efficient over Yr .
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