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APPROXIMATE SOLUTIONS TO SOME STATIC AND DYNAMIC

OPTIMAL STRUCTURAL DESIGN PROBLEMS*

by RAYMOND H. PLAUT (Brown University)

Problems of optimal structural design for minimum deflection, maximum fundamental

frequency and maximum stability are considered in this note. The optimality conditions

for these problems consist of nonlinear differential equations which usually require a

numerical solution [1-16]. An alternate approach based on the Ritz method is presented

here, in which one works with an approximate expression for the objective function

rather than the optimality equation. A few examples are considered and some new

results are presented.

For simplicity the analysis will be restricted to elastic beam-columns subjected to

distributed transverse loads and axial loads. Let x be the axial coordinate (0 < x < I),

m(x) the mass per unit length and s(;r) the bending stiffness. A sandwich cross-section

is assumed, with a linear mass-stiffness relation

m( x) = a2 + b2s(x). (1)

Beams of equal total weight are considered, so that

f m(x) dx = M0 . (2)

The governing equation is assumed to have the form

[s(x)y"(x)]" + Py"{ x) + \0y'(x) — um(x)y(x) — q(x) = 0 (3)

where y(x) is a deflection or deflection amplitude and a prime denotes differentiation

with respect to x. The ends of the beam are either built-in (y = y' = 0), simply-supported

(;y — sy" — 0), or free (sy" = (sy")' = 0) in the absence of axial loading, while the

transition conditions are continuity of displacement y, slope y', bending moment sy",

and shear force (sy")'.

In order to obtain an approximate expression for the frequency, displacement or

critical load, consider the functional V defined by

V = [' {s(y")2 - P(y')2 + 2\0y'y - o>2my2 - 2qy] dx
Jo

+ [y(sy"Y - y'sy" + Py'y]lZ'0. (4)

For some problems V is stationary with respect to kinematically admissible changes

in y, while in others this property holds if a constraint is added in the variation of V.

In either case, a Ritz type of procedure is applicable. The displacement y(x) is assumed
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to have the form

2/0*0 = Z) a,/.0*0 (5)
t = 1

where each /< satisfies the kinematic boundary and transition conditions. In addition,

the stiffness s(z) is restricted to have a certain form characterized by a set of parameters

bj , j = 1,2, • • • , m. From the equations

dV/da{ = 0, i = 1, 2, • • • , n, (6)

along with any required constraint on the variation, one can obtain an approximate

expression for the objective function in terms of the . This expression is then minimized

or maximized subject to (2), and the resulting values of 6,- lead to an approximation

for the optimal distribution of stiffness and mass.

This procedure will be demonstrated with some simple examples in which the mass

and stiffness are assumed to be either segmentwise constant or segmentwise linear.

Consider first a beam which is to be designed such that the maximum deflection

caused by a distributed load q(x) is to be minimized. In this case

V = [' W)2 - 2qy} dx. (7)
Jo

With the use of (5) and (6), one obtains the linear equations

jb [ dx ak = f qjidx, i = 1, 2, ■ • • , n (8)
/c=i L^o J Jo

which can be solved for the a, in terms of the b,- . Eq. (5) then furnishes an approximate

deflection y(x; 6,) and the condition dy/dx = 0 locates the point x0(b,-) of maximum

displacement (unless it occurs at a free end). One can eliminate bi with the use of (2),

and the remaining 6,- are then determined from the equations

(d/dbj) \y(x0 ; 6,-)| = 0, j = 2, 3, • • • , m (9)

so as to minimize the maximum displacement.

For example, consider a beam that is built-in at x = 0, simply-supported at x = I,

and subjected to a uniformly distributed load q(x) = q0 . The stiffness is assumed to be

of the form

s(x) = for 0 < x < 1/2

— &2 for 1/2 < x < I

and the deflection is chosen as a cubic polynomial in each half of the span with the

kinematic conditions and moment continuity condition satisfied. The procedure outlined

above leads to an optimum ratio E>1/62 = 0.92 for the stiffness parameters.

One can treat beams subjected to loads which vary harmonically in time in a similar

manner. If the load is given by q(x) cos ad and the steady-state deflection by y(x) cos a>t,

the functional V becomes

V = f {s(y")2 — umy" — 2qy} dx. (11)
Jo
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For instance, consider a cantilever beam under a uniformly distributed load q0 cos wt

and let the stiffness have the form (10) where x = 0 is the built-in end. The deflection

is taken as a fifth-order polynomial in each half of the beam with all boundary and

transition conditions satisfied except for zero shear force at the free end. Eqs. (2), (6)

and (9) with x0 = I lead to the optimum design for minimum tip deflection amplitude

y(l). Define the quantities

€ = a*bY, 5 = 0.5a2l/(Mo - a2l) (12)

where a2 and b2 are defined by (1). For S = 0.1 and several values of e, the optimum

ratios bjb'>. are shown in Table 1. Also shown are the ratios of the minimum y(l) to that

for a uniform beam (6, = b2) having the same total weight. The tip deflection can be

substantially reduced by a simple nonuniform design, especially when the loading

frequency is close to a natural frequency of the uniform beam.

A related problem is that of maximizing the fundamental natural frequency of a

beam. The appropriate functional is given by (11) with q = 0. In this case, Eqs. (6)

are homogeneous in the a, . Setting the determinant of the coefficients of a{ equal to

zero yields the characteristic equation and the fundamental frequency coi(6,). Again,

bi can be eliminated using (2) and coi can then be maximized with respect to the remaining

&,• •

It is often desirable to design a structure for maximum stability. If a conservative

axial load acts on the beam-column, the functional is given by

V = f {s(y")2 - P(y')2} dx. (13)
Jo

The buckling load P can be maximized in a manner similar to that used above with the

fundamental frequency. For example, if the beam-column is built-in at x — 0 and simply-

supported at x = I, with s(x) given by (10) and cubic polynomials assumed for the

deflection, one arrives at the optimum ratio bi/b2 = 0.82 for the stiffness parameters.

For a system subjected to nonconservative loading, the critical value of the loading

parameter for instability often must be determined by a dynamic analysis [17]. As an

example, consider a panel flutter problem in which the critical value X* of the aerodynamic

parameter X is to be maximized. The governing equation is assumed to be [13]

(sy")" + \0y' — o)2my = 0 (14)

where all quantities are now in nondimensional terms, and the edges x = 0 and x = I

are simply-supported. The quantities m(x) and s(x) are assumed to be proportional to

the thickness t(x) of the face sheets and, in the direction x of the airflow, are assumed

to vary linearly over each of four segments of length 1/4 and to be continuous and

symmetric about x = 1/2. In other words, the thickness t(x) can be characterized by

the parameters b0, and b2 where t(0) = t(l) = b0, t(l/4:) = i(3Z/4) = bi and t(l/2) = b2 .

TABLE 1

Designs for minimum dynamic deflection

t 0.0 0.1 0.2 0.3 0.4 0.5

61/62 3.87 4.25 4.62 5.00 5.38 5.76
deflection ratio 0.74 0.67 0.58 0.48 0.36 0.23
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In order to avoid a design with zero thickness, let b0 be specified by b0 = 0.5 hu where

is the thickness of the corresponding uniform face sheet with the same total weight.

The appropriate functional for this case is

V = [ {s(y" 2 + 2X0y'y — c/my2} dx (15)
Jo

and in the application of Eq. (6) the quantity y' is treated as a constant (see [18]).

The deflection amplitude is taken as

y(x) = ax sin (ttx/1) + a2 sin (2tx/1) (16)

which satisfies all kinematic and static conditions except continuity of shear force at

x = 1/4, 1/2 and 3Z/4. Eq. (6) yields homogeneous equations in ax and a2 , from which

one obtains the characteristic equation for to2. The condition for a double root in co2

furnishes the critical value X*(6,), and this can then be maximized subject to (2). The

resulting optimal values of the thickness are hi — 2.5b0 and b2 = 2.0b0 , so that the

optimal design has a "dip" in the center. The increase in X* over that of a uniform panel

is 10.1 percent.

Weisshaar [13] has considered the inverse formulation of this panel flutter problem,

minimizing the total weight while keeping X* constant. In that form, the procedure

above leads to values of 6, and b2 within 0.5 percent of those found by Weisshaar, even

though the approximate X* derived here is in error by about 20 percent. A similar trend

has been found in other examples. That is, the procedure used in this note may lead

to a good approximation of the optimal design even though the accuracy of the pertinent

displacement, frequency or critical load obtained during the calculations may be rather

poor. It is not the accuracy of the approximate objective function which is important

here, but rather the manner in which this function changes with variations in the design.

In conclusion, then, a Ritz type of method combined with a parametric form of the

mass distribution may furnish a useful first approximation to the solution of some static

and dynamic optimal structural design problems.
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