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1. Introduction. In order for a vortex flow to be circulation-preserving, Kelvin

[1] stated that the total acceleration vector must admit a potential such that the curl

of the acceleration vector vanishes. For inviscid fluids, the circulation within a circuit

moving with the fluid cannot change with time. When the flow is steady and when in

particular the circulation is an arbitrary function of the stream function, it is trivial

to show that the inviscid flow is circulation-preserving. Thus, for inviscid steady vortex

flows, if the ratio of the axial velocity to the vorticity about the axis of rotation is con-

stant, the flow is indeed circulation-preserving.

Consider the converse. Suppose experimental measurements revealed that the stream-

lines and vortex lines were coincident. One might be tempted to identify the physical

flow as circulation-preserving. The question arises whether viscous unsteady flows

permit the existence of coincident vortex lines and streamlines; i.e., is the ratio of the

axial velocity to the vorticity about the axis of rotation constant for, say, a real decaying

vortex?

2. Equations of motion. The Navier-Stokes equations for axisymmetric flow of an

incompressible fluid medium, expressed in cylindrical coordinates, are
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The continuity equation is

(1 /r)(d(rvr)/dr) + (dvjdz) = 0. (4)

It is important to note at this point that, because a fixed nonrotating coordinate system

has been chosen, the Coriolis terms do not enter the equations of motion.

The equations of motion are simplified by reducing the number of unknowns. The

first and second momentum equations, (1) and (2), are combined to eliminate the

pressure. The radial and axial velocity components are expressed in terms of the stream

function \f/, and the circumferential velocity component is expressed in terms of the

circulation T by defining

Vr = (Q./r0lnu*)(dt/dt;), (5)
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v, = (—2Qs/rl)(d$/dn), (6)

v, = TaT/2irr0v/2, (7)

where the dimensionless dependent variables are defined as

r = r/r., = i/Q. ■ (8)

Flow parameters that are constant are the sink volume rate of flow Q, , the potential

circulation r„ , a reference radial length r0 , and a reference axial length I. The dimen-

sionless independent variables 77, £ and r are defined as

V = (r/r0)2, £ = z/l, t = id/rl . (9)

If we define

a = (r0/l)2, N = Q,/vl, R0 = {2irQ,/r0Y„) (10)

as a dimensionless characteristic length, the axial Reynolds number and the Rossby

number, respectively, the equations of motion produced by substituting Eqs. (5)—(10)

into the momentum equations resulting from elimination of the pressure are, after

algebraic manipulations,
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3T
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from Eq. (3).

The present theory considers real vortex flows of large axial extent compared to

radial extent. For a« 1, the individual terms of Eqs. (11) and (12) are compared so

that Eq. (11) reduces to

- | JV8.-T (13)2rn (dip d3$ d$ d3$ v
^ L^7?2 wt ^ dr)2 ) 2 \d£ drf dr] di)2 ) _

and Eq. (12) reduces to

dr j_N(d$dT _d^dr\ _ cf? . .
dr 2 \3£ dr) dr] di-J ^ dt)

The above equations account for two phenomena of three-dimensional rotational flows:

vortex diffusion and vortex stretching. Eq. (13) accounts for vortex stretching through

the swirl term lNRo2T(dT/d£) and is absolutely essential for vortex breakdown. The

swirl term gives the crucial interaction between the axial and rotational components of

motion. Eq. (14) is recognized as the general circulation theorem.



NOTES 533

3. Exact solutions. Solutions of the steady flow form of Eqs. (13) and (14) have

been presented by Granger [2] and applied to a specific forced vortex flow. Comparisons

of the predictions of the mathematical model with experimental measurements were

excellent in the central portion of the vortex flow, i.e. the region removed from the free

surface and the bottom surface of the vortex.

Two interesting solutions of Eqs. (13) and (14) exist if one assumes that the circulation

is a function of the stream-function. A classic solution of Eqs. (13) and (14) is

$ = - rj/kr, T = (ai/k) exp (-?;/r) - 1, (15)

due to Oseen [3]. The constants k and cti are evaluated from initial and boundary condi-

tions. The vortex lines corresponding to the flow are helices around the axis of the vortex.

The other interesting solution of Eqs. (13) and (14) can be found by the method of

separation of variables and by assuming the solutions harmonic in time. From the

definitions of $ and T, it is obvious that in order to keep velocities finite on the axis,

allowing no steps or kinks in the profile and having a nonrotating coordinate system,

it is necessary to have

- r I - ^
,.o - r u-° " ar

r = 0

= 0. (16)

Fundamental solutions of Eqs. (13) and (14) satisfying the "inner" boundary conditions

of Eq. (16) are

f = 2(0r,)1/2mj1[2(j3v)1/2} exp (-fr), (17)

T = (18)

where /3 = 1/4J?0 is the characterizing frequency and /(£) is based upon physically

admissible expressions at, say, the outer boundary, where r is equal to r0 . For example,

if /(£) = A£ + B, the vortex is identified as a Beltrami vortex flow, since the cross

product of the vorticity vector with the velocity vector is zero. If /(£) = constant, one

obtains the results of Caldonazzo [4], who considered a vortex having no radial flow.

The latter solution, given by Eq. (18), easily leads to the relation that the ratio of the

axial velocity to the vorticity about the axis of rotation is constant. Thus streamlines

and vortex lines can be coincident for unsteady viscous vortex flows, and the flow is

not circulation-preserving.
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