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APPROXIMATIONS FOR LARGE DEFLECTION OF A
CANTILEVER BEAM*

by K. E. BISSHOPP (Rensselaer Polytechnic Institute)

Abstract. Rational approximations for the end slope and deflection of a cantilever

beam are derived from the exact solution in terms of elliptic integrals [1] by asymptotic

methods.

1. Theory. As an example of the consistent evaluation of small quantities, the

original objective of this note was to obtain the elementary formulas for the cantilever

beam by linearizing the elliptic integral solution. By combining the first and second order

approximations for small quantities with obvious properties of the deflected configuration

it is possible to construct an approximate theory which is valid for moderately large

deflections.

For the case of a simple cantilever beam of length I with a single vertical end load P,

the nonlinear solution is known to be expressible in terms of elliptic integrals with

parameter 60 which is the end slope of the beam. The pertinent relations are:

B - m • ^ - c a-ftin-,)-" " 4' i) - ^■■ (I)

7 - l - ^ a - i*sin" u dvf" " 1 - ^ \4k. |) - m, «.)] ; (2)

_ ^2 sin 60y2Xo _ (2 sin e0\ _ 2 _ 1 + sin 60 . 1 n ^ a ^ v

I \ B ) ' 2 ' SU1 0 ~ (1 + sin 0O)1/2 ' 2 ' (3)

where x0, y0 are the coordinates of the loaded end of beam and K, E are elliptic integrals

of first and second kind, respectively.

The inequality 90 <3C 1 for the linear case shows that u0 ~ (71-/2) so that an approxima-

tion for w — (x/2) — u0 can be derived from Eq. (3):

sin w = (j-qriy^) — (sin 0O)1/2(1 - §d0 + f $), (4)

since

1
1/2 — sec

Q( o0 _ . o0\
0o\^cos — =F sin — I

(1 ± sin d0)

= 1 T + f$> "F X¥0o ± • * • 0 < 60 < 1. (5)

As the angle w <<C 1, it would ordinarily be assumed that w could be approximated

with sufficient accuracy by (sin d0)1/2 (1 — |0O + i#o); however, this expression is not

even correct to first-order small quantities. Now an arc is always longer than its chord,

* Received October 7, 1971.
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which suggests that the arc sin expansion be applied to Eq. (4). Three terms give the

second-order approximation

w = (sin 0O)1/2 (1 - H + K). (6)

If 0o is neglected, we obtain

u„ = | - (sin 0O)1/2(1 - §0O + (7)

It is also necessary to construct second-order approximations for the integrands

of Eqs. (1) and (2), as follows: (1 — fc2 sin2 u)1/2 = (1 — fc2 + fc2 cos2 u)1/2, where u ^

(ir/2). A series quotient and Eq. (5) yield:

fc2/( 1 - fc2) = (1 + sin d0)/(1 - sin 0„) ~ 1 + 20O + 2d20 (8)1

and

(1 _ ky* ~ W2 (l - §0O - lei), (9)

(1 _1fc2)1/2 ̂ V2 (l + §0o + f el). (10)

Expansion of Eqs. (1) and (2) by the binomial theorem gives

VB = V2 (1 + §0O + 10o) f" [l - 1 \26° cos2 u + |(I + 40o) cos4 w] du, (11)

W0 , V2 (1 - §00 - §0o) r" T, ,1 + 2 00 2 in , AQ\ 4 1 ,jf  J LM 2— c u ~ ^ C0S wj

(12)

The transformation u = (ir/2) — 0 applies here and at the same time shows that three

terms of the binomial expansion are sufficient for a second-order approximation. Then

Eq. (11) becomes

s/B = y/2 (1 + §0O + |0o)

— I/3ffo+l/Sffo5) P 1 _L Ofl

■J |^1 + 2 " sin2 0 + |(1 + 40o) sin4 0J dd (13)

and a similar equation for y0/l. For 0 « 1 this integral can be approximated by

Jl = [ f1 ~ 1J2^2 {d ' ^ + 1(1 + 40o)(0 ~ i6y ]d®' (14)

After terms of order three and higher are neglected, we obtain

Ji (sin 0O)1/2(1 — §0o + tVs^o)

and thus

VB = (2 sin 0O)1/2(1 + §0O + |0o)(l - §0o + t^0o) (15)

(2 sin 0O)1/2(1 + A0o); 0o < B/2.

1 The term 20' can be neglected, since it yields only third-order terms.
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Likewise for yQ/l,

J2 ~ (sin 0„)1/2(1 - + T^oel) ~ (sin eoy/2( 1 - H + |02) (16)

and thus

Vo i (2sin 0O) (1 5^0 i^o)(l 5^0 "I- t«®o) _ ,t„ , r>//)3\ ^
T = 1 —7^T~-—„ \ 1/2/1—i  — 3^0 -r U(0O) < T" U')1 (2 sin 0O)1/2(1 + A0O) 3

Eqs. (15) and (17) reduce to the linear theory when 0„ is neglected, which explains the

remarkable accuracy of the classical theory for B < 1.

2. Second-order modified theory. Reference [1] shows that as 0o —> v/2, B —» 00.

Therefore it seems reasonable to assume that

£~2sin 0o/(l - (~J) (18)

is an acceptable approximation for B when 0a < ir/2. That this is the case can be justified

by substituting Eq. (18) into Eq. (3) and comparing the computed values of

(18)

with the exact theory. The independent variable of Eqs. (18) and (19) is d0 and when

it is eliminated numerically, the resulting values of B and xn!I agree well with the exact

theory (see Table I). For purposes of computation, the independent variable is not 60

but B which can only be obtained by inverting the transcendental equation (18). How-

ever, an asymptotic approximation for 60 in terms of B can be constructed by assuming

first that d0 « 1, so that sin 6a ~ 0O — 0<j/6. When this relation and the first-order

approximation 290 = B + e are substituted into Eq. (15) it can be solved for values

of B < 1 with sufficient accuracy that

e0 ~ ifi(l - ^B2) (15a)

which shows that the (B, 0o) curve has zero curvature at the origin. For small B, the

factor

id2-1 - A£2 =*
B2 + 12 '

TABLE I

0o B xo/l xv/l ([1])

0 0. 1.00 1.00
15° 0.53 0.99 0.98
30° 1.12 0.94 0.93
45° 1.90 0.87 0.85
60° 3.13 0.75 0.73
75° 6.34 0.55 0.54
90° co 0.00 0.00

(Slide-rule computations)
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TABLE II

B 0§[Eq.(18)] fl°[Eq. (20)] x„/I x„/l ([!])

0.0 0 0 1.00 1.00
0.5 14.1 14.1 0.99 0.98
1.0 27.0 27.0 0.97 0.95
2.0 46.5 46.2 0.86 0.84
3.0 58.5 57.0 0.76 0.74
6.0 74.0 74.2 0.56 0.56
9.0 79.7 82.0 0.47 0.47

90.0 90.0 0.00 0.00

and on this basis an equivalent inversion formula for Eq. (18), which is itself an approxi-

mation, becomes

-*BIrfi2+ + J' <20>
B

12 B
B + 12J

This equation is valid for 60 when B ~ 0 and B —» , independently of /3. In order for

Eqs. (18) and (20) to be consistent, /3 ̂  110, as shown in Table II. It seems reasonable

that a more refined approximation, such as least squares, could be constructed by includ-

ing additional parameters, but since a more important quantity of interest is y0/l,

Eq. (20) will not be pursued further. Its main advantage, however, is that 60 can be

estimated directly in terms of B.

The same procedure applies to the approximation for y0/l which does not depend on

Eq. (20). For this case the substitution of Eq. (15a) into Eq. (17) shows that y0/l has

a small quadratic factor which can be neglected. From Eq. (2) it is observed that the

integral factor of 2/VB, for 6<> = x/2 has the value 1 — \/2/2, so that for large values

of B

y0/l ~ 1 - (0.586/VB). (21)2

Since y0/l — B/3 for values of B < 1 and Eq. (21) is valid for B > 9, which can be

verified by comparison with the exact solution, it can be concluded that

Vo   B r /t>2 I r\ /.ppl I 3# (1  0-586 \ fnr)\3
I ~ 3 L6XP + 0.65B) + B2 + 2 \^1 + o.344)1/2/J ' ^22)

where suitable parameters have been introduced in order to match the exact values

of y0/l for B = 3 and B — 9.
Table III shows a comparison of numerical results, obtained from Eqs. (18), (19),

(20) and (22), with the exact values of [1], The small differences in the values of 60 from

Eqs. (18) and (20) were neglected in the computation of x0 .

3. Conclusions. By accounting for second-order terms and the asymptotic prop-

erties of the elliptic integral solution, it can be concluded that:

1) the linear theory is entirely adequate for 0 < B < 1.

2) for small values of B(< 1.0), 0O %B( 1 — -r^B2).

2 This procedure was suggested by Dr. H. Bueckner.

8 The constant 0.344 makes the term in parentheses vanish when B = 0.
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TABLE III

(7q 0q xtj/I yo/l xq/I y o/iel el
B Eq. (18) Eq. (20) Eq. (19) (Eq. 22) Ref. [1] Ref. [1]

0 0 0 1.00 0 1.00 0
0.25 7.0 7.0 0.99 0.081 0.99 0.08
0.5 14.1 14.1 0.99 0.166 0.98 0.16
1.0 27.0 27.0 0.97 0.310 0.95 0.31
2.0 46.5 46.2 0.86 0.496 0.84 0.49
3.0 58.5 57.0 0.76 0.610 0.74 0.61
6.0 74.0 74.2 0.56 0.746 0.56 0.74
9.0 79.7 82.0 0.47 0.80 0.47 0.80

90.0 90.0 0.00 1.000 0.00 1.00

3) the approximate formulas (18), (19), (20) and (22) are valid within 2% for 1 <

B < <». Some improvement in these approximations might be achieved by

including additional parameters.

4) it is not necessary to invert transcendental equations in order to obtain x0 , y0 ,

and do since they are all expressed in terms of B.

5) all of the approximations, which have a rational basis, are simple, compact, and

well adapted to slide-rule computation; no tables are required.

6) The success of the asymptotic method for this problem depends on matching both

first and second derivatives at the origin as well as the behavior for B = co.

Appendix.4 asymptotic behavior of 60. Although Eq. (20) approximates 60 very

well from 0 < 9 < tt/2, the values of 60 very near to x/2 are not precisely those which

would be obtained by the rigorous analysis which follows.

Let K be the complete elliptic integral of the first kind with modulus k, and F the

hypergeometric function; then [2]

K = K(f, §, 1; 7c2), F(a, b, c; x) = rfr)r(6) log T=~x

for a + b — c = 0. Now

1 = 2 2 16
1 — k2 1 — sin

For d0 — 1^12

1 - cos (| - #.) ^[l-vl

VB = | log ; r(l) = 1; r(i) = Vx;

'-(v)
hence

do ̂  | — 2 exp (— y/B) as B —> co . (A)

4 This procedure was suggested by Dr. H. Bueckner.
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Eq. (20) is an algebraic approximation for 60 which does not have the same asymp-

totic form as Eq. (A), but this is of no practical consequence since x0 and d0 are reasonably

well approximated for 0 < B < 9 by Eqs. (19) and (20), and for B > 9

xa/l ~ (2/B)u\
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