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Abstract. The refraction of acoustic duct waveguide modes emitted from the open

end of a semi-infinite rectangular duct by a jet-like exhaust flow is studied theoretically.

The problem is formulated as a Wiener-Hopf problem and is ultimately solved by an

approximate method due to Carrier and Koiter. Continuity of transverse acoustic

particle displacement and of acoustic pressure is assumed at the jet/still-air interface.

The solution exhibits several features of the acoustics of moving media such as a source

convection effect, zones of relative silence, simple refraction, etc. Plots of far-field

directivity patterns are presented for several cases and show refraction effects to be

important even at modest exhaust Mach numbers of order 0.3. Only subsonic exhaust

Mach numbers are considered. In view of the problem's technological interest, the

solution for the far-field directivity is written out in full detail in the appendices. In the

low-frequency limit when only one duct waveguide mode (the plane wave mode) pro-

pagates, we also examine the reflection coefficient. It is found that this reflection coeffi-

cient, in general, considerably exceeds either the no-flow value or the value for the case

with uniform flow both inside and outside the waveguide (i.e., in the whole space).

Apparently the acoustic medium mismatch enhances the geometric mismatch in the

jet flow case, thus producing a higher reflection coefficient.

1. Formulation of problem. A slug-like jet flow of uniform subsonic Mach number

M issues from a pair of parallel plates spaced a distance 2b apart (Fig. 1). The regions

y > b and y < —b are occupied by still fluid at the same temperature and static pressure

as the jet. An acoustic duct waveguide mode with a transverse pressure distribution

of type cos (Nir(y — b)/2b) exp (—jut), where j = V-1, is incident from x = — °°

within the pair of parallel plates. The problem is to determine the far-field acoustic

radiation pattern produced by the emission of such a mode.

The case when there is no flow has been fully solved by Noble [5], amongst other

authors. The problem with N = 0 and with a circular tube waveguide instead of a

pair of parallel plates was considered by Carrier [1], However, Carrier employed con-

tinuity of transverse acoustic velocity as a boundary condition on y = ±b and x > 0;

this is now believed to be incorrect. When one has mean flow velocity discontinuities

it is presently accepted (Ribner [6], Gottlieb [3]) that the transverse acoustic particle

displacement should be continuous. Also, Carrier [1] was more interested in the reflection

coefficient in this problem and did not obtain any explicit solution.
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In mathematical terms, with the usual assumptions of linear, inviscid acoustics and

assuming for all quantities a time dependence of type exp (—jut), and with reference

to Fig. 1, we wish to find a velocity potential <£ such that

a) in regions I, III, 4> satisfies:

V2<£ + k2<t> = 0, (1)

where k = w/c.

b) in region II it satisfies:

(1 — M2)(d2<f>/dx2) + (d~4>/dy2) + 2jMk(d(j>/dx) -f* k2<t> = 0. (2)

c) at y = ±b, d(j>/dy = 0 for x < 0. (3)

d) (continuity of acoustic pressure) for x > 0,

at y = b: 4>]v.b+
. M

0 + (4)

at y = —b:
. M d<j>

+ + ]Td~x
= <£]„__6_ . (5)

Vwm—b +

e) (continuity of transverse acoustic particle displacement) at y = ±6: for x > 0, t],

the transverse acoustic particle displacement, is continuous. The relation between

ri and </> in regions I, III is:

V = (6)

and in region II is:

[r, + i(M/k) (dri/dx)] = 0'/co) (d<j)/dy). (7)

2. Fourier integral representation and application of Wiener-Hopf technique. In

what follows the notation has been arranged to conform closely to that used by Noble [5].

Clearly, from the symmetry of the problem it is sufficient to consider regions I, II alone.

Adopt for <j> the integral representation in region I of type:

-1 r A(a) exp (7(b — y) exp (- jax) da /ON
0 = (2^75 7 ' (8)

where y = (a2 — k~)1/2. y has branch points at a = ±fc and branch cuts are introduced

joining ±k to co. When a. is real and |a| < 7c, 7 = —j(k2 — a2)1/2. Similarly, in region II

adopt the representation:

e~'ax da

<j> =

. . fcosh (y'y)]

1 (• 'sinh ~ m

(2»)"■!. ,/sirh ' '
r

\cosh (y'b)

y' = (a2 — (k-\-aM)2)1/2 and has branch points at a = k/(l — M) and a = — k/(l+M).

Branch cuts are introduced joining the points fc/( 1 — M) and — k/(l + M) to co anci

when a is real and —k/( 1 + M) < a < k/( 1 — M), 7' = —j[(k + aM)2 — a2]1/2.

The combination cosh (7'?/)/sinh (y'b) will be used in the integrand if N is even and

and the combination sinh (y'y)/cosh (y'b) if N is odd.
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The associated acoustic pressure p, transverse velocity v, and transverse particle

displacement ?? are given by:

a) in region I (y > b):

-jwPn r A(a) exp (7(b - y) - jax) da

p = (2rL 7 ' (10)

1 r
y = ^172 J Ma) exp (7(6 - y) - jax) da, (11)

V = /q 1 \ 1 /2 f A(a) exp (7(b - y) - jax) da. (12)
C0\^7TJ J-co

b) in region II (—b < y < b):

„ B(a)(l +
io)p0 f V k /(smhjy'y)) 

P (2tt)17"2 i_m Jsinh (7'6)\

^ \cosh (7'?))

fsinh (y'2/)\-)<»i ,

1 f B^\cosh (y'y)J  ,
V ~ (2x)1/2 fsinh (7'6)\ ' ^

t}(27r)'

\cosh (7 'b)j

Jsinh (7'y)\ iax ,

(y;,)f fl
(1 1 -flM/sinh (y'b)\

\ ^ k /\cosh(7'&)J

(15)

Clearly the integral representations for 4> ensure satisfaction of (1), (2).

The integrals for 4>, P> v and rj could be evaluated by closing the contour in the

a plane. For x < 0, one would close the contour by means of a large semicircle in the

upper halfplane and for x > 0, a large semicircle in the lower halfplane would be em-

ployed.
Let the wave incident from within the duct from x = — <=° be of form

<£in<! = exp (jKNx) cos [Nir/2b(y - b)],

where

K _ -kM + [/c2 - (Nir/2b)2(I - m\l,i
Kn (1 - M2) ' (16)

The associated pressure, transverse velocity, and transverse acoustic particle displace-

ment fields are:

Pi„c = ;Pow(l - ~/f^) exp (jKNx) cos (~ (y - b)j , (17)

fine = exP (3knx) sin (y - 6)J , (18)
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For x > 0, Pino can be written as:

if £ ('" ?+ifcosh ^ - "1 <*«• w

The boundary condition that v = 0 for y = b for — <» < a; < 0 yields the result [5]

that A (a) = A + (a), B(a) = B+(a), where the subscript + denotes a function free of

singularities in an upper halfplane. The Wiener-Hopf technique employs analyticity

of functions in appropriately defined upper and lower halfplanes and the notion of

analytic continuation. It is appropriate at this stage, therefore, to state precisely what

one means by upper and lower halfplanes. As noted earlier, y has branch points at

±k and y' has branch points at k/(1 — M) and —k/(1 + M). It is well known that

in the use of the Wiener-Hopf technique one employs the artifice of assuming initially

that k has a small, positive imaginary part and later lets this imaginary part approach

zero. With this understanding, an upper halfplane is defined as one for which Im (a) <

— Im (fc)/( 1 + M) and a lower halfplane is one for which Im (a) < Im (fc). We restrict

the whole analysis to subsonic Mach numbers (M < 1); this is more than sufficient to

ensure that there is a region of overlap between the upper and lower halfplanes, namely

the strip — Im (k)/(l + M) < Im (a) < Im (k).

Continuity of transverse acoustic particle displacement for x > 0 ensures that

H+(«) — B+(a)/( 1 + Ma/k)] is analytic in a lower halfplane. But inspection of {A + (a) —

B+(a)/( 1 + Ma/k)} shows that it itself is analytic in an upper halfplane. Hence it is

an entire function of a. By placing appropriate restrictions on the behavior of <£ (cf. [5])

and using Liouville's theorem, we may conclude that the entire function [A

B+(ct)/( 1 + Ma/k)} is, in fact, zero. Continuity of acoustic pressure for x > 0 gives:

^ (> - f Jte £§}+- ^)Ui5) ̂<*>
where M_(a) signifies a function free of singularities in a lower halfplane. In writing

down (21) use has been made of the fact that B+(a) = (1 + Ma/k)A + (a).

Now consider the even and odd cases separately. In the case of N even, we may

rewrite (21) as:

A+(a) 1 +
Ma

IT
-y'2 . ( Ma\2
— smh (y'b) + 7'^! H—^-J cosh (7'b)

7 sinh (y'b)(l + ^

+ <22>
(2x) k } (a + Kn)

The next step in attempting to solve this problem by the Wiener-Hopf technique would

be to try and factor the term multiplying A + (a) as a product of two terms, one analytic

in an upper halfplane and the other analytic in a lower halfplane. As Carrier [2] and

Koiter [4] point out, this factorization is often not at all easy and constitutes the most
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serious obstacle to solving problems by Wiener-Hopf techniques. Both Carrier and

Koiter point out that often if the exact kernel (we use the word "kernel" to denote the

function of a that multiplies A+ (<*)) is replaced by another kernel which matches the

exact kernel reasonably well, it may be quite easy to factor the approximate kernel.

This procedure is adopted in the present paper. Only part of the kernel multiplying

A + (a) is so replaced and the replacement is carried out according to guidelines suggested

by Carrier [2],

Consider the term {(y'2/y) sinh (y'b) + 7'(1 + Ma/k)2 cosh (y'b)}/(1 + Ma/k)2

= P(a). Consider its possible replacement by

p*/ \ y' exp (y'b)(a + 25)
P (a) - 2(a + 5)

More will be said shortly concerning 5. It is easily verified that P(0) = P*(0) = —jk

•exp (—jkb) and that both P(a), P*(a) tend to [\y' exp (y'b)] as a —> °o. As suggested

by Carrier, we choose 5 so that dP/da, dP*/da agree at a = 0. As a result of a somewhat

tedious calculation, the matching of dP/da and dP*/da at a = 0 yields

5 = (k/2M)(l + j cot (kb)). (23)

Consider now a modified version of (22) with P(a) replaced by P*(a), namely

A+(A)(l + ~f (y'b)ey,\a + 25) ^ [a(l — M) — fc](l -

[a(l + M) + k]2(a + 5) sinh (y'b) + (a + KN)

= 6[a(l — M) — k]M_(a). (24)

Let

2(ot "I- 5) sinh (y b) t / \ t / \ t / \ /nr\
7 1 /n -r-nr = L(a) = L+{a)LJa) (25)
(a + 2 5) (7 0) exp (70)

where L+(a) is a function analytic in an upper halfplane and L-(a) is analytic in a lower

half plane. The term (a + 5)/(a + 25) is part of L+(a) if cot (kb) > 0 and is part of

L_(a) if cot (kb) < 0. Then, by a standard application of the Wiener-Hopf procedure

using Liouville's theorem, etc.,

L.(-KN)[k + K„( 1 - M)]( 1 - ¥£*)

A+(a) =      — L+(«)[«(l + M) + k}. (26)

(a + K„)(l J- —I
1+ k J

Thus 4>(x, y) for y > b is:

-jbL.(-KN)[k + Kn( 1 - ikf)](l -

<t> =
2tt

r L+(g) exp [7(b - y) - jax][a(l + M) + k] da ^

J-co  ./ Af/y\2
-,<« + !(,,)( »+r
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Consider now the case of N odd. In this case

-'l-M 1 + ^ cosh (y'b) + (l + sinh (y'b)

hf
2

cosh (y'b)

(2tt) V k J (a + Kn)

where 2V_(a) is a function analytic in a lower halfplane.

In a spirit similar to the even case we replace the term Q(a) = (y'/y) cosh (y'b) +

(1 + Ma/k)2 sinh (y'b)/(l + Ma/lc)2 by Q*(a) = exp (y'b) (a + 28')/2(a + 5'), where

8' = (k/2M)[l — j tan (kb)]. (29)

This ensures that Q(0) = Q*(0) = exp (—jkb), dQ/da = dQ*/da at a = 0 and that
both Q(a), Q*(a) —> | exp (y'b) as a —> co.

Now consider the approximate version of (28), namely:

»■(«)(1 + + 25'}

(a(l + M) + k)W22(a + 8') cosh (y'b)

MKn. (a(l — M) — k)l/211

+ ^^ = "-MM 1 -M)- kr ■ (30)

As before, we factorize 2(a + 8') cosh (Y'6)/exp (y'b)(a + 28') = K(a) as K+(a)K-(oi).

The term (a + 5')/(a + 28') belongs to K+ (a) if tan (kb) < 0 and to K- (a) if tan (kb) > 0.

Application of the Wiener-Hopf method and use of Liouville's theorem now leads to:

A.(«) - -IK'MM1 + Jf) + 'f' (l - - K„(\ - A!)]"".(31)

(&)"■(. + K»)(l + f) V '

Therefore, in this case (j>(x, y) for y > b is:

£(l- ~^)K-(-KN)[-k - KN(1 - M)]1/2

r g+(«)[a(l + M) + fc]1/3 exp [y(b - y) - jax]

^ ,(« + za(i + f J ' (>
3. Factorization of L(a) and K(a). We recall that

T n - 2(g + A sinh (y'b)
a) (a + 28) (y'b) exp (y'b) {66)

where 5 = (k/2M)(l + j cot (kb)) and 7' = (a — (aM + k)'2\W2. As noted earlier,

if cot (kb) > 0 then (a + 8)/(a + 25) belongs to L+(a), otherwise it belongs to L_(a).

Now

y' = (a'2 - k'2)u\
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where

a' = «(1 - M2)1/2 - (kM/( 1 - M2)1/2) (34)

and

k' = k/(l - M2)W2

Noble [5] has explained how to factorize a function of type sinh (7b) exp (—yb)/(76)

into functions analytic in Im (a) > — Im k and Im (a) < Im k. We may adopt the

same formulae to the factorization of sinh (y'b) exp (—y'b)/(y'b) except that the plus

function will now be analytic for Im (a) > Im ( — k/l + M) and the minus function

for Im (a) < +Im (k/l — M). This is, of course, entirely satisfactory from the present

standpoint. Noble [5] has made the interesting and useful observation that so long as

one is interested in |L+(a)| or |L_(a)| , very simple results may be obtained by the infinite

product theorem for meromorphic functions. We merely cite the results from chapter III

of Noble's book that, for real a,

|L+(a)| ~ exp cos 1 (a'/F)^j exp [—/oc'b]
sinh (y'b)

n
k

(1 - M2)

(y'b)

[»- <» - Miu)\
kM ,

+ a
M

rhr- [»" a " ""»(!)'.
1/2 kM

+ 1 - M2

1/2

(35)

where N' denotes the upper limit of numbers r = 1, 2, • • • N' for which 1 > (1 — M2)

(rr/kb)2. Expression (35) would be multiplied on the right-hand side by (a + o)/(a + 25)

or not according as cot (kb) > 0 or cot (kb) < 0. The factorization of

K(a) = 2(a + S')/(a + 25') exp (—y'b) cosh (y'b),

where

5' = (k/2M)(1 - j tan kb),

is similarly accomplished and for real a, one has:

|/f+(a)| ~ exp [ — Wb] exp ~ cos 1 (jjj | cosh (/6)|5

* (, /1 7.^/ V/2 kM
^ 1 - M2 V1 ~ (1 ~ M )(r ~ 5) (kb) ) ~ Y^W2 + a

~ i)T + kM
5 — a

1 - M

(36)

where N" denotes the upper limit of integers for which 1 > (1 — M2)(N" — ^)2(it/kb'f.

Again, Eq. (36) is to be modified on the right-hand side by the factor (a + 5')/(a + 25')

according as tan (kb) < 0 or tan (kb) > 0.

4. Far-field directivity and discussion of results. Examination of the solutions

(27) and (32) shows that in the integrand in the integral representation for <t>, the only

space-dependent term is the term exp [7(6 — y) — jax}. If a polar coordinate system is

introduced with origin at y = 6, x = 0 then (for y > b) from Fig. 1, (y — b) = r sin 0
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Region I

Region II

2b

A
Region III

Fig. 1. Definition sketch.

and x — r cos 0. The term exp [7(6 — y) — jax] = exp [—~yr sin 0 — jar cos 0], Thus

for large r, the dominant contribution to the integral for 4>(x, y) comes from the neigh-

bourhood of the value of a for which — [7 sin 0 + ja cos 0] is stationary, which is a =

— k cos 0. This result is fully explained in Noble [5] and Gottlieb [3]. To summarize,

the far-field radiation pattern can be obtained from (27), (32) by substituting a = — fc cos 0

in the integrand less the exp [7(6 — y) — jax] term and then multiplying the result

by sin 0. Both Noble [5] and Gottlieb [3] have shown this and Gottlieb [3] in particular

shows how other singularities of a contribute only terms negligible compared to the

above term for large r. The full expression for the radiation pattern is written out in

the Appendices.

There are three nondimensional parameters on which the answer depends, namely

kb, M (the exhaust Mach number) and N. In Figs. 2-8, plots are presented of such

directivity patterns for fixed values of kb, N as a function of M for four values of M

of 0, 0.3, 0.6 and 0.9. These plots have all been renormalized so that the peak of the

radiation pattern is assigned a value of 100 db. Examination of the expressions for the

radiation pattern with flow in Appendix 2 reveals at least four discernible flow effects.

First, the exponential factor which attenuates the back-scattering, namely

exp [§kb cos 0(1 — M2)1/2,

is less effective at the higher Mach numbers. This may be termed a simple refraction

effect tending to enhance the back-scattering slightly. Secondly (especially for M < 0.6)

the whole pattern is shifted from the axis (0 = 0) to 0 = 0O = cos-1 (1/1 + M). For

example, for a nonzero N a node occurs at 0O instead of at 0 = 0. In Appendix 3 we have

tabulated the nodes of the radiation patterns for the twenty-eight cases studied in
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60 70 80 90 100

Fig. 2. kb = 1.25, N = 0, M = 0.9, M = 0.6, — • — M = 0.3, M = 0.

Figs. 2-8. Note also the exponentially attenuating factor

exp [—kb(cos2 6 — (1 — M cos 0)2)1/2]

in the zone of relative silence 0 < 9 < 60 . Third, the solutions display a substantial

"source convection" effect, as indicated by the 1/(1 — M cos 6)2 term, which is frequency-

independent and markedly enhances the forward radiation. This effect may be understood

if one notes that the acoustic field in the region y > b and — °o < x < <» may be regarded

60 70 80 90 100

Fia. 3. kb = 3.75, N = 0, M = 0.9, M = 0.6, — • — M = 0.3, M = 0.
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60 70 80 90 100

Fig. 4. kb = 3.75, N = 1, M = 0.9, M = 0.6, — • — M - 0.3, M = 0.

as generated by dipole acoustic sources on the plate y = b and - co < x < 0 and by

acoustic sources moving along the jet/still-air interface. (To envision the latter, one can

see how the incident duct waveguide mode causes a rippling of the jet/still-air interface

which then causes a radiated field in the region y > b and - co < x < «.) The interfacial

moving sources' directivity will display a source convection effect. This source convection

effects dominates the M = 0.9 radiation pattern even at kb = 6.25.

60 70 80 90 100

Fig. 5. kb = 3.75, N = 2, M = 0.9, M = 0.6, — • — M = 0.3, M = 0.
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Fig. 6. kb = 6.25, N = 0,

Finally, an effect of the flow (cf. table in Appendix 3) is to increase the number of

nodes in the radiation pattern and particularly to crowd together successive nodes.

Some concluding remarks are in order concerning the flow model used and the

mathematical methods employed. The steady-flow model used is a "top hat" profile

and we may anticipate that such a profile exaggerates refraction effects as compared to

realistic, smooth shear profiles. Note, however, the strong refraction effects even at

M = 0.3. Regarding the use of the approximate method due to Carrier and Koiter, one

60 70 80 90 100

Fig. 7. kb = 6.25, N = 1, M = .9, M = .6, M = .3 , M = 0.
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90 100

Fig. 8. kb = 6.25, N = 2, — M = .9, M = .6, M = 3, M = 0.

could investigate its numerical accuracy by comparing Q(a), Q*(a) and P(a), P*(a)

for — co < a < co and real a, as Koiter has done. We have not done this but the several

examples studied by Carrier by this method suggest the approximate procedure is

quite accurate. In Appendix 4, a conversion procedure is indicated whereby one can

approximately handle a spinning mode problem emitted from an annular duct. Tyler

and Sofrin [7] have demonstrated the utility of this procedure for the zero flow problem.

5. Reflection coefficient when kb < t(1 — M2)l/2. If kb is less than 7r(l — M2)1/2

it makes sense to consider the reflection coefficient also. In this event, only one duct

waveguide mode is propagating. This is the plane wave mode, i.e. N = 0. In the expres-

sion (13) for p in region II upon closing the contour in the upper halfplane (for x < 0)

one finds the integrand is free of branch points and has only simple poles at the zeros

of y' sinh (y'b). These poles of course correspond to the duct waveguide modes in region II

for x < 0. The lowest upper halfplane pole of y' sinh (y'b) is relevant here when kb <

ir(l — M2)1/2 and occurs when a = k/(1 — M). The amplitude of the reflected pressure

wave is readily calculable and the amplitude of the reflection coefficient for the pressure

wave turns out to be:

( ~kb V, , (2M + M2) sin2 (kb) \1/2 „
\R\ - exp^ _ m2)1/2J{1 + x + (M2 _ 2M) cos2(fc6)| , 0<kb<r/2,

IPI _ ( ~kb ^ (2M — M2) sin2 (kb) \1/a /0 ^ .
I exp 1(1 - M2)1/2/\ 1 + (M2 + 2M) cos2 (kb)j ' V2 < kb <tt.

The reason for two different expressions in the ranges 0 < kb < ir/2 and tt/2 < kb < %

is the use of the Carrier-Koiter method which in the present problem assigns the quantity

S (Eq. (23)) to the upper halfplane if cot (kb) > 0 and to the lower halfplane if cot (kb) <0.

These results are plotted for fixed kb as a function of Mach number in Figs. 9a and b.

The Mach numbers to which the results are plotted are restricted by kb < ir(l — M2)l/2.
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1.0

M = 0.6

V
\\ Present Solution

\

\

\
\ \ True Solution ?

8 kb
TT

Fig. 10. |B| versus kb for M = 0.6.

Also shown on these figures as the "uniform exhaust flow solution" is the solution that

one would get if a uniform exhaust flow was assumed over all space, i.e. in regions I

and III in addition to II in Fig. 1. The circular tube waveguide version of this problem

was considered by Carrier [1] and the result in the present case would be

|ff| = exp (—fc6/(l - M2)1/2).

As Fig. 9a shows, for kb < x/2 the problem considered in the present paper has a higher

reflection coefficient than the uniform exhaust flow problem. At kb = 5ir/8 the present

problem has a lower reflection coefficient than the uniform flow problem. At kb = 371-/4

and 7?r/8 the two results are virtually indistinguishable and are not shown separately.

This change in behavior as kb exceeds x/2 is, as noted earlier, a consequence of the use

of the approximate method due to Carrier and Koiter. To bring this out in sharper

focus we plot |i?| against kb for M = 0.6 in Fig. 10. The curve exhibits a discontinuity

at kb — tt/2. It is not clear whether this is a genuine physical result or is merely induced

by the use of the approximate method.

Practically, however, as Figs. 9a and b show, the exhaust jet problem (the problem

studied in this paper) shows in general a higher reflection coefficient than either the

no-flow or the uniform-exhaust-flow problem. The physical reason appears to be that

with an exhaust jet, one has at the exit plane an acoustic mismatch in addition to a

geometric mismatch. A uniformly flowing medium with the vector flow Mach number M

may be regarded as an anisotropic acoustic medium in which the velocity of propagation

of acoustic plane waves is c(l + M • n), where n is a unit vector parallel to the direction of

wave propagation. The geometric mismatch is the same whether one considers the
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no-flow or the uniform-flow or the jet-flow problem. Of the three problems, the jet-flow

problem alone is characterized by a medium mismatch, and hence it is not surprising

that the highest reflection coefficient occurs in general for this case. Regarding the

discontinuity in Fig. 10, one should perhaps draw a smooth faired curve through the

two segments 0 < kb < ir/2 and tr/2 < kb < r. All of this would not in any material

sense affect the conclusion that the jet-flow problem in general exhibits a higher reflection

coefficient than the uniform-exhaust-flow or the no-flow problem.
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Appendix 1: Radiation pattern with no flow. Given kb, N:

Case 1: N even: let N = 2N'.

1. Let R be an integer such that R < lcb/ir < (R + 1).

2. Let 0i , 02 • ■ ■ 0« be angles defined by 9r = sin-1 (rr/kb), where r = 1, 2, • • • R,

and 0 < 9r < (ir/2).

3. Let <t>i , <t>2 ■ ■ ■ 4>r be angles such that cj>r = (ir — 9r).

4. For 0 5^ 0, 0i , 02 • • ■ 0k , 4>i •••$«:

|p(0)| ~ i— C0S ~ a\ICXP 1^9 C0S 61 | cos 0AT. — cos 0)1 \ 2

sin (kb sin 0)

kb sin 0

5. If 0 = 0, p = 0 unless N = 0, in which case it is:

JQ- cos (0r) — cos 0

r_i cos 0r + cos 0

|p(0)| ~ exp {\kb) JI tan (0r/2)

6. If 0 = 0r , p — 0 unless r = N', in which case it is:

|p(MI ~ V2\sZ\eNJ\exp m cos dN']

cos (0r) — cos (0yQ

H cos (0r) + cos {eN.)
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7. If d = <f>m , p is:

(1 — cos
\p{<t>™)\

I WO WO Vfm;|

— COS (<£„) k/2 cot (4>m) . . .
J r_i cos (0,.) + COS (<j)m)

COS (<v) — COS (0„)|

cos (0r) — COS (0„)
•exp

Case 2: 2V odd, let iV' = i(iV + 1).

1. Let R be an integer such that (R — §) < kb/ir < (B + §).

2. Let , • • • 0S be angles defined by: 0r = sin-1 [(r — |)(x/A:6)].

3. Let <}>i , 4>2 • ■ ■ 4>r be defined by <t>r = (ir — 0r).

4. For 0 7^ 0, 9i , ■ ■ ■ Or , <j>x , • • • ;

■ sin (0/2) (kb cos d\ . n, .
p(0) ~ i   rr exp I   I cos (kb sin 0)
1 1 |cos 6N. — cos 0| 2 / 1 1

5. For 0 = 0, p = 0.

6. For 0 = 8m , p = 0 unless to = Ar', in which case it is:

cos (0r) — cos 0

y cos (0r) + COS 0

|2 sin (0^.)

!_//, M • 0JV'\ [kb COS eN.~\\p(eN.) | ~ sin y—) exp    J

7. For 0 = <f>m :

m sin (<#>„/2) /. n!
lp(WI ~ cos (M - cos (*J ^ L"2 cos WJ

2fcfr cos2 (<£„)

-ry COS (0r) — COS (0,y)

r-1 COS (0r) + COS (0W.)
excl. iV'

1/2

jj cos (dT) — cos (0„)

1 COS (0r) + COS (0m)
excl. m

sin (0„)
excl. m

Appendix 2: Radiation pattern with flow. Given kb, N, M, Let 0O = cos_1(l + M)).

Case jf; 2V even, let N = 2N'.

A: cot (kb) < 0.

1. Let R be an integer such that R < kb/:r(l — M2)1/2 < (R + 1).

2. Define for r = 1, 2 • • • R, a sequence of numbers:

R* " {[' ~ (1 - T *}'

3. Let Q = 1/(1 + M) if iV = 0 and RN- if N 0.
4. For all |i2r±| < 1, define angles 0t, 02 • • • dR ; , • • • <£a such that 6r = cos-1 (Rr+)

and <pr = 7r — cos-1 (fir_).

5. For 0 < 0 < 0O :

, T cos 0 — cos 0ol
w#)l ~ L cos e - g~J

•exp [—kb(cos2 0 — (1 — M cos 0)2)1/2]
sinh [fcb(cos2 0 — (1 — M cos 0)2)1/2]

exp [\kb cos 0(1 — M2)'/2]

(1 - M cos 0)2

-pr Rr+ — COS 0

r-T Rt- + cos 0

kb(cos 0 — (1 — M cos 0))

1/2

2-.1/2
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6. For 0 = 9a , p = 0 unless N' = 0, in which case it is:

\p(0o)\ ~ exp \\kb fqrf/C1 + M)2

7. For 90 < 9 < ir, p in general is:

/? - 1jgj- r+ 1 + M

7 = 1 7? -4-

1 + M

\pm cos & — COS

cos 9 — Q

sin {fcfr[(l — M cos 9)2 — cos2 0]1

kb[( 1 - M cos 9)2 - cos2 9]1/2

exp (\kb cos 0(1 - MY2)

(1 - M cos 0)2

j | Rr+ — cos 9

7-i Rr~ + cos 9

i/j

8. If 9 = 0m , p — 0 unless to = AT': in which case:

i //i \i (cos (0w) cos 9q) jkb f^ n/r2\i/2
l»(MI ~ (1 _ M cos (w]f <*P cos »».(! - M )

.(ill
IjW/

M + cos <V( 1 — M )

Rn' + "1" ' —

1/2
-pr i?r + — COS 0,y

hi R,~ + cos eN.

P(<t>m)

9. If 9 = <j>m , then p is:

cos (4>m) — cos (go)
exp ^ cos (<0(1 - M2)1/2J >kh

[1 — M cos (4>m)]2 \mircos (</>,„) — Q

\[M + cos (<j,m)(l - M2)](Rm+ +
it Rr+ — cos ()

M + COS (0„)

B: If cot (kb) > 0, multiply all previous expressions by the term:

(1 - 2M cos 6)2 + cot2 (kb) 1/2

(1 — M cos 6)2 + cot2 (kb)

Case 2: N odd: let N' = (N + l)/2:

A: tan (kb) > 0:

1. Let R be an integer such that (R — §) < kb/ir(l — M2)1/2 < (R + 2).

2. Define for r = 1, 2, • • • R a sequence of numbers:

B" = {['" ('" ~ T 4

3. For those Rr± such that [ffr±| < 1 define angles 61 ,••• 8R , fa , fa ••• <pB such

that 9r = cos-1 (Rr+) and <t>r = ^r — cos-1 (Rr~)

4. Let Q = Rx'+ .
5. For 0 < 9 < 0O :

(cos 9(1 + M) ~ 1 )1/2 exp cos 0(1 - M2)1/2]

(1 — M cos 0)2(cos 0 — Q)

•exp [-kb(cos2 0 - (1 - M cos 0)2)I/2] cosh1/2 [fc6(cos2 0 - (1 - M cos 0)2)1/2]

b(0)l
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■j~|- Rr+ — cos 6

7_i Iir- + cos 6

6. For 6 = d0 , p = 0.

7. For 60 < 6 < ir: in general, p is

(1 — cos 0(1 + M))1/2 exp | ^ cos 0(1 — Af2)1/2

|p(0)| ~ 
]

(1 — M cos 6) (cos 6 — Q)

R D

cos [/c6((l - M cos 0)2 - cos2 0),/2]|'/2
jj Rr + cos 6 j

7-1 Rr- + COS

8. If 0 = dm , p = 0 unless m = N', in which case it is:

(1 - (1 + M) cos (eH.))u2 exp [j| cos (0„.)(1 - M*)u2]

[l-Mcos(MJ2

(fcfr) [M + (1 - M ) cos (gy.)]
(tf' - \)ir(RN.+ + £*■-)

J J Rr+ — COS (0jv)

+ COS (0„.)

9. li d = <t>m ,p is:

I /J. M (1 ~ (1 "f- M) COS (<f>m)y/2 I IVU , ,,2U

Ip(<UI ~ [J _ M cos (0m)]2(COs <t>m - Q) exp I O cos fo-X1 -U )

(feb)2[M + cos fo.)(l - M2)](jg^ + Rm_)
(m - J)?r

B: If tan (kb) < 0, multiply all previous expressions for p by:

(1 — 2M cos 0)2 + tan2 (kb)

tt Rr+ — cos (0m)

7-1 fir- + cos (<£„)
exc1. m

(1 — M cos 0)2 + tan2 (&i>)

Appendix 3: Nodes (p = 0) of radiation patterns (all angles in degrees).

No. of
kb N M Nodes 1st Node 2nd Node 3rd Node

1.25 0 0 0
0.3 0
0.6 0
0.9 0

3.75 0 0
0.3
0.6
0.9

0
0.3
0.6

56.9
70.68
77.16
80.63

0
39.72
51.32

0.9 2 58.24 109.5
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No. of

kb N M Nodes 1st Node 2nd Node 3rd Node

3.75 2 0 1 0
0.3 1 39.72
0.6 1 51.32
0.9 1 58.24

6.25 0 0 1 30.17
0.3 2 50.61 91.05
0.6 2 60.46 90.51
0.9 3 66.52 90.34 140.4

1 0 2 0 48.94
0.3 2 39.72 64.29
0.6 2 51.32 72.02
0.9 3 58.24 76.47 109.5

2 0 10
0.3 2 39.72 91.05
0.6 2 51.32 90.51
0.9 3 58.24 90.34 140.4

Appendix 4: Approximate analysis of spinning modes. In a spinning mode problem

in an annular duct the given inputs will be k'a where k' = co/c, a = mean radius of

annulus, a the hub tip ratio, m the tangential lobe number and N' the radial mode order.

Then the two-dimensional problem which simulates the three-dimensional problem

approximately will have:

kb = - g) (-, vi
a) \ (k'c

mber of nod

the axisymmetric problem.

(1 + a) V (k'a)2 J

and an N equal to the number of nodal circles in the mode pressure distribution for


