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Abstract. A multiple-scale perturbation technique is used with a two-parameter

expansion to study the asymptotic solution of Reissner's axisymmetric finite-deformation

equations for a circular cylindrical shell with an edge-bending moment load. Beyond

the assumptions of Reissner's differential equations, it is assumed that (1) the rotations

of a shell element are finite but not excessively large, (2) thickness variations in the

differential equations are of order one and (3) the boundary-layer behavior is of the

linear bending type to a first approximation. An asymptotic solution is then found which

is uniformly valid in that it contains boundary-layer effects and corrections for extending

the analysis into the shell's interior. Upon considering certain limits, it is observed that

the solution contains well-established linear and nonlinear approximations to the solution.

1. Introduction. The analysis presented herein involves the use of the multiple-

scale method of perturbation [1, 2] to solve the nonlinear deformation problem of a

thin circular cylindrical shell with an edge-bending moment load. The multiple-scale

method of solution has been used [3] to find the solution to the homogeneous linear

differential equations governing variable-thickness circular cylindrical shells undergoing

axisymmetric deformation. The present solution is based on approximations to Reissner's

nonlinear finite-deformation equations [4] for an isotripic elastic shell and includes the

effect of gradual changes in thickness.

Heuristics leading to the solution of differential equations by the method of multiple

scales have been advanced by Cochran [2] and by Cole and Kevorkian [5]. The analysis

is based on the observation that the composite solution is dependent upon two coordi-

nates, one of which is of order one in the boundary layer while the other is of order one

in the outer region. The effect that each of these coordinates has on the governing dif-

ferential equations is realized through the ingenious multiple-scale transformation which

converts ordinary differential equations into partial differential equations. Arbitrary

functions are found on the basis of "Lighthill's principle" of limiting the singularity of

the solution. A brief discussion of this method of analysis is found in Van Dyke [1].

A linear asymptotic solution for variable-thickness shells of revolution has been

found by Hildebrand [6]. Hildebrand generates his solution by expanding the dependent

variables in terms of a small geometric parameter. Also, special thickness variations

have been considered [7] for linear shell problems.

Some nonlinear effects of edge loading have been considered [8, 9]. Of particular

interest is Reissner's solution [9] using an asymptotic expansion in terms of load-depen-
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dent perturbation parameters to solve the nonlinear boundary layer equations. Although

a useful result, Reissner's expansion is also restricted to very thin shells, since he excluded

the geometric parameter dependent upon thickness-to-curvature ratios.

In the present contribution to the literature on edge-loaded shells, Reissner's method

of scaling the variables [8, 9] is used to obtain a form of the differential equations which,

to a first approximation, yield linear bending terms in the boundary layer. Then, ex-

tending the considerations beyond the first approximation, a two-parameter expansion

is incorporated with the multiple-scale techniques to find a more general solution. The

solution is uniformly valid throughout the boundary layer and the interior regions of

the shell.
The two perturbation parameters used in the analysis reflect, separately, the influence

of the edge load and the shell's geometric properties on the approximations to the solu-

tion. If the load-dependent perturbation parameter is set equal to zero, the solution

reduces to Hildebrand's [6] linear approximation of the problem. If the terms associated

with the geometrically-dependent perturbation parameter are set equal to zero and an

expansion made near the loaded edge, the solution is Reissner's boundary-layer approx-

imation [9] of the problem.

2. Governing differential equations. The differential equations governing the finite

axisymmetric deformation of a variable-thickness circular cylindrical shell acted upon

by edge loads are [4]

/3" + (D'/D)i3' + (cos /3 — 1) sin /3 + v(D'/D)(l — cos /3) = —{a/D)^f cos 0, (la)

V — (C'/C)\V — [sin2 /3 + cos /3 — (C'/C) sin /3}]^ = aC sin /3 (lb)

in the absence of axial loading. In these equations the primes denote differentiation

with respect to the dimensionless axial coordinate

£ = z/a (2)

shown in Fig. 1. Also, ^ is a stress function, /3 is the rotation experienced by a shell

generator, v is Poisson's ratio, a is the radial distance to the shell's midsurface and

D = 12(f- v2) ' ° = Eh (3a'b)

are the flexural and extensional rigidity, respectively, where h is the thickness at a

given point £ and E is Young's modulus. If ^ and /3 are known, the stress resultants,

stress couples, and radial displacement can be found from the following:

aN( = ^ sin j3, aQ = — ̂ cos /3, aNe = SI'', (4a, b,c)

aM( = D[/3' + v(l — cos /?)], aMe = Z)[(l — cos /?) + vfi'], (5a, b)

Ehu = xj/' — sin /?. (6)

The positive directions of the various quantities are shown in Fig. 1.

Introducing the dimensionless variables

KQ = ^ , ~ , (7a, b, c)

it is possible to study the influence of loading and shell dimensions on approximations



NONLINEAR MULTI-SCALE SOLUTION 493

U

Fig. 1. Element of shell with stress resultants and stress couples.

to the governing differential equations. In the above equations t, \p and a are functions

of order one, h0 is the thickness at the loaded edge, and A and 5 are constants formulated

in the course of the analysis. Upon substituting Eqs. (7) into Eqs. (1) the governing

differential equations become

a" + /a' + 7 [cos (5a) — 1] sin (5a) + 3 [1 — cos (5a)]/ = —3- 1{/ cos (5a), (8a)
0 ud,

\p" — P\p' — [sin2 (5a) + v{Sa' cos (5a) — P sin (oa)}]\p = tL2 sin (5a), (8b)

where

/ = 3 (t'/t), d = t3, P = t'/t, (9a, b, c)

-12<' - '*> m ■ e = aJt- <IOa'b)
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If the deformations are only moderately large, the sines and cosines in Eqs. (8) are

represented to a sufficient degree of accuracy by the first few terms of a Taylor series,

and the governing equations for the cylinder are then

«" + /«' + 7,Zo?j - ^ «3 + • • • - t.
t d

1 -|«2+ •••] , (11a)

y\," — P— -|- a + • • • ja'

- p{a - ~ a3 + •••)}+ f = p [« - J + * • •] , (lib)

where

1/r2 = X2 = L2S. (12)

The latter relationship is necessary to produce a consistent set of boundary-layer equa-

tions at the loaded edge and yields, upon substitution of Eqs. (10),

r4 = K/12(1 - v2)a2 « 1 (13)

which, on the basis of thin shell theory, is a small parameter.

3. Edge-bending moment load on a semi-infinite cylinder. If a semi-infinite cir-

cular cylinder is acted upon by an edge-bending moment of magnitude M0, as shown in

Fig. 2, the boundary conditions are found by considering Eqs. (4) which give

aM0 = D(0)[a«'(0) + k|1 - cos («a(0))}], 0 = *(0), (14a,b)

Fig. 2. Variable-thickness cylinder with moment load M0.
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along with the requirement of finiteness of \p and a. as £ —* <» . The boundary conditions

for moderately large deformations, corresponding to Eqs. (11), are therefore

aM0 = 5Z)(0)[a'(0) + (v8/2)a2(0) + •■■], 0 = ^(0). (15a,b)

3.1. Moderately large deformation solution by the multiple-scale technique. Assuming

the deformations are only moderately large (i.e., S small), closed-form approximations

are found for a semi-infinite circular cylinder with edge-bending moments by using the

method of multiple scales. Following the work on the linear equations [1] the new inde-

pendent variables

v = g(£)/r, f = ?, (16a, b)

are introduced such that

lK£) = v), <*(£) = «(f, v)- (17a, b)

This transforms the ordinary differential equations into a set of partial differential

equations where the asymptotic representations

t ~ >Aoo(f, v) + rioi(f, v) + 5r^u(f, v) + • " • (18a)

a ~ a00(f, v) + ra01(t, v) + 5ra„(f, ij) + • • ■ (18b)

are assumed so that each approximation is bounded independent of r and S. A class of

variable-thickness circular cylinders is treated by retaining the variable coefficients

and assuming that the thickness function t and its derivatives are continuous and of

order one.

By substituting Eqs. (16)—(18) into Eqs. (11) and equating to zero coefficients of

like combinations of 5* t , the following systems of partial differential equations result:

First-order problems (1/r2 terms):

(flO aoori<i = ttoo/d), (g) iAooijij = totoo • (19a, b)

Second-order problems (1/t terms):

(SO aoin "I" {2y'aao{ii + (g" + = (lAoiAQj (20a)

(ffOVoi,, + {20'*oor, + (g" - P(/')tooA = ta0l . (20b)

Third-order problems (5° r°, c>2/r2 and 5/r terms):

(g')2ot02li, + {2g'a0if, + (g" + 1g')ot0ini + aoorr + /"ooj-l = — (^02/d), (21a)

id') ^027,7, ~i" {2(7 IpOlSriX ~\~ (g ' Pg )4/01\ 4" "Aooff P^OOt} ~ ta02 , (21b)

(g')2a2a = —(^20/d) + (\p00/2d)<x0a , (22a)

(g') 1A20 = toi2o (t/6)aoo j (22b)

(.g')2otn„ + {2 g'a10lri + (g" + fg')a10v\ = — (ipn/d), (23a)

(ff')Vim + {ty'tioti + (g" — Pg')iion} = vg'a00l\p00 + tan . (23b)

Fourth-order problems (5, o2/t terms):

(g')2ai2„ + {2 g'a1Hn + (g" + /j')«n,j + (v/2)ja00 = —(^12/d), (24a)
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(ff')Vi2„ + {Zg'tiHv + (g" — Pg')tiu\ — vg'aoirfoo — vg'\p01a00v

— vaoot\poo — vPaooXpoo = tal2 , (24b)

(g')2a2m + 12g'a2of, + (?" + /</')a20,! = ~(4/2i/d) + <Aooaoi + (^oi/2)aoo > (25a)

{g'Y^nn + {2fi''i/'2ori + (ff" — Pg')ip2 oi,} = <«2i + •■• (25b)

and so on. A subscript i) or f denotes partial differentiation with respect to the corre-

sponding variable. Boundary conditions for each of the above problems are found in

like manner and are

0 = hi(0, 0), (26)

1 = <7'(0)aoo,(0, 0), 0 = g'(0)aOi,(0, 0) + «oor(0, 0), (27a,b)

0 = «ao,(0, 0), 0 = £7'(0)ail,(0, 0) + (f/2)a„o(0, 0) + «lor(0, 0), (27c,d)

and so on, together with the requirement that \p and a are bounded as 77 goes to infinity.

The first-order boundary condition, Eq. (27a), was normalized without any loss in

generality, producing the additional relationship

r = 5D(0)/aM0 (28)

between the constants r and 5 which, upon substitution into Eqs. (10) and (12), gives

52 = (aM20/h50E2)[ 12(1 - k2)]3/2, (29a)

A = M„[12(l - v2)]u\a/ha)u2 (29b)

r4 = (1/12(1 - v2)){K/a2) (29c)

The terms in the braces in Eqs. (19)-(25) result in secular terms which are removed on

the basis of LighthilPs principle [1].

3.1.1. Solution of the first-order problem. The first-order problem for a circular

cylindrical shell loaded by an edge-bending moment is solved by considering Eqs. (19),

(26) and (27) in conjunction with LighthilPs principle. By separation of variables the

stress function is of the form

too = r(v)Ztf) (30)

which, upon substitution into Eq. (19), yields

Y"" + 4/F = 0, (31)

where the constant

M4 = W(g')4d) (32)

is set equal to one with no loss in generality. Keeping only bounded solutions, Eqs. (19),

(26), and the above result in the first-order solutions

^00 = Booifie'" sin r\, «00 = — (500(r)/<2)e~' cos 17 (33a, b)

where 17 is given by (16a); then from Eqs. (9b) and (32) we find

r(

~ V2 l %' (34)



NONLINEAR MULTI-SCALE SOLUTION 497

This expression for the boundary layer variable is consistent with the solution of the

linear deformation problem [1], The coefficient Bao must remove the secular terms from

Eqs. (20) and, therefore, is governed by the differential equation

2g'B'oa + {(/' + jg')Bao = 0. (35)

Thus

Boo = boot3'4, (36)

where b00 is a constant determined by the boundary condition (27a) which demands

that 6„„ = V2.
3.1.2. Solutions oj higher-order -problems. The solutions of the higher-order problems

progress in the same manner as the above. For example, since the first-order solution

removed the secular terms in Eqs. (20), the second-order solutions are

ioi = UoiGOe"'sin 77, «oi = - (Bo^)/t2)e~" cos 77. (37a,b)

Then, upon introduction of Eq. (21a) into (21b) and removal of secular terms, it is

found that the following must be true:

0 - +1 ■f +.„] - f \ «'M, +1 (^)t 08)
The equation has been simplified by using Eqs. (9) and (19). Substituting Eqs. (33a)

and (37a) into Eq. (38) and noting that the relationship so obtained must hold for

arbitrary 77 then yields

+ (39)

the constant b01 is found from the boundary condition (27b).

3.2. Summary 0/ the multiple-scale solution. To find the remaining terms in the

multiple-scale solution of the problem of a semi-infinite circular cylinder loaded by an

edge-bending moment load of magnitude M0 the above steps are repeated for Eqs. (22)-

(25) with the boundary conditions (26) and (27). The resulting four-term asymptotic

solutions are then

^ = A\p ~ A[^00 + rf01 + St^u + 5V20], (40a)

|3 = Sa ~ 5[a0o + raol + Sroiu + 52a20], (40b)

where

for i = 0, 1,

\pOi = B0ie ' sin 77, aoi = — (B0i/t2)e ' cos 77. (41a, b)

"An = [An cos 77 + Bn sin 7j\e ' + [1 + f {cos 277 + sin 2r]}]e 2\ (42a)

an = Y S"171 ~ -®11 cos 7^e~" ~ loP ^ — ~ cos 2,J^e ~2'

jB3
^20 = [42o cos 77 + B20 sin 7)]e~' + [4 cos 77 — 2 sin 77 — sin 377]e"3', (43a)
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1 B3
«2o = f [^-20 sin v ~ B20 cos ri\e ' + [1 cos 3-q + 2 cos ?? + 4 sin rj]e 3\ (43b)

~ tV2 I f7'2 • (44)

B0l = f 1 f8 J„

V2
J300 = V2 *3/4, (45)

dr - f<'(0)j , (46)
/" 15 (i')2
tW2 + 4 ^3/2

4n = -v(V2/3)t3/i, Bu = -5KV2/3 )*3/\

A20 = ~(V2/20)t3/i, B20 = (13/80) V2 *3/4, (48a, b)

and the constants r, 4 and 5 are as given in Eqs. (29). The solution implies that beyond

the second approximation the corrections to the first-order solution are relatively small

even for reasonably large S.

The stress resultants and displacements can be found by substituting directly from

Eqs. (40) into Eqs. (4)-(6).
4. Extension of analysis. To alter the solution for general boundary conditions

such as M£(0) = M, ; Q(0) = Q, and for pressurization (P) the expansion of Eqs. (18)

would be replaced by

^ ~ X X) 5V«*iViiii j (49a)
t =0 j=0 A; = 0 0

a ^ X) X) X 5Ve*Alaiiki . (49b)
t=0 7=0 k=0 1=0

The solution would proceed as above with 8, e and A being dependent upon the loadings

M„ , Q, and P, respectively. An expansion like Eqs. (49) would then lead to a general

study of how the loading, variable thickness, and thickness-to-curvature ratio (r) affect

the approximations.

5. Conclusion. For a circular cylindrical shell with a symmetric edge-bending

moment load the analysis has produced a uniformly valid four-term asymptotic solution

for finite deformation without relaxing the provision for thickness changes. The variables

An , Bij and t] reflect this provision and contain corrections necessary to make the

solution valid both in the boundary layer (i.e., near £ = 0) and in the interior of the shell.

The solution, Eqs. (40)-(48), contains Hildebrand's [6] linear solution (5 = 0) and

Ptcissner's [9] nonlinear constant-thickness boundary-layer approximation (r = 0, £ —» 0)

as special cases. As expected, the linear portion of the expansion is load-insensitive.

The nonlinear corrections <p> 1 and an are present even for constant-thickness circular

cylindrical shells and, although they are neglected in Reissner's boundary layer solution

[9] for thin shells, there can be certain parametric combinations for which they would

be significant.

The 52-terms of the expansion, Eqs. (40), are small for most problems and can be

neglected.

To gain an appreciation for the relative magnitude of the corrections to the constant-

thickness linear theory solution, consider the rotation 0 at the loaded edge (£ = 0).
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From Eqs. (40)-(48) it follows that upon neglecting <52-terms:

/3(0) = 5 V2[-l + (5 •v/2/4)f'(0)r - (25?/3)t5]. (50)

It can be seen that for small finite deformation the r-term would become significant when

the edge thickness-to-curvature ratio approaches the limit between thin and thick shells—

an upper limit on the magnitude of r is about 0.15 and the thickness change (t') is of

order one at £ = 0. The ro-term representing the transition from linear theory to non-

linear theory becomes significant when the loading becomes large (S —> 1).
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