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I. Introduction. Wu [1] has considered the problem of the elastic properties of a

composite solid permeated by a sparse random distribution of identical spheriodal

inclusions, treated by the methods of static elasticity. Limits can be taken to give the

cases of included needles, spheres and disks. The properties of a spheroid are of course

characterized by the smoothness and convexity of the surface. In the case of the disks,

the singularities in stress at the edges are sufficiently great that, in this limit, a non-

physical result is obtained for the case in which the shear modulus of the obstacles is

allowed to vanish. Wu was careful not to take this limit. Walsh [2], however, did take

the disk limit for vanishing shear modulus of inclusions and attempted to apply the

result to the long-wavelength scattering problem. Walsh [3] later recognized the dif-

ficulty and proceeded to avoid the problem of the singularities at the edges by retaining

a nonzero aspect ratio to the crack.

Mai and Knopoff [4] considered the scattering at long wavelengths from spherical

inhomogeneities and showed that the result was completely consistent with the static

result. They also investigated the effect of a statistical distribution of radii of the spatially

sparsely and randomly distributed spheres.

We consider the problem of the average elastic properties of a homogeneous elastic

solid permeated by a sparse distribution of randomly located, randomly oriented thin

circular obstacles in a scattering process. The boundary conditions on the two walls

of the obstacles separately can either be free-free, in which the normal components of

the stresses vanish, or liquid-elastic, in which the normal shear component of the stress

vanishes while the normal compressional component of the stress and the normal com-

ponent of the displacement are continuous. We can also make the liquid filler viscous

by the introduction of impedance boundary conditions. The free-free and liquid-elastic

problems will be considered in separate papers. We consider only the long-wavelength

limit of the scattering problem. We assume, based on the demonstration for spheres,

that this will also give the static result.

These problems may be considered to be models of a completely flawed object.

Consider, for example, a building brick permeated with fine circular cracks, or the

partial melting of a solid in which the mode of melting is along grain boundaries. In

either of these problems, we might imagine that it would be of interest to learn something
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about the concentration of inhomogeneities without a microscopic examination of the

interior.

Some progress on the attack of the problems of scattering of elastic waves by finite

inclusions with sharp edges was made by Ang and Knopoff [5, 6] who obtained the solu-

tion to the two-dimensional cases of scattering by a single finite crack or strip. The

problem, as in the present case, involves the solution of coupled dual singular integral

equations. Mai et al. [7] have considered the scattering of normally incident compres-

sional waves by a penny-shaped crack. The plan of this paper involves the solution

of the problem of the scattering of long-wavelength compressional waves incident

obliquely on a single circular crack imbedded in an infinite, elastic, homogeneous,

isotropic medium. We then give a method for determining the properties of a medium

randomly permeated by such cracks.

II. The integral equations. Let the location of the crack be given by z — 0, 0 <

r < 1, in cylindrical coordinates (r, 4>, z). All lengths are normalized with respect to

the radius of the crack. The time harmonic behavior exp ( — tut) in all the physical

quantities is suppressed. The displacement vector u for the diffracted field satisfies

k? V(V-u) - K2 V X V X u + u = 0, (1)

where

fc,- = co/Vi , i = 1, 2 (2)

and vt and v2 are the compressional and shear wave velocities in the medium defined by

the relations

v\ = (X + 2n)/p, ^

vl = m/p.

X and iix are the usual Lame elastic parameters and p is the density.

Let the vector displacement field be decomposed into three scalar potentials 4',

S? and x as

uT = ——— 77 + - 7~ , (4a)
dr r dip dz dr

13$ d* . 1 d\ s
Uj, — ~ r—  —I— . , , (4b)

9 r d<t> dr r d4> dz

U'=fz + {d? + kl)X' (4C)

where ^ and x satisfy

V2$ + kl$ = 0, V2^ + & = 0, V2x + Jclx = 0. (5a,b,c)

The normal components of the stress in terms of these potentials are

l)x, (6a)

rjn = - - f-y + "£; (2 V2 + kl)x, (6b)
9 r d<p dz dr dz r d<fi \ dz '

Tir/» = 2 + j (2 + kl
dr dz r d(j) dz dr \ dz
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Tzz/fJ- = ^2^ — k22 + 2 + 2 — ^—2 + 1<%Jx. (6c)

Assume solutions of (5) to be

Hr, <M) = E e'"' f (PUf) =F P2n(f)} J„(Me-"hl dt, (7a)
n = -co «/0

*(r, <t>, z) = E e** f IQUt) T Q2„(f)}/„(fr)e-"ul df, (7b)
n=" — co Jo

x(r, <f>,z) = E ein* f {Rln(fi =F «2„(f)} Jn(fr)e-U' df, (7c)
n= —co ^0

where

^ = f2 — fc< , Re Vi > 0, i = 1, 2. (8)

The T sign in (7) refers to z ^ 0 respectively. The six functions Pln(f), etc. are deter-

mined from the boundary conditions. For the free-free problem,

= 0 r < 1, i = r,<t>, z, C9')

where the stresses r° refer to the incident field.

The displacement is continuous for r > 1 and the stresses are continuous for all r.

The latter condition implies

f m2 - kl)PUr) + 2v2fRin(0\Jn(M dt = 0, (10a)
Jo

f f[2.1P1„(r) + (2f2 - ^)^2„(f)]^(rr) dt + ~ r v2Qln(!;)Jn(i;r) dt = 0, (10b)
J 0 T J o

V f [2",A„(f) + (2f2 - kl)RUt)]JJP) dt - r toQUtWiCM dt = 0. (10c)
T J o J o

Using the identity for Bessel functions

zJ'n{x) ± nJn(x) = ± J(11)

(10b) and (10c) may be written as

f [i[2VlPln{t) + (2f2 - k22)R2n(t)] T ^QUt)}trJ^(tr) = 0.
J 0

A sufficient condition for this equation and (10a) to hold is

(212 ~ kl)PUt) + 2v2t2Rln(0 = 0, (12a)

2VlPUt) + (2f2 - kl)R2n(t) = 0, (12b)

QUt) = 0. (12c)

The continuity of the displacement for r > 1 implies from (4) and (7)

f tlPUt) + vMt)W(tr) dt + ^ f Q*n(t)Jn(tr) dt = 0, r > 1, (13a)
J o ' Jo
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t f [P.»(r) + df - f fQunJUrt df = o, (i3b)
T Jq J o

f ["iPi.(f) + ^.(rXWfr) df = o. (13c)
«^0

There are three more relationships which arise from the boundary conditions (9), but

these will require that incident waves be specified. We assume that a harmonic plane

P-wave of frequency u travels in the x-z plane and strikes the crack obliquely. The

incident wave is given by

*° = X° = 0,
CO

<3?° = exp (i(ax + /3z)) = exp (ifiz) ? exp (in<t>)Jn(ar), (14)
n= — a>

a2 + /32 = k\

Using (6), (7), (12), (14) and the identity (11) in Eqs. (9), we get

f G(f)P,„(f)./„(fr) df = (2a2 - kl)l'J Jar), r < 1, (15a)
Jo

f df[±i(?(f).Ri„(f) + v2Q2n{t)\Jni:i{tr) — =F2z"/3/nT1(ar) (15b, c)
Jo

where (7(f) = — (2f2 — /c2)2J/(2f3 — k\). Putting (12) into (13) and using the

identity (11), we obtain the following dual integral equations:

f G(fiPln(r)J.(M df = (2a2 - kl)?jn(ar), 0 < r < 1 (16a)
Jo

[ dz= °> r >1' (l6b)

[ dfr[iG(f)flln(f) + v2QUt)lJn-^r) = —2aj3i"Jn-1(ar), 0 < r < 1, (17a)
Jo

f" f iVjRjni
Jo l_2f2 - ^ + QUI)1^2

f /^(fr) df = 0 r > 1 (17b)

[ df f[z'G(f)i?ln(f) - v2Q2n(t)]Jn+i(M = -2a/Si"J„+1(ar), 0 < r < 1, (18a)
Jo

f f W^-BlnCf)^  
Jo L2f2 - A2 ^2

.(f) f/„+i(fr) df = 0, r > 1. (18b)

Emboldened by our success in reducing the typographic complexity of these equa-

tions by introducing the function G(f), we make some further typographic simplifications

by defining

<S.(f) = "xPln(f)/(2f2 - kl), (19a)

Ln(f) = iv2Rln(f)fc22/(2f2 - /c2). (19b)
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The dual integral equations may be written as

[ fS.(r)J,(rr) df = AnJn{ar) + [ A(f)Sn(t)Jn(M df, 0 < r < 1, (20a)
Jo

[ Sn(Z)Jn(£r) df = 0, r > 1, (20b)
Jo

f fWr) + QUW^(tr) dt;
Jo

= anJ„-1(ar) - f r[£(f)L„(f) + CWQUtiVn-ittr) df, 0 < r < 1, (21a)
Jo

[ f[£»(f) + Q2nU)]Jn-iUr) df = 0, r > 1, (21b)
Jo

1* fhLn(0 - Q2B(f)]/.+1(fr) df
Jo

= anJn+,(ar) - f f[£(f)L„(f) - C(f)Q2n(f)]/n+1(fr) df, 0 < r < 1, (22a)

[ t[Ln(t) ~ e2„(f)]/»+i(fr) df = 0, r > 1, (22b)
Jo

where

A (f\ _ y-   ^f (2f fc2) _ ~   2\ _ - 1 /n, A
* (-0 f o/j.2 z»2\„ > ^ ) j °* 7,. ^ > (23a)2(fc2 - v " /c2

"2- ■■ - (2r2 jA2

V'Jt'2
«f> - *^3^ - ye, (23b)

C(r) = "2 - f, (23c)

-1- - 2(g - 1) 7 ■ <24a>

an = -2ia0. (24b)

III. Solution to the dual integral equations. For our purposes, it is convenient to

imagine the right-hand sides of (20a), (21a) and (22a) as known. Let these three ex-

pressions be hn(r), fn(r), g„(r). We must solve the dual integral equations (20) and the

coupled dual integral equations (21) and (22); the solution to the first problem is inde-

pendent of the solution to the second. The solutions will be obtained by introducing

auxiliary functions which are defined in terms of »Sn(f), Q2„(f) and L„(f). The particular

form of these auxiliary functions is chosen so that (20b), (21b) and (22b) are satisfied

identically. The remaining equations are then put into a suitable form for iteration in

the long-wavelength approximation.

The solution proposed for (20), (21) and (22) requires n > 0 for (20) and n > 0

for (21) and (22). This produces no difficulty since, from the integral equations, it can

be seen that
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S-n (f) = (-1 )"S.(f),

L_„(f) = (-l)"L„(f),

Q2,_„(f) = (-l)"+1Qa.(f). (25)

The case n = 0 in (21) and (22) will be treated separately.

We postulate the following solutions for (20), (21) and (22):

Sn(t) = [ s„(p)J„+I/2(fp)(fp)1/2 clp, n > 0, (26a)
J 0

Pln(v)Jn-l/2^v) dr] + gi„(»))Jr„ + 3/2(f'?) dl)

fQ2n(f) = f ' [ V2nW)Jn-l/iiXv) dr) + f Q2n(.V) J n + 3/2^ V) dl)
-Jo Jo

n > 0, (26b)

n > 0. (26c)

Only Pmiv) wih be found; the other auxiliary functions are determined similarly.

Before continuing, the following identities will be needed:

f r'+1J^r)J,(tv) di = 0, 0 < t) < r,v > n > -1
J 0

2"-"+Ir"(1?2 _

r(f — /u)??"

f dr = o,
Jo

= 2'-"+y(r2 - i?2)"-"1

r(/i - vy

rl > r, v > n > —1, (27a)

V > r, n > v > —1,

0<t)<r,n>v> — 1, (27b)

f dp = (W2ty/2v'+1/2J,+u^v), (28)
Jo \V V )

(d/dv)[v"Jy(tv)] = tv J*-i($v), (29a)

(d/<i7j)[?j"V „(f??)] = (29b)

We will also want to recall that the solution to Abel's integral equation

f / 2 dr, = /(r), 0 < r < 1, (30a)
•'o V V )

IS

In Eqs. (26b, c), we have introduced four function transforms to describe the two

functions L„ , Q2„ • Thus we can assume two sufficient conditions among the four new

functions. Eq. (22b) is satisfied if Pi„(f) = p2„(f). This can be shown if identity (27a)

is applied. Eq. (21b) is also satisfied by applying (27b). This can be shown by using

(27a) on the pi„(f) term, and (29b) and (27b) on the g!n(r) and g2„(f) terms. Assuming

the relation

?i»(f) = - ?2„(rt/7,
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the integrand of (21a), after integration by parts, becomes

thUtX) + &.«■)] = -r1/2(v + l)k»(l)/n-3/2(f)

fo 1 ^,"3/2Pi»(")]'?"n+3/2/-'M dv] , (31)

where it has been assumed that lim,_,0 [pin(v)Jn-a/2^v)] — 0. Substituting (31) into

(21a) and using (27a), we get

r d , „_3/2 , .. dv Ur\1/2/„(r)r"-1

Jo^vh pM} (fS _ vy» - y V+T' (32)

The integral equation may be inverted by assuming /„(r) is known and using (30),

(21a) and (28). The resulting equation is then integrated over r] from 0 to r/ and gives

P..0?) = pliv) ~ —7TT f t1/2m)Ln(t) + C(r)Q2»(f)]Jm-1/a(tv) dr, (33a)
7 T 1 '0

where

o / \ vJn-i/ai&v)

Pi-M =^+~l—Va

Similar calculations for (22) yield

qM = q"M ~ y(y \ 1} [ y/2m)Ln{^) - yC(f)Q2n(f)]Jn+3/2(^) (if, (34a)

where

0 / \ Vt^n + 3/2(p^'ri) /o \

3-w = ̂ n)~7«~' (34b)

Substituting (26b) and (26c) into (33a) and (34a) gives

Piniv) = Piniv) ~ ~ 1 Jo Pm(t)F2n(v, t) dt + ^ qm{t)F3n{T], t) dt^ ,

?!»(»?) = ff?»(>?)

(35a)

^ Pm(t)Gln(v, t) dt + qln(t)G2n(r], t) dtJ , (35b)
y{y + 1)

and a similar calculation for Eqs. (20) using (26a) gives

sn(n) = s°(v) + [ Fln(ri, t)sn(t) dt, (36a)
*>0

where

s°n(v) = An(r}/a)1/2 J„+1/2(ay) (36b)

and

Fin (v> 0 — Qrj) f A(£)Jn+1/2(£t)Jn+1/2(£T]) d£, (37a)
Jo
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^2n(>7> t) = f [5(f) C{t>)]Jn-l/2(£t)Jn-l/2(£v) <^f > (37b)
•>0

P3n(tj V) = GlniVj 0 = [ [5(f) YC(f)]*Ai + 3/2(f??) *Ai-1/2 (f 0 df, (37c)
Jo

GUv, t) = f [5(f) + 72C(f)]J n + 3/2 (fl)^n + 3/2 (ffl df. (37d)
Jo

Due to the asymptotic behavior of 4(f), 5(f) and C(f), Eqs. (32) may be converted to

integrals over the branch cuts between ±fc,- , i = 1, 2. The result is

^.(u, 0 = i(^)1/2 ^ {£ dy 4/(1 - yY2Hi%2{t>hy)J^uS<k2y)

+ J0 dy - t/2)'^~ Jn+i/2(t<<rhy)l (38a)

■f,2»('?, 0 = —4zV4/4 [ dy y2( 1 — y2)l/2H'nl\/2(<xk2t>y)</„_ 1/2fak^y)
Jo

— / dy
Jo

&yl Dl i n — 7/2)i/2
(1 _ ^)i/2 + (1 2/) Hn-u2{k2t>y)Jn-i/2{k2t<y) (38b)

ft

»('7i 0 — —4z'it fc2 f dy 2/(1 y ) Hn+3/2{ak2t>y)Jn+3/2{(Tk2t<y)
Jo

- ikl f _dy2,v2 [(2t/2 - l)2 + 72(1 - (38c)
Jo [l y)

a(v, t) = Gln(^ 77) = —iiakl f dy y2( 1 — y2)U2H'„l\/2(ak2riy)J„+3/2(ak2ty)
Jo

~ik* l a^yYr2 [(-2y2 ~~1)2

7(1 — y )]Hn_1/2(lc2r]y)Jn+3/2(k2ty), t < jj,

ft^U, 0 = Gln(Z, 1) = — 4z'<74fc2 [ dy tf{ 1 — y2)1/2 H^3/2{(rklty)Jn^U2(<jk2r]y)
J 0

4z'/c2 f dy y . 2. 1 /2 Hn+3/2 (/c2 %) </„_ 1 /2 (/c2 777/)
Jo v.-i v )

■ n-1/2

- ^TT72-(2n + 1), * > 7). (38d)

We have used the notation

t> = ^ if t > 7] and £> = v if t < 77.
< V < t

If these kernels are expanded in powers of kt , fc2 , it can be shown that F 1,(77, t),

F2„(?7, 0 and G2n(r], t) are of the order fc2 and F3„(t7, <) and (ji„(ij, £) are of the order of fc4.

The solutions to (35) and (36) are obtained by iteration in which the first-order solution

is Pi«(v) = P°u(v), 3i»W = Qiniv) and s„(r)) = s°(tj).
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To obtain the complete solution, we must now solve (17) and (18) for the case n = 0.

The equations under these circumstances decouple into

[ iU(JVi(fr) H = 0, r > 1, (39a)
Jo

[ tA'(t)Lo(t)Ji(M d? = i(ar), 0 < r < 1, (39b)
Jo

f Qio(f)Ji(fr) dt = 0, r > 1, (40a)
Jo

f v»Qio(t)Ji(M dr = 0, 0 < r < 1, (40b)
Jo

where

= 4fVa - (2f2 - fc2)2
(r) r2fc22

(40) implies Ql0(f) = 0. To solve (39), let

LoO) — f [ Po(y)Ja/2(£y) drj. (41)
Jo

Proceeding as before, (41) identically satisfies (39b). (39a) may be put in the form

Jf»co /* CO

f2L0(t)J1(t;r)dt;=-2a/3J1(ar)- £(f)f-L0(f)/i(fr) df. (42)
0 •'o

Using (41) in (42), and inverting by using Abel's solution, we get

Poiv) = 2 afir, [dt PoWoiv, 0, (43)

where

Fo(vt i) = f df B(£)J3/2(t
J O

= -4£r4# f dy y\l - yy/2Hi)l{ak2t>y)J3/2(ak2t<y)
Jo

f1 f27/2   l)2
ik2 / dy yr 2\ 1/2 H3/2(Jc2t>y)JS/2{k2t<y)y (44)

Jo U ~~ y )

Fob, t) = 0(fc2).

IV. Effective elastic modulus. Having solved the problem of the scattering of

incident plane P-waves on a single crack, we proceed to find the effective elastic modulus

associated with the scattering of a P-wave by a random distribution of such cracks,

randomly oriented as well, and imbedded in an otherwise elastic material. The effective

modulus will be calculated by considering the flawed material as an equivalent homog-

eneous isotropic elastic material subjected to a constant traction on the surface. The

deformational energy of the equivalent homogeneous material will be calculated and

set equal to the deformational energy of the flawed material. It will be assumed that
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the density of inhomogeneities is small, so that in the lowest approximation the deforma-

tional energy of the flawed system is equal to the energy of the unflawed homogeneous

host matrix plus a correction due to the flaws.

We write the total energy in the flawed case as

E = E° + AE = | f rlrft dv+'-f (t ijtij - r°#€°;) dv, (45)

where the first integral is evidently the result in the unflawed case. In these expressions,

v is the total volume. The volume v in the flawed case is bounded by an exterior surface S

and the surfaces of the cracks S0. By an energetic application of the divergence theorem,

the boundary conditions rnl- = 0 on S0 where n is the normal to S0 , and the reciprocity

theorem, we can write (45) as

E = | J dv = | £ r°,e°f dv + | f dS (46)

where [«<] is the jump in ut across S0 .

Let the effective moduli be X, , n, and the elastic moduli for the matrix material be

X, ix. There exist two Hookean operators Li and L2 connecting the stress and the strain:

eif = LM,), 6°,- = L„(r°,). (47)

Thus (46) becomes

r°Mru> = + E r?,. f dS, (48)
p=l JSp

where the two volume integrals have been evaluated by virtue of the uniformity of the

fields in both cases. The surface S0 has been broken into N fragments corresponding

to each of the N disks in v; each separate disk is identified by a surface Sp . Each of the

Sv is randomly oriented and uniformly distributed throughout the material.

The jump in displacement [«,■] must be determined and the static limit taken. The

latter step requires the calculation of the lowest-order terms of [«,]. The discontinuity

in the z-component of the displacement across a circular crack is

[uz] = 2kl it, exp (in<t>) [ S„(t)Jn(?r) df (49)
n= — co Jo

from Eqs. (4c), (7a, b), (12b, c) and (19a). We substitute from Eq. (26a) for S„(f)

and interchange the order of integration. We get

[uz\ = 4(-) k\ X cos [ dp (50)
\7T/ n-0 Jt [p — r) p

where

«» = h n — 0,

= 1, n 9^ 0.

The dominant term in the sum is that for n — 0. Thus the jump in u, in the static limit is

[u,]SL^-A0kl{(l -rY2) (51)
7T
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from (36b). Using a similar procedure for the jump in u, and , we have

/ 2\ r c
[ur] = —4 i- cos n<f> / —

\7T / n = 1 L*^r V

+

dvpMr
1/2(v2 - r2)1/2

(I - ?) I' ^ ] - «Jf CT l&fc" • (52)
w -*(;)"" - (4 -;) f. r®'

(53)

The dominant terms are for the case n = 1. The results are

= + (16a/3/(l + 7V) {(1 - r2)1/2}, (54)

Ml = -(1 W(7 + 1)t) {(1 - r2)I/2}, (55)

from (35a) and (35b).

The stress t°,- is obtained from the incident field

<J>° = exp (i{ar cos (<j> — <£0) + /32]).

The Hookean operator acting on the stress r°,- is

  j / \   Tj j   ^ 1 fiijTkk 

" ATii) - 2/.. 2^(2^ + 3X0'

The energy density in the equivalent unflawed medium is

tiMt*,) = (X, + 2 M*°)\ (56)

The scalar quantity /St, r°Jn,['Ui] <LS is independent of choice of coordinates. Hence,

we take a coordinate system such that the normal of Sp is in the 2-direction for any disk.

The stresses in the incident field are

Trz = —2naP cos (<j> — 4>0)$°,

rlz = 2na/3 sin (<j> — 0O)$°,

rl = ~(\kl + 2Mj32)$°. (57)

To this point, we have considered the scattering by a crack of unit radius. We now

dimensionalize the result for a crack of radius a, and we have

[uL] = - A0kW{a2 - r2)I/2,
7r

r n 16a/3a2(a2 - r2)1/2 „ ,N
M ^ + ^  COS ft - <£„),

w = (ThS^ (fl2"r2)I/2 sb (<^ ~ 0o)" (58>

Substituting (56), (57) and (58) into (48) gives

nnc2 /)! 4- 9„ nno2

(59)1 1 {i + IrEXi -j- 2/xj X -f- 2/x ^ 3 v

8m sin2 9q cos2 g; (X + 2n cos2 9^)2

3X + 4^t 2ju(X + /i)
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It is now elementary to perform an average of this expression over all possible angles

on the unit sphere. We get

=-Ml +
V. + 2/ij/ X + 2m I

8 No3

3 v
16 n 2 |X + + 1

(60).15 3X + 4fi X + ju 2 n(\ + /i)J,

as the expectation value; i.e., the average comprcssional modulus of the flawed material

in terms of the properties of the matrix, i.e. the unflawed material, and Na3/v, the number

of cracks per unit volume scaled by a3, a quantity having the dimensions of volume

derived from the radius of the crack.
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