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Abstract. The problem is solved explicitly by the method of matching asymptotics.

The stretching of a flat membrane with an inclusion is studied as an example. Asymptotic

stress and strain concentration ratios are derived. It is shown that the stress concentration

ratio tends to unity as the stretching tends to infinity. This is justified by the exact

numerical solution.

1. Introduction. Let (r, 6, z) be a fixed cylindrical coordinate system and let S

measure the dimensionless arc length along a curve C defined by

c. r = R(S)^ o < s < 1, (1.1)
z = Z(S)

characterizing the meridian curve of a membrane of revolution. The function Z is

positive and vanishes only at $ = 0. The function R is positive and satisfies at S = 0

one of the two conditions:

Case I. 72(0) = 0:

R(S) = S + 0(S3), £ -» 0. (1.2)

Case II. R(0) ^ 0:

BOT-fjfjiW, «.-g (1.3)

For Case II, the edge r — R{0) is fixed. The membrane is flattened by an outward

stretching applied along the edge r = i?(l) so that the deformed membrane can be

characterized by a meridian curve c defined by

c.r = X(S)> X(P)=R(0)^ (14)

2 = 0 ' X(l) = A

where A is a given quantity sufficiently large to achieve the flattened state.

Problems of this nature have been treated previously by researchers. The deformation

from a tube to an annulus can be solved exactly [1] and the flattening of a spherical cap

* Received December 20, 1971. Supported by U.S. Army Research Office-Durham under Grant

ARQ-D-31-124-71-G10.
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is solved numerically by Yang and Feng [2]. Our objective is to solve asymptotically

the class of problems in terms of the parameter A as A —*■ m. As we shall see, case I

is a special case of case II and hence only case II will be considered.

Consider the deformation from (1.1) to (1.4). If we define respectively Ax and A2

as the principal extension ratios in the meridian and azimuthal directions, then

A! = dX/dS, A2 = X/R. (1.5, 1.6)

A Mooney material [3, 4] is characterized by a strain energy function W defined by

1 i ( | 2 i 2 ,1.1
IF(Ai , A2) = ^Aj + A2 + a2A2J + fc^A^ + —2 + -^2J (1.7)

where k = C2/C, , the ratio of the two Mooney constants, and W is nondimensionalized

by the quantity CtH, H being the constant thickness of the undeformed membrane.

Based on (1.7), the fundamental equations can be derived. We prefer to use the

set of equations given in [5]. These are

T\ = (1/A2)WAt , (1.8)

T2 = (1/AOIFa. , (1.9)

X(dT1/dS) = (T2 - T^dX/dS), (1.10)

where the subscripts on W denote partial differentiation with respect to the indicated

argument. Tj and T2 are, respectively, the meridian and azimuthal stress resultants.

Eqs. (1.5)—(1.10), together with the boundary conditions

X(0) = R0 (1.11)

and

X{\) = A, (1.12)

constitute the complete formulation of the problem. We wish to solve asymptotically

the above equations in terms of the parameter A as A —» .

In Sec. 2 an expansion valid for the interval 0 < S < 1 is obtained. A boundary layer

expansion which is valid near and including S = 0 is given in Sec. 3. The two expansions

are matched in Sec. 4. Finally, the stretching of a flat membrane with an inclusion is

given as an example in Sec. 5. Explicit asymptotic stress and strain concentration ratios

are also obtained. These asymptotic results are shown to be approached by the exact

numerical solution.

2. Solution away from S = 0. We consider an asymptotic expansion for the interval

0 < S < 1. Since X(l) = A, X must be of order A as A —> <*>. Thus we write

X = Ax, Ai = AXj , A2 = AA2 , 7\ = A\ , T3 = A\ . (2.1)

Eq. (1.7) now becomes

W(Aj , A2) = A*w(\i , X2 , e) (2.2)

where

vj(\i , X2 , «) = kxX + «(X2 + X2) + /ce3^^2 + ^2^ + t ^2^2 (2.3)



FLATTENING OF MEMBRANES OF REVOLUTION 409

and e = A~2 is assumed to be a small parameter. Because of (2.3), we shall consider all

the newly introduced quantities in (2.1) as functions of S and e and write / = f(S, e)

where / is a generic symbol.

The system of equations (1.5)-(1.12) now becomes

X, = dx/dS, (2.4)

X2 = x/R, (2.5)

h = f Wx, = 2fc\jX2 + e2 ̂  - e3 - e4 rL , (2.6)
A2 A2 A1A2 A1A2

*2 = f «*, = 2k\\2 + e2 ̂  - e3 ~-3 - e4 ~~3 , (2.7)
Aj Aj A1A2 Aj A2

x(dh/dS) = (t2 - ti)(dx/dS), (2.8)

x(l, e) = 1. (2.9)

The condition (1.11) cannot be satisfied because of the scaling factor introduced.* Thus

the asymptotic solution to the above equations is not valid at S = 0. We assume that

the solution can be expanded as an asymptotic series of the form

KS, e) = US) + e In ef^S) + ef2(S) + e2 In ef3(S) + ■■■ . (2.10)

As we shall see, the lowest-order terms in the expansion have logarithmic singularities

as S —> 0. For this reason the quantity In e is included in the asymptotic sequence. To

facilitate our calculations, we shall cast (2.10) into the form

KS, e) = jUS,e) + ef*(S,e) + ■■■ (2.11)

where

n(S, e) = U(S) + 6 In ef.iS), (2.12)

tf(S,e) = j2(S) + e In ej3(S). (2.13)

We shall first obtain and j* ; these will then be expanded to yield /„ . This step is

legitimate since /2 does not depend on and f3 does not depend on /0 . As a matter of

fact, only the first three terms of (2.10) will be given explicitly in our final result.

Substituting expansions of the form (2.11) into (2.4)-(2.9) yields, for the terms

corresponding to ,

Xf0 = dx*/dS, (2.14)

X?0 = x*0/R(S), (2.15)

tf0 = 2fcXf0X*o , (2-16)

ft0 = 2/cXf0X*0 , (2.17)

x*0(dt?0/dS) = (t2*a~h%) (dx%/dS), (2.18)

x*0(l, e) = 1. (2.19)

* The regularity condition associated with case I can be satisfied and hence case I has no boundary

layer.
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It follows from (2.16), (2.17) and (2.18) that

t*0 — l*> = constant. (2.20)

Eq. (2.16), together with (2.14), (2.15), (2.19) and (2.20) now yields

xf = 1 - J' R(S') dS'. (2.21)

Expanding now all the quantities according to (2.12), we obtain

<io = ho = constant, (2.22)

*° = [} ~ lf fs R(S'} dS']I/J' (2-23)

hi — hi — constant, (2.24)

- f R(S') dS'. (2.25)
0 J s

Ju
21cx,

We proceed to the terms corresponding to j*(S, e). Since we shall include only the

first three terms of (2.1) in our final results we shall replace /t(£, e) by j2(S) in the follow-

ing calculation. The governing equations are

X,2 = (dx2/dS), (2.26)

X22 = (x2/R) , (2.27)

t12 = 2/e(X10X22 + X12X20) + 2(Xi0/X20), (2.28)

t22 — 2 fc(X10X22 + X12X20) + 2(X20/X10), (2.29)

x0(dt12/dS) = (t22 — t12)(dx0/dS), (2.30)

x2(l) = 0. (2.31)

Substituting (2.28) and (2.29) into (2.30) and using (2.23), we get

(dtJdS) = F(S) (2.32)

where

It follows that

F(S) = (2/72)(1 - (^0BV4fcV0)). (2.33)

t12 = /12(1) - f F(S') dS' (2.34)
J S

where i12(l) is a constant to be determined. The function t22 can be determined from

(2.29). We have

t22 = <i2 + (2k3?0F(S)/t10R(S)). (2.35)

Substituting (2.26) and (2.27) into (2.28) and using (2.23), we obtain

(d(x0x2)/dS) = (R/2k)t12 - (tl0/2k2)(R3/4) (2.36)
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and hence

(2-37)

by (2.31). This completes a formal three-term expansion for the interval 0 < S < 1.

The expansion involves three unknown constants tl0 , tu and (1), and is not valid

at S = 0.
We shall be needing the asymptotic behaviors of the functions xm as S —♦ 0. Defining

Re by the expression

Rc = f R(S) dS (2.38)
Jo

and using (1.3), we obtain from (2.23)

Jf 1 tloRc\ I t10Ro CI I Ziofil CY2 I tloRi o3 I 1 /o on\
*b~^l --J-j + — S + ~WS 6k~ + •••/ (2-39)

which is the convergent Taylor expansion. It will be shown in Sec. 4 that, for the purpose

of matching, the leading term in the above equation must vanish, i.e.,

<10 = k/Rc . (2.40)

While we shall return to justify (2.40), this condition will be used repeatedly. Eq. (2.39)

now becomes

Eq. (3.25) now yields

« ~ "I + S 0. (2.42)

We proceed to find the asymptotic behavior of x2 as S —* 0. Eqs. (2.40), (2.41) and

(2.42) will be used repeatedly. We first note from (2.33) that, as /S —» 0,

F(S) ~ -f S-2 - R.S-1 - (§ + | |J - J-) + 0(5) (2.43)

and hence the integrals appearing in (2.34) and (2.37) do not exist as S —> 0. We remove

this difficulty by considering the finite-part integration. Thus, define the finite-part

integral

f F(S) ds = j* jV(S) + I2 S~2 + dS. (2.44)

Eq. (2.34) now yields

~ +y S-1 - Rl In S + [-£ F(S) dS- I2 + ;12(1)] + • • • , S -* 0. (2.45)

It follows from (2.45) and (2.40) that the integrand of the integral appearing in (2.37)
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tends to — RlS'1/^ as S tends to zero. Defining

r /Rt,2 tia R \ J „ _ [ IRti2 ti0 R , Rq _1 \ , „
T0\~W~W2~70)dS = Ja\2k~ 2k2 xl + 4k s)db' {2Ab>

we obtain from (2.37)

- ~ -(I)'" Is~""'»5 - (I)'" i (lr - k> I)JS s~"° + • • • • <2-47>
We now turn to the solution near S = 0.

3. Solution near and including S = 0. We begin by introducing a boundary layer

variable s defined by

s = S/e, s fixed, e —■» 0. (3.1)

Since the edge r = i£(0) is fixed, X must be of order one. Thus we write

X = £, Aj = A2Hi , A2 = M2 , T, = A2ri , T2 = A2t2 , (3.2)

where the newly introduced variables are functions of s and e. We shall write / = /(s, e)

where / is a generic symbol. Substituting (3.1) and (3.2) into (1.5)—(1.11), we obtain

W = A4co(^! , M2 , e) (3.3)

= (Mi + knlnl) + e2f^2 H 2) + e4(~2_2 4 2) (3.4)
\ M2/ \M1M2 Mx/

and

Mi = rff/cfe, (3.5)

M2 = (f/flo)(l - t(Ri/Ro)s + •■■), (3.6)

= (2kfrto + 2 + A—~
\ H 2/ \ H1H2 M1M2

2fcM.* + ^2 ^ - -^3) + e4(—£,) ,
\ mi M1M2/ \ M1M2/

(3.7)

(3.8)

tfd^/ds) = (t2 - Tt)(d£/ds), (3.9)

£(0, t) = R0 . (3.10)

The condition X(l) = A cannot be possibly satisfied because of the condition X = £ =

0(1). Thus the solution to the above equations is again not uniformly valid throughout

the interval 0 < S < 1. We now assume that the solution can be expanded as an asymp-

totic series of the form

1(s, e) ~ /o(s) + e In e/,(s) + e/2(s) + • • • . (3.11)

Once again, we cast (3.11) into the form

/(s, e) ~ fg(s, e) + e/*(s, t) + • • •

/* = /o + e In e/j (3.12)

/* = /2 + « In 6/3
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and the j%(s, e) terms satisfy the equations

M*o = m/ds), (3.13)

M*o = (ti/Ro), (3.14)

t*o = 2kn*0[i*o 2(n*0/fi*0), (3.15)

T% = 2ktfotfo , (3.16)

£*o(dT?0/ds) = (t*o ~ T?0)(d£%/ds), (3.17)

£*o(0, e) = R0 . (3.18)

Eliminating r2* , , m2* from (3.14)-(3.17), we have

1 drf0 _ El 1 dij*
TX% ds k + (Rl/k)) cfe

rfo = («V£*o)(lo*2 + (Ul/k))u2 (3.19)

where = £r{;(e) is a constant to be determined. Eq. (3.15), together with (3.13) and

(3.19), now yields

(dti/ds) = {R0a*0/2mf + (Rl/k))-"* (3.20)

k
Rua* {is(a- + f)"' + f in [a + (a- + f)"']

- rq(rI + fj/2 - f In [ie0 + (rI + fj/2 | , (3.21)

by (3.18). Finally, (3.16), (3.13) and (3.14) yield

r?o = a*omt + CRl/k))'1"2. (3.22)

We shall now obtain /0(s) and /i(s) from j*,(s, e) according to the relation /0(s, e) =

/•„(») + e In e /i(s). Eqs. (3.21), (3.19) and (3.22) yield

k

Rocto

(p2\l/2 p2 f / p2\l/2"l

*+£) ]

- r-{r°+fi" -?>"[«+(«+?)' (3.23)

r10 = Wml + (Rl/k))u\ (3.24)

r20 = a0U& + {Rl/k)Yl/\ (3.25)

& = (aiR0/2k)s(£ + (Rl/k)yu2, (3.26)

= ik " t? 6® + (W*))3/2]aiTi°' (3,27)Til
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1"21
l! + fk2 + (Ri/k))3/2rT2°' (3-28)

where a0 and are two constants to be determined.

We proceed to the terms corresponding to /2(s) in (3.12). The governing equations are

M12 = (d£2/ds), (3.29)

ft>2 = (l/KoXk — (Ri/Ro)£os), (3.30)

TX2 = 2fc(^10^22 ~f~ M12M20) "I- 2((^12M20 M10M22)/M20) J (3.31)

t"22 = 2/c(^]0M22 "t~ M12M20), (3.32)

d,Ti2 I c. dr 1Q , X (It? I / \ ffo /Q QQ\
?0 IT + fa IT = (™ ~ Tlo) & + (r22 ~ Tl2) & ' (3-33)

fc(0) = 0. (3.34)

Using (3.30)-(3.33) and applying the zeroth-order solution repeatedly, we get

p2\l/2~|

io + iro + f) J +«2T~12    Ro  ?2  1 RpRl S   2Rt .

t 10 ~ k + (R'o/k)) + k £ + (R2o/k) a0 m

(3.35)

where a2 is a constant to be determined. Applying (3.35) and (3.31) we obtain, after a

lengthy calculation,

{s+fr-fM«+fr+ffcM«+fn
]RnR\ ,~)TsI" (.+[&+%) \+it'

•(«+?r+f ■" [&+(Rt+f )"*]}■ (3-m)
The function r22 can be determined accordingly.

We shall be needing the asymptotic expansions of the functions as s —» . Eq.

(3.23) yields

~ (^pJV2 - i ^ (^f)I/V'/2 In * + , 8 -> 00 . (3.37)

The derivation of (3.37) can be found in [6]. Using (3.37), we find from (3.26) and (3.36)

that

<■ ~ R-f (£)"'s'" + IS (it)'"'"" "■'+ -■ • a "*" ■ (3'38)

«■ ~ GsT "fGuP" in s+• ■ • ■ »- - • <3-3«
4. Matching. We must now match the two expansions obtained in Sees. 2 and 3

in such a way that they have exactly the same functional form in a certain suitably shosen

intermediate variable [7]. This requirement will enable us to determine all the unknown

constants involved. The system of governing equations can be reduced to a single

equation in X. Thus it suffices to match only the function X.
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To this end, we introduce an intermediate variable st defined by

s, = S/e1/2, Sl fixed, e -» 0. (4.1)

While an intermediate variable can be written in a more general form [7], we have

chosen the specific form (4.1) for simplicity. Eqs. (4.1) and (3.1) now imply

S = e1/2Sl , (4.2)

s = e~1/2Sl . (4.3)

Substituting (4.3) into (3.37)-(3.39), we get

X ~ £(s, e) ~ £0(s) + e In 6^(s) + e£2(s) + • • •

- 6-l/4(^)I/2s;/2 + (€1/4 in e) ^ (^p)1/2Sl~i/2

+ •"{-£ (¥)'"«'■" ■»- +

+<•*"'»-{If (i)'"+H1 +• • • ■ <«>
Substituting (4.2) into (2.41), (2.42) and (2.47), we get

X ~ e~1/2x(S, e) ~ e~1/2X0(S) + e1/2 In eX^S) + e1/2X2(S) + • • •

4/floV/21/2 , , t/4, J (r°Y/2t? 1 (R<Y2 Rl
IfijJ Sl +(e lne)L-2&Uj ~2tArJ tSi J-1/4 f

+ddr k+(i)"' i (if - &i)«-1 (i)"'8'"■ *4
+ <«"*«>fe (!)"*(*• + ftk" - k (I)"' s + • • ■• • <4-5>
Comparing (4.4) and (4.5) reveals that they can be matched perfectly by adjusting

the constants involved. Had we not used (2.40), a perfect match would have been

impossible. This justifies the establishment of (2.40). The results of the matching are

a0 = k/Rc , «i = —{Rl/2RC) — Ri , /„ = —(Rl/2RC),

WI> = k i [S(S) /,'Fm dS'+k SI - f I]dS- <4'6)
We note that, while J2 is needed to establish (4.6), the constant a2 involved in £2 cannot

be determined without introducing more terms in the expansions.

Thus we have formally obtained an asymptotic solution which consists of a two-term

expansion valid near and including S = 0 and a three-term expansion valid for 0 < S < 1.

5. Stretching of a flat circular membrane with an inclusion as an example. Con-

sider a flat circular membrane characterized by the meridian curve

C-.r = R(S) = a + S, o < s < 1. (5.1)
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The membrane is fixed along the edge r = R0 = a and is stretched to a deformed state

defined by

c : r = X(S), X(0) = a, X(l) = A, (5.2)

where A is a given large number. The solution is, for the interval 0 < S < 1,

X(S) ~ A[x0 + (A'2 In A~2)Xl + A~2x2 +•••],

T,(S) ~ A2[t10 + (A'2 In A~2)tn + A~2tl2 +•••], (5-3)

T2(S) ~ A2[t2o + (A~2 In A'2)t21 + A'2t22 +•••],

and, for the interval 0 < s < ,

X(S) ~ {„(«) + (A'2 In A~%(s) + • • • ,

T^S) ~ A2[r10(s) + (A~2 In A"2)rn(s) +•••], (5.4)

T2(S) ~ A2[t2„(s) + (A'2 In A~2)t21(s) +•••],

where s = A2»S. The functions involved in the expansion (5.3) are

^10 = ^20 = k/(fl 2))

z0 = (aS + (S2/2))1/2/(« + |)1/2,

hi - t21 = — a2/(l + 2a),

Xi = (a2/4A:)(xo1 — x0), (5.5)

a + 1" S
« + I)

-I - L 9

^ S(2a + S) ^ '
/ «2 1,, Ra + ^)1/2 1 ln
12 a + i ^ |_a1/4(a + 1)J n L\a + Sj a + |

tn — tw ~ (a2(a2 + 4a<S + 2S2)/(a + S)2s(a +

The expression for x2 is extremely long and is omitted here. The functions involved in

the expansion (5.4) are

s = 54^{^ + r) +iklto +(*° + f) ]

r10 = (k/(fl + hmfo + (a2A))1/2,

T20 = (k/(a + i))£o(£o + (o,2/k)) 1/2

= — ((a + l)2a/2A;(2a + l))s(f£ + (a2//c)) 1/2,

(a -f- 1)" [~a + |   a? s "1
2a + 1 L k 2k2 U& + (a2A))3/2J '

(a + l)2 fa + I , a3 s "I
2a + 1 L k 2k2 f0(£o (a2//c))3/2J

(5.6)
Til — r10

^21 — T20
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The problem of stretching a large rubber sheet with a rigid inclusion has been solved

numerically by Yang [8]. Following Yang's notation, the stress-concentration factor

and the strain-concentration factor are defined by the expressions

Kw k[edge] = !Ti[edge] A1[edge]A2[edge] ~
/.[»] " r.[»] A^oojAjfoo] ' v-"

K™ = ((A.[edge] - D/CMH - 1)). (5.8)

His numerical result, carried out for Ajoo] < 2.1 and k = 0.1, indicates that K™ is a

monotonically increasing function of ii[°°] = 711[oo]a1[oo]a2[oo] and K[2) is a monotoni-

cally increasing function of A,[<»] — 1.

u
I—i r-«

8 55
I—I hh
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The asymptotic expressions of K[2) and K(2) can be deduced easily from our result

for A —* oo which implies ij00] —* m and Ai[°°] — l —> This is because of the fact

that the condition R(0) = a —> 0 makes our finite membrane an infinite one. Moreover,

all the expressions given in (5.5) and (5.6) tend to finite limits as a —» 0. Taking the

appropriate limits, we have

A,[co] = lim Aj(l) ~ A, (5.9)
a-* 0

Ajfedge] = lim Aj(0) ~ (l + |) A2, (5.10)

^[eo] = lim 7,1(1)A1(1)A2(1) ~ 2/cA4, (5.11)
a—0

s S
< £

o O
CO CM
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k = 0.1
A = 20

f

i0.1 Y 1.0

tx[edge] = lim 771(0)A1(0)A2(0) ~ 2kA4. (5.12)
o-*0

It follows that

K™ ~ 1, /,[««] CO, (5.13)

K'2) ~{l +|) 1/2jl = +1) "ViM ~ i). (5-14)

Eq. (5.13) contradicts the apparently monotonia behavior conceived from Yang's

limited numerical result. For this reason we have extended Yang's calculation to Ajco]

< 100. The result is presented in Figs. 1 and 2. It is seen that the exact numerical solu-

tions do approach the asymptotic results given by (5.13) and (5.14). Moreover, K[2) is

not a monotonically increasing function of £i[°°].

As an example we have also calculated the stress resultant distribution for the case

A = 20 and k = 0.1. The results are given in Fig. 3 where the matching of the two

expansions is also indicated.

References

[1] C. H. Wu, Tube to annulus—an exact nonlinear membrane solution, Quart. Appl. Math. 27, 489-496

(1970)
[2] W. H. Yang and W. W. Feng, On axisymmetrical deformations of nonlinear membranes, J. Appl.

Mech. 37, 1002-1011 (1970)
[3] A. E. Green and W. Zerna, Theoretical elasticity, Clarendon Press, Oxford, 1954

[4] A. E. Green and J. E. Adkins, Large elastic deformations, Clarendon Press, Oxford, 1960

[5] C. H. Wu, On certain integrable nonlinear membrane solutions, Quart. Appl. Math. 28, 81-90 (1970)



420 D. Y. P. PERNG AND C-H WU

[6] C. H. Wu and D. Y. P. Perng, On the asymptotically spherical deformations of arbitrary membranes of

revolution fixed along an edge and inflated by large pressures—a nonlinear boundary layer phenomenon,

SIAM J. Appl. Math. 23, 133-152 (1972)
[7] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Company, 1968

[8] W. H. Yang, Stress concentration in a rubber sheet under axially symmetric stretching, J. Appl. Mech. 34,

943-947 (1967)


