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Abstract. A proof of convergence of the finite-element method in rate-type, quasi-
static boundary value problems is presented. The bodies considered may be discretely
heterogeneous and elastically anisotropic, their plastic behavior governed by history-
dependent, piecewise-linear yield functions and fully coupled hardening rules. Elastic
moduli are required to be positive-definite and plastic moduli nonnegative-definite.
Precise and complete arguments are given in the case of bodies whose surfaces are
piecewise plane.

1. Introduction. In [1] the senior author presented a convergence argument for a
discretized aggregate model in polycrystalline plasticity. In essence the argument
constituted a proof of convergence of the finite element method within that context.
Here we substantially modify and extend the previous proof to a broader class of
boundary-value problems in theoretical plasticity. Our concern is bodies which may
be discretely heterogeneous and whose constituents are characterized by anisotropic
elastic properties and piecewise-linear, history-dependent yield functions with fully
coupled hardening rules.

We address the following question: given the current distribution of stress and constitutive
properties within an elastic-plastic solid, does the instantaneous response oj a suitably-
chosen finite-element model converge to the true instantaneous response as the model is
refined? We prove that the answer to this question is yes. The deeper and more difficult
problem of establishing absolute convergence of the finite-element method for a sequence
of incremental solutions is not undertaken. Although the latter is the real issue in actual
calculations, convergence of the rate-type problem in our sense is certainly a necessary
test for the finite element method and of itself is not trivial.

The proof in [1] was motivated by Tong and Pian's convergence arguments in li • ear
elasticity [2] and was patterned in part after their approach. Here, in addition to broaden-
ing the class of problems considered, we have found a more straightforward proof of
convergence than in [1], In achieving this new proof we have greatly benefitted from
the clear and engaging analysis by Strang and Fix [3],

2. Constitutive equations. Consider a history-dependent elastic domain bounded
by a finite set of hyperplanes of fixed orientation in (Cauchy) stress space. Let dk denote
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the current algebraic distance from the origin to the kth hyperplane and Nk denote
the unit outward normal. Then dk is positive or negative as the scalar product of Nk
with the position vector to any point in this plane is positive or negative (i.e., the elastic
domain need not contain the origin). An admissible stress state must satisfy Nko < dk
for all k. (Juxtaposition implies the scalar inner product.) A critical state of stress is
defined by the condition

= Nko — dk = 0 (1)

for at least one k.
The general theory of associated flow-laws asserts that the <f>,t are potentials for

plastic strain-rate e", whence

t" = 7k(.d$h/da) = ykNk . (2)

The nonnegative plastic multipliers yk are scalar rates, with summation in (2) over
all hyperplanes passing through the (critical) stress point a. Further, in an increment
of straining 4^ < 0 for each of these critical hyperplanes. Thus, if we denote stress
rate by r,

Nkr - dk< 0 (3)

for every k satisfying (1). (Alternatively, all "rates" may be understood as incremental
changes.)

The changing shape and position of the elastic domain are defined by relating the
rates of change of all the distances dk to the scalar rates yk through a general hardening
rule

dk = hie i7 j (4)

so that

dk = J hkiy, dd + dk°, (5)

where 6 is a time-like variable and the integration is taken over the history of the de-
formation. (The dk° define the elastic domain in the virgin, unstressed state.) The
hki may be functionals of the deformation history but arc taken to be independent
of the rates 7, , and their instantaneous (current) values are supposed known. Further-
more, either yk = 0 or the equality in (3) is satisfied.

The inequalities and hardening rule may be summarized as

hkjyi > Nkr, yk > 0, (6)

ykhkiyj = ykNkr (for each k). (7)

Lastly, the total (Eulerian) strain-rate e is given by

e == du — £ 't + ykNk , (8)

where du denotes the symmetric gradient of displacement rate u and £ is the tensor
(or matrix) of elastic moduli, considered to be symmetric positive-definite herein.
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In the context of crystalline slip models, where y/2 yk is the plastic shear rate in
the kth crystallographic slip system and dk/\/2 is the corresponding critical shear
strength, a hardening rule of the general type (4) was first proposed by Taylor [4, 5]:
hkj = 2H for all k, j (II denoting the single slip modulus). Taylor's rule has had extensive
application in crystalline aggregate calculations by Bishop and Hill [6], Lin (see [7]
for a complete bibliography), Hutchinson [8, 9], and Havner, et al. [10, 11]. Budiansky
and Wu [12] adopted a rule which may be expressed hki = HNkNj , and Koiter [13],
without regard to a particular context, suggested the uncoupled rule hkj = 2H8ki (Sk, the
Kronecker delta). The general hardening rule may be attributed to Mandel [14] and
Hill [15].

The equations above are not necessarily limited to crystal plasticity, however.
Constitutive relations of the form (6)-(8) also have been adopted for the analysis of
elastic-plastic structures. In that context Maier has presented a similar but broader
theory which incorporates the possibility of nonassociated flow laws and "work-softening"
moduli hkj (cf. [16, 17]). Even in the case of elastically isotropic materials, where one
may wish to consider the von Mises criterion, say, as a norm, an approximating, piecewise
linear yield surface can always be defined (see [18], for example). Then Taylor's rule
corresponds to classical isotropic hardening (i.e. an expanding elastic domain, with
all dk equal), whereas hkj = HNkN, , II constant, represents Reuss-Prager "kinematic"
hardening [19].

(Implicit in the above is the assumption that additional deformations and rotations
are sufficiently small so that no distinction need be made between nominal, co-rota-
tional, and convected stress rates. In applications to metal plasticity this is adequate
so long as t is no more than an order of magnitude greater than £_1t for ordinary values
of the moduli.)

3. A minimum principle. Henceforth we require the hkj to be symmetric, non-
negative-definite. Although a broader theory (as in [16, 17]) may be physically plausible,
this specification is general enough to include the various particular cases actually
adopted in calculations. Moreover, it makes possible the establishment of certain
minimum principles which are the foundation of our convergence proof herein.

Consider an elastic-plastic solid occupying a volume V in Euclidean space and let
x denote the position vector of material point X with respect to an appropriate reference
frame. We suppose the current values of <r, dk , and hkj are known throughout V and
that a(x) is an equilibrium stress field (restricting consideration to quasi-static processes).
The elastic moduli £ are assumed to be spatially uniform locally and independent
of the deformation history but, of course, may change across material interfaces in a
heterogeneous solid. In the rate-type boundary value problem that is our concern,
body force rates / are prescribed throughout V, traction rates t are prescribed on a
portion of the surface Ar , and displacement rates u are prescribed on the remainder
of the surface A „ .

We now introduce the scalar functional for which an overall minimum principle
can be proved (patterning our notation after that in Strang and Fix [3]). Define

I(v) = \a(v, v) - J(X, v) - (/, v) (9)

over the space 3C1 of continuous (vector) junctions v(x) satisfying v = u on Ac (i.e., the
space oj kinematically admissible displacement rates), where
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a(v, v) = J dv(x)£ dv(x) dV,

(X, v) = J dv{x)&Nk\k(x) dV, (10)

(/, v) = J v(x)f dV + J v(;x)l dA,, ,

and the \k are related to v through (6)-(8):

hkj^i > \k > 0,

XA,X,- = \kNk£ (for each k), (11)

f = £(dv - Nk\k).

(The positive-definite quadratic form a(v, v) is conveniently called the energy in the
function v{x).) The following theorem then may be stated: the statically admissible
true solution u(x) minimizes I on the admissible class v(x). The proof is as follows.

From virtual work (equivalently, the Gauss-Green transformation)

J' t(u) dv dV = (/, v) + J ut(u) dAD , (12)

where r(tt) is the true stress-rate. Thus, since a(v, v) — (X, v) = J t;(v)dv dV,

I(v) = (f - 2t) dv dV + / ut(u) dAD . (13)

I(u) = —| J t dud V + J ut(u) dAD . (14)

Hence, with the aid of (6)-(8) and (11),

m - I(u) = J f {(r - t)£-'(r - f)
+ (7k — ^k)hki(7,- — X,-) + 2\k(hkiyi — Nkr)\ dV > 0, (15)

which completes the proof. (This result also was obtained in [1], The proof of a minimum
principle for invertible hkj was given by Hill [15]. For a continuously smooth yield
function and the associated flow rule of Prager [19] and Drucker [20], a similar minimum
principle was established in [21].)

The matter of uniqueness of the true solution also is of concern, and we state a
pertinent result from Hill [15]. Denoting by A the difference between two assumed
distinct solutions u(x) each of which minimizes I(v), there follows

0 = J Ar dAm dV > J (Ar£_1 At + Aykhkj A7,) dV. (16)

Obviously, the true stress-rate r is unique for nonnegative-definite hki . It turns out
that u and the yk are unique as well if the critical hyperplane normals Nk in stress space
are linearly independent (at least in the discrete case, for which see [16] or [22]). This
is a weaker condition than the requirement of positive-definite hki , which assures
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uniqueness directly from (16). (For linear independence in a general six-dimensional
stress space it is sufficient that no more than six hyperplanos intersect at a critical
point, or five if one defines the bounded elastic domain to lie within the deviatoric
subspace.)

4. The finite-element approximation. We subdivide the body into a (large) number
of tetrahedral sub-regions q, the finite elements. If there are planar material interfaces
within the body corresponding to either different materials or abrupt changes in orienta-
tion of the same (anisotropic) material, the sub-regions q are to be so chosen that no
element cuts across a material interface. (The true stress-rate field r need only satisfy
n(j+ — t_) = 0 across an interface, where the normal n points toward the arbitrarily
chosen positive side.) We suppose all elements to be of equal order of magnitude in
size and let h denote a representative linear dimension. For the present we consider
the external surface of the body to consist solely of plane faces so that AD , AF are
the same for the continuum V as for the collection of finite elements whose (volume)
sum is V.

The extension of the minimum principle to the simplest finite element class (viz.
linear elements) can now be stated. Let Sk denote the subspace in 3C1 of piecewise linear
functions vh(x) satisfying vh = u on AD (u1 the interpolate of u). We have

u\x) = X um<pm(x) = u(x) + 0(h2) (17)

within each q, where the summation is taken over the nodes of the element, uM are
the true nodal displacement rates, and the (pM(x) are linear interpolation functions
determined from <pM(.Xj) = Omj ■ Piecewise constant X/ and f'1 are related to vh through
volume integrals of (11) within each element:

f (hkiX/' - Nkt") dV > 0, X/ > 0,J q'

f \kh(hkj\jh — iVif1*) dV = 0 (for each k), (18)
*1 q '

= £(dvh - Nk\kh),

where the integrals are taken only over that portion q' of the element in which <j(x)
is a critical stress state. Then, the finite-element solution uh(x) minimizes I on the admissible
class vh (x), where u satisfies the discrete virtual work equation

/ r" dip" - u") dV = (/, v" - uh), (19)

th being the discrete stress-rate £(duh — Nkykh) of the finite element solution. The proof
is merely a repetition of the steps in Sec. 3.

In linear elasticity the corresponding minimum principle is sufficient to establish
convergence of the finite-element solution. The most remarkable result is that the energy
in the error over the class vh is minimized by uh (which statement is the first part of the
"fundamental Theorem 1.1" in Strang and Fix [3]). Thus, for linear elasticity and the
minimal finite element class (i.e. piecewise linear vh),

a(u — u, u — uh) < a(u — vh, u — vh) = OQi) (20)
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when we take vh(x) as the interpolate u everywhere in V. For the elastic-plastic solid,
however, it does not appear possible to establish convenience via a direct frontal attack on I(v).
We briefly indicate the difficulty.

From (11) and (18) and the virtual work equations (12) and (19),

a(u, vh - u) - (y,vh - u) = (/, v - u), ^

a{u , vh — u) — (yh, vh — u) — (/, vh — u).

(The last term in (12) is to be replaced by / ut(u) d,AD for both vh and u.) Thus
a(u — u, vh — u) = (y — yh, vh — u). (22)

Paralleling the proof in [3] of Eq. (20) above, we obtain instead for the elastic-plastic
solid:

a(u — u,u — uh) < a(u — vh, u — vh) + 2(y — yh, v'1 — u). (23)

Again, we may choose vk = u', whence the first term on the right-hand side is 0(h2)
from (17). The problem is in the second term, where nothing can be done with either
of its equivalent bilinear forms (22). Another approach is required to prove convergence,
and in Sees. 5 and G we present the simplest one that we have found.

We close this section by briefly considering the matter of change in domain. For
a body whose external surface is smoothly curved it is necessary to distinguish between
AD , Af , V for the smooth continuum and ADh, AFh, Vh for the collection of finite ele-
ments adopted here. Thus, th on A/ will not necessarily equal t on A,- , the domains
of integration in (12) and (19) (or (21)! and (21)2) will differ, and relations like (22)
or (23) (or even (20) in the elastic case) will not strictly hold. We have looked into the
additional investigation required for this problem, but we have not carried out a rigorous
analysis due to the complications associated with the present constitutive theory.
In the case of linear elasticity some arguments have been given by Tong and Pian [2],
Strang and Fix [3] have suggested that if the boundary of Vh goes systematically in
and out of V, the error due to the change in domain will be partly self-cancelling. This
is a kind of Saint-Venant principle, with the leading error term for the classical problem
which they consider dependent upon the difference in volumes V'' — V. It seems likely
that a similar analysis could be applied to the general elastic-plastic solid and that
the errors introduced would converge to zero as Vk —■> V (with increasing number of
elements). However, the convergence arguments in the following sections strictly apply
only to bodies whose surfaces are piecewise plane.

5. Partitioning and convergence of the elastic solution. How do we approach the
convergence proof, since a direct parallel of the steps followed in elasticity is not helpful?
The answer is found in the solution scheme actually adopted for calculation of elastic-plastic
solids. The boundary value problem is partitioned into two parts: a (pseudo-) elastic
problem and a self-straining problem whose solution depends upon the elastic solution.
Each part may be treated as a minimization problem, and it is the separate minimum
principles associated with these problems that enables the convergence proof. The same
basic idea was followed in [1], but there the convergence of the separate scalar functionals
was related back to a convergence proof of I (u ) to I (u). This necessitated the introduc-
tion of a fourth specific v(x) in addition to u, u , uh (and their elastic and self-straining
parts). We have avoided this extra complexity here.
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Since the convergence proof for the elastic part of the problem follows easily from
the analysis in Sees. 3 and 4 (and is found in [2] and [3]), we state only essential results.
Define

h(v) = %a(v, v) - (/, v) (24)

over the space X1 of continuous functions v(x) satisfying v = u on AD . The statically
admissible true solution ue(x) minimizes 11 on the admissible class v(x). Further, the finite-
element solution u,h{x) minimizes both 1i and the energy in the error over the subspace
Sh of piecewise linear functions vh(x) satisfying vh = u on A D . Hence

a(u, — u.K, ue — u,h) < a(ue — vh, ue — vh) = 0(h2) (25)

when we choose vk(x) to be the interpolate u,' = u, + 0(Ji) of the elastic solution
(with u, = u on AD). Thus the finite-element solution converges in the elastic part
of the problem, and we expect (but cannot rigorously conclude) that u,h = ut + 0(h2)
on the average in V.

6. The self-straining solution: minimum principle and convergence proof. As the
prescribed u on AD , t on A F , and / in V are included within the elastic solution, these
data are identically zero in the self-straining problem. Moreover, since re = £du, by
definition, the self-straining stress-rate field r, = t — t, is related to u, = u — u, and
7* by

t, = £(du, — Nkyk). (26)

The corresponding virtual work equation is

t,(u,) dw dV = 0, (27)/

where w is any continuous vector function vanishing on A„ .
We now establish a minimum principle for the self-straining problem which is the

basis of our convergence proof. Define

h(w, X) = \a{w, w) + |c(X, X) - (X, w) - (X, ue) (28)

over the space 3C1 of continuous (vector) functions iu(x), identically zero on AD , and the
field of nonnegative scalar functions X(x), where

c(X, X) = J \k(x)(hki + Ar4£AT,)X,(x) dV. (29)

The statically admissible true solution u, (x), y(x) satisfying the constitutive equations
minimizes I2 over the class of admissible w(x), \(x). We emphasize that, contrary to the
case for I(v), the admissible w and Xt need not be related. Of course, u, and yk (and ut)
are related through (6)-(8) and (26). The proof follows.

We first express (28) in an equivalent but more convenient form. Defining

f, =£(dw- Nk\k), (30)

we may write

a(w, w) + c(X, X) - 2(X, w) - J (f,£_1r. + XA,X,) dV. (31)
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Upon substituting into (28):

I2(w, X) = | / (f.JB-'f. + AA,A,.) dF - (X, ti.). (32)

Secondly, we simplify J■1(u,) (so expressed because u, and y are interdependent) by
using a constitutive equality from (7), (8),

c(y, y) = (y, u), (33)

and the virtual work equation (27), which may be equivalently expressed (through 26))

a(u, , w) = (y, w). (34)

Thus, from (33) and (34) (setting w = u,),

h(u.) = \a(u, , u.) - h(y, u) = -|(y, u,), (35)

whence from (32) (with w = u, and X = 7)

h(u.) = —| J (t,£~'t, + ykhkiy,) dV. (36)

Upon subtracting (36) from (32), utilizing (27), we obtain

I2(w, X) — I2(us) = | J {(t„ — f,)£_1(r. — f.)

+ (7k — ^k)hhj(7,' — X,) + 2\k(hkjyj — Nkr)j dV > 0 (37)

from (6) for all positive Xk(x). (Q.E.D.) This equation is reminiscent of (15) in Sec. 3,
but we again stress the fundamental difference. The minimum principle on I(v) depends
upon the constitutive identity (33) for the admissible v, \k (i.e. c(X, X) = (X, v)), which
requirement follows from conditions (11). The fact that the minimum principle on
I2(w, X) does not require such a relation is the key to the convergence proof.

Since we have u„h (rather than u,) from the elastic finite-element solution, the scalar
functional actually minimized in computations of the self-straining problem is

I*(w, X) = \a(w, w) + §c(X, X) — (X, w) — (X, u.k), (38)

where

12*(id, A) = h(w, X) + (X, u, — ueh). (39)

Paralleling the principle above, the following theorem on /2* may be stated. The finite
element solution u,h(x), yh(x) minimizes I2* over the subspace Sh of piecewise linear func-
tions wh(x), identically zero on AD , and the field of nonnegative scalar functions \(x).
Eqs. (30) through (36) follow as before. Typically,

I2*(w\ X) = | / (f/jB-'f/ + \khti\t) dV - (X, «.*), (40)

c(yh,yh) = (y'',u), a(u,'', wh) = (7\ wk), (41)

h*(u,h) = (yh, uj') = / (t/£" V + ykhhkly,h) dV, (42)
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(note that is not necessarily piecewise constant although r,h is) and the proof of
the theorem is completed by

h*(wh, X) - I2*(u,h) = | f {(r/ - f/)je-(T.A - f/)

+ (~fkh — ^k)hiti{yih — X,) + 2\k(hkjyk — NkTh)\ dV > 0. (43)

We now have all the results necessary to establish convergence. Denoting the nonnegative
form on the right-hand side of (37) by (w, X; u, ,y), there follows for the class wh

I2(wh, X) - /,(«,) = (■wh, X; u, , 7) > 0. (44)

Further, from (39) and (43),
I2(w", X) + (X - 7, ue - ueh) > I2(u,h). (45)

But (44) also holds for the finite-element solution u,k, yh, whence I2(ush) > I2(u.) and
we obtain the continued inequality

I2(wk, X) - J2(u.) + (X — 7', ue — ueh) > I2(u,h) — /,(«.) > 0, (46)

or, from (44),
(■wh, X; u, , 7) + (X — 7*, u. - ueh) > (w/, 7" ; u, , 7) > 0. (47)

Since w*, X are unrelated, we may choose wh = u/, the 0(h2) interpolate, and \t = yk ,
the actual values. Then, from (7) and (31), (47) reduces to

%a(u, — u!, u, — u,') + (7 — yh> U, — ueh) > (u,h, yh ; u, , 7) > 0. (48)

The first term is OQi). Thus we may write

| / (t. - ^-'(r. - ra") dV + ±J (yk - 7*%,(t,- - 7,") dF

+ / 7/(^,7,- - Ar*r) dF < (7 - 7*, - Me') + 0(^2). (49)

This is the principal new arid substantive result of our analysis. Recalling that
a(ue — u.k, u, — uk) < OQi)

from (25), uk —> uc and the right-hand side converges to zero. Thus, the nonnegative
integrals on the left-hand side must individually converge to zero. The immediate
conclusions are that r/' converges to r, , consequently t' —> r, and 7/ converges to a positive
value wherever yk is positive {i.e. the same hyper planes are activated). This latter condition
suffices to make the third integral converge to zero since hkiyj = Nkr if yk > 0. In
addition,

(yk - yk)hki(yj — yk) —► 0 (50)

and, from r,h —> r, ,

d(u, — uk) —* Nk{yk — yk). (51)

For positive-definite hki the yk unquestionably converge to yk , and u,h converges to u, .
For positive-sem idefinite hkj there conceivably may be nonvanishing yk — yk which
satisfy both equations in the limit, but this seems to us unlikely. (In the case of Taylor
hardening (50) reduces to 2h (7* — 7/') —* 0, requiring at least that errors in the yk
algebraically sum to zero at each critical stress point. The analysis in [1] further indicates
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that the individual ykh converge. The other specific hardening rules which have been
proposed are positive-definite.)

Lastly, we observe that the following orders of error would be consistent with (49):
r/ = t, + 0(h), ykk = yk + 0(h), u,h = u, + 0(h2). Of course these, as well as u.k =
ue + 0(h2) (hence t/' = re + 0(h)), have not been proved, but we believe they should
be expected.
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