
QUARTERLY OF APPLIED MATHEMATICS 339
JANUARY, 1977

VISCOUS EFFECTS ON PERTURBED SPHERICAL FLOWS*
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Abstract. The problem of two viscous, incompressible fluids separated by a nearly
spherical free surface is considered in general terms as an initial-value problem to first
order in the perturbation of the spherical symmetry. As an example of the applications
of the theory, the free oscillations of a viscous liquid drop and of a bubble in a viscous
liquid are studied in some detail. It is shown that the oscillations are initially describ-
able in terms of an irrotational approximation, and that the normal-mode results are
recovered as t —* <». In between these asymptotic regimes, however, the motion is
significantly different from either approximation.

1. Introduction. The normal-mode approach to fluid mechanics problems involving
oscillations of free surfaces is a standard one at least since the time of Stokes [1—3].
According to this method the solution to the initial-value problem is obtained in the
form of an infinite sum (or integral) of appropriately weighted eigenfunctions. For
viscous fluids the mathematical problem is parabolic, and the series is very slowly
convergent for small times, rendering it difficult to discuss the transient behavior of the
solution. Yet this transient behavior is of considerable interest for instance in the case
of free oscillations (for which the amplitude is greatest for small times), and of problems
of stability of the free surface, which are typically of a transient nature. These considera-
tions motivated the analysis of small-amplitude gravity waves on a plane liquid surface
presented in a previous work [4], in which the initial-value problem was solved directly
by means of Laplace transform methods. In the present study, the same technique is
adapted to the motion of a nearly spherical free surface 2(<) separating two incompres-
sible, viscous, immiscible fluids that fill the entire space. Assuming that the deviation
of the surface from the spherical shape is small, we solve the flow problem and derive the
general equations of motion for 2 in a form which is suitable for the discussion of tran-
sients.

As an example of the applications of this theory, the oscillations of liquid drops and
bubbles are considered. It is shown that known results obtainable by means of the
irrotational approximation [2, p. 640] or a normal-mode analysis [3, p. 466; 5-8] are in
reality valid only initially and asymptotically for large times, respectively. In between
these two asymptotic regimes the correct solution is significantly different from either
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approximation. It is believed that these results are of some interest also from the view-
point of applied mathematics, insofar as they illustrate in a nontrivial example the
relationship between transform methods and normal-mode (or spectrum) analysis.

As a consequence of the fundamentally parabolic nature of the problem, it is found
that the equation of motion of the free surface is integro-differential rather than differ-
ential. To explain the reason of this feature it is sufficient to recall that the rate of energy
dissipation for a viscous flow occupying a volume V bounded by a surface S may be
written [1, p. 581]

f u-udV + 2 f [(U-V)U]-ndSj ,
where n is the viscosity, <o the vorticity, U the flow velocity and n the outward unit
normal to S. For a motion starting with zero initial vorticity the first term vanishes
and dissipation arises only through the surface integral. As the motion progresses,
however, vorticity is generated at the free surface, from which it diffuses into the flow
region. This process causes the volume integral in the disspiation rate to become positive,
so that the instantaneous energy dissipation must depend on the vorticity distribution
and hence on its past history. A more detailed qualitative description of the physical
processes involved has been given in [4],

In this study we allow the radius of 2 to vary with time. Therefore the present
formulation is suitable for the investigation of viscous effects on the spherical analogue
of the Rayleigh-Taylor instability [9, 10] with application, for instance, to the growth
and collapse of bubbles [11].

We might also notice that in a particular case belonging to the class of problems
investigated here the limits of validity of the linearized formulation in spherical geometry
are known to be quite ample [12].

2. Formulation of the problem. In the following the subscripts 1 and 2 will be
attached to all quantities pertaining to the inner and outer region respectively; when
no subscript is indicated, reference is made indifferently to either region.

In the absence of body forces, the Navier-Stokes equations and the condition of
incompressibility are

~ + (U-V)U = ~div<r, (la)
at p

VU = 0, (lb)
where p denotes the density and the stress tensor a is given in terms of the pressure p
and viscosity n by

. /dUi , dU,- -p + —

in cartesian coordinates. The surface 2 can be represented by a superposition of spherical
harmonics. To first order in the perturbation of the spherical symmetry, however, the
equations for the different modes are uncoupled, so that we may let, in spherical coor-
dinates,

2(t) : F(r, 9, <p, t) = r — R(t) — ea(t)Ynm(6, <p) = 0,

where 0 < t « 1 and is a spherical harmonic of degree n > 2.
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In the following developments only terms of first order in « will be retained. To this
approximation the outward unit normal n at every point of 2 is

-i dF„™ , . dYnm
n = er — tr a es — e(r sin 6) a 36 ° v ' dp v

where er , ee , ev are the three orthogonal unit vectors tangent to the coordinate lines
at every point. On the free surface the kinematical boundary conditions are

~ + (JJ-V)F = 0, (2)

U„ = U„ , (3)
where the subscript t denotes the tangential component of the velocity at the free surface.
If one of the two fluids is inviscid, only the first condition applies. The dynamical bound-
ary conditions stipulate that there should be no discontinuity in the tangential stresses

n X [(<r2 - <rj)n] = 0, (4)

and that the discontinuity in the normal stress should equal the surface tension f times
the total curvature

n-[(<72 - <ri)n] = fV n. (5)

In these equations the stress tensors and <r2 are evaluated on the inner and outer
sides of 2 respectively. To the above boundary conditions the requirement of regularity
at infinity must be added; if (and only if) R is not a constant, we do not require regularity
at the origin, where there will in general be a source-like singularity. In spite of an ap-
parent artificiality, this freedom allows one to discuss, for instance, the problem of a
collapsing or growing bubble, as has been shown by Plesset and Mitchell [11].

It is convenient to divide velocity and pressure fields into three parts as follows

U = U0 + eU„ + eU, , p = p0 + tVv +

the first terms in these expressions (u0, Pn), describe the purely radial motion that would
take place for e = 0; the second terms (up , pv) are the correction of the potential (i.e.
inviscid, irrotational) flow induced by the perturbation of the spherical symmetry, and
the third terms (u, , p„) are the correction to the potential problem introduced by the
presence of viscosity. According to this subdivision we get the following (linearized)
equations for the first two terms:

V-u0 = 0, V up = 0, (6a)

^-° + (u0- V)u0 + p-'Vp o = 0, (6b)
Ot

% + (u0 • V)u„ + (u, • V)u„ + p":1 VpP = 0, (6c)
at

^ + (u0 + eu„) • er ~ = 0 on F = 0. (6d)
dt or

The solution to this set of equations has been obtained by Plesset in his investigation of
the stability of spherical flows [9], and we shall make use of his results which are sum-
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marized in the next section. The problem to be solved remains then that of the deter-
mination of the viscous correction (u, , p„). The linearized equations governing these
fields are readily obtained on subtraction of Eqs. (6) from Eqs. (1) and (2) and can be
written as

Vu„ = 0, (7)

+ (uo-V)u. + (u„ • V)u0 + p-Vp, = 0, (8)

dF
u„er — = 0 on F = 0. (9)

or

Only when these equations have been solved (Sec. 3) are we able to impose the dynamical
boundary conditions (4), (5) on the total velocity and pressure fields (U, p), and then to
derive the equation of motion of the interface (Sec. 4).

3. Solution of the fluid mechanical problem.

Potential problem. The purely radial motion induced by the change of the radius
R(t) is described in terms of a potential source by writing

u0 = V^„ , <p0 = —R'R2/r (10)

where the prime denotes differentiation with respect to time. Eq. (6b) for the pressure
can then be integrated immediately to obtain

p„ = P(f) + p[(R2R" + 2RR'2)r~l - ^R"R*r~*]. (11)

The functions P (t) are two constants of integration which are supposed known. The
function P2(t) is the pressure at infinity, and in the case of a bubble with uniform interior,
for example, the function P, would be the pressure of the gas or vapor contained in the
bubble. The singularities in Eqs. (10) and (11) are required by the incompressible nature
of the fluids, and are the only singularities allowed; all other quantities will be taken
to be regular both at infinity and at the origin.

The potential correction introduced by the deviation from sphericity has been
computed by Plesset [9] who gives the following results:

u„ = V^p ,

<prl = n-Vfl-'-'V + 2aR'/R)Ynm,

V 1)2 = -(n + 1 rV-("+1,/r+V + 2 aR'/R)Ynm.

The terms in parentheses in the last two equations have been so chosen that the kinematic
boundary condition, Eq. (6d), is satisfied. The pressure fields can now be computed by
integration of (6c):

p.- +

only the value of the pressure at r = R will be required in the following; one has

Pvl = —n~x pifRa" + 3 R'a' + 2 R"a)Y~,

Pv2 = (w + 1) 1 p2(Ra" + 3R'a' + 2R"a)Y„ .
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Viscous correction. The problem posed by Eqs. (7) and (8) can be conveniently
phrased in terms of the vorticity

M = VXU = fVXu,, (12)

which satisfies the following equation, obtained by taking the curl of Eq. (8):

fj + V X (o> X Uo) = -fV X (V X «). (13)at

It is advantageous to decompose the voriticty into a poloidal and a toroidal field [3,
pp. 622-626], oj = S + T, which is possible because by (12) V w vanishes identically.
The principal advantage afforded by the introduction of these two fields is that the three
components of the vector u can be expressed in terms of two functions of r and t, the
defining scalars, since one can write in general

S = V X V X [S(r, t)Ynm(6, <p)er], (14)

T = VX[r(M)7,*(^)er]. (15)
Upon substitution of (14), (15) into Eq. (13), with the aid of the property of orthogonality
of any poloidal to any toroidal field, the following equations for S(r, t) and T(r, t) are
readily obtained:

vW~dft~ R,(R/r)2 a? " Mn + 1)r~2,s = °' (16)

" f | [R'iWT] - vn(n + 1 )r"2T = 0. (17)

The solution of these equations is in general a complicated matter, and it does not appear
possible to indicate methods of general applicability; the simple case in which \R'R\ « v
is considered in Sees. 5 and 6 below.

From Eqs. (12), (14) and (15) we see that

u = TYnmer + V X (SYnmer) - V3>,

where a new function $ has been introduced in order to satisfy the incompressibility
condition, Eq. (7), which reduces to

V2$ = V ■ (TYnmer).

This equation can be readily integrated to obtain

* = Yn

+ tqh + 2vri«4"'""]' (18)
One of the two constants of integration has been evaluated by imposing the kinematic
boundary condition (9); the other one, a(t), is determined by the condition of regularity
at the origin

ai{t) = lr+"T R'i2n+l) /; s"+'r^s'l) ds> (19a)
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and at infinity

«2(0 = -^1 [R *-"T2(s, 0 ds, (19b)

From Eq. (8) we obtain the following expression for the viscous contribution to the
pressure:

The time derivative in the first term can be computed from Eq. (18) using the equation
for T(r, t), Eq. (17), to eliminate dT/dt. In this way, after integration by parts, we obtain
the following results at r = R:

Ptl = (» + 1 )PlYnm{-ViT,(R, t)/R + (R'/R) [J (s/R)"-2[ 1 - (s/R)3\Tt(s, t) ds

P*2 = np2Y,r{v2T2(R, t)/R + (R'/R) J [(R/s)3 - 1 ]{R/s)nT2(s, t) ds

4. The boundary conditions and the equations of motion of the interface. The
kinematical boundary condition, Eq. (2), has already been imposed on the solutions
of the fluid mechanical problem dervied in the preceding section. The continuity of the
tangential velocity, Eq. (3), is easily seen to require that

Stf, t) = S2(R, t), (20)

nfi-Wfl - a2{t)] = a' + 2aR'/R. (21)
As has already been mentioned, these two equations do not apply when one of the two
fluids is in viscid. The continuity of tangential stresses, Eq. (4), demands to first order in e

£ \r-2[^S2(r, 0 - niSi(r, 01} |,-* = 0, (22)

2(2n + l)./?"-2^,®!^) — M2<*2(0] + in + l)R''[^2T2(R, t) — miT,(A, 0]

= 2 (n + 1) (n + 2 n — 1 \ a' In + 2 n — 1 \ i?'~|
- -T- k) w +1^-— Mi - ■ (23)

It is seen from the equation for S, Eq. (16), and from the continuity conditions (20)
and (22) just stated that Si(r, t) = S2(r, t) = 0 is an acceptable solution which satisfies
also the regularity conditions at the origin and at infinity. Indeed, in an earlier study [13]
in which the class of flows considered here was investigated under the assumption of
axial symmetry it was found that

S = 0, to = —r~lT(r, t)Pn\cos 6)ef ,

where P„'(cos 6) is an associated Legendre polynomial. It appears therefore that the
poloidal field S is necessary only to accommodate particular initial conditions, but that
it cannot be generated if it vanishes at t = 0. Quite different is the situation for the tor-
oidal field T: Eq. (23) connects it explicitly to the motion of the free surface and shows
that, even if T = 0 initially, a toroidal field will be generated in general at the free surface,
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from which it will diffuse into the fluids according to Eq. (17). This of course is in agree-
ment with the expectation that vorticity is generated at a free surface because in general
the tangential stresses that would be associated with an irrotational motion are discon-
tinuous there [14, pp. 364-367].

The four equations (20)-(23) and the differential equations for the defining scalars
(16) and (17) determine the dependence of S(r, t) on R(t) and of T(r, t) on R(t) and a(t).
Hence all the flow quantities in principle can now be expressed in terms of a, R, and
their first two time derivatives, so that we expect the last boundary condition, Eq. (5),
to act like a consistency condition and to give the equations of motion for R and a. This
is indeed what is found. To order zero in e we get the following equation for the radius
of the approximating sphere:

RR" + IR'2 = (P2 - p.r't/MO - I\(t) - 2{/R + 4(m, - h2)R'/R}. (24)

If in this equation I', — P2 is a constant and surface tension, viscosity, and the density
of the inner fluid are neglected, it reduces to the well-known Rayleigh equation for the
collapse of an empty cavity in an infinite liquid [15; 2, p. 122; 16, Sect. 10]. For Pt — P2
not constant, f 7^ 0 and ^2 ^ 0 it becomes the Rayleigh-Plesset equation for the dynamics
of gas or vapor bubbles in viscous liquids [17, 18]; our result (24) includes the effect of
the density and viscosity of the inner fluid as well.

The terms of first order in e determine the equation of motion of ait) to be

(—£7 + ~)Ra" + faM- + -V - | (» + 2)(n - l)(/*2 - M.)\n +1 n / \n + 1 n / "

+

R

J- 9V,,_ _ ^

j Lj- n{n 4- A/P — fn 4- IV

(rvi~Pi ~ ^+4 p)R"+ 2(n ~1)(n + 2)(m2 ~Mi) %

+ (n - 1 )(n + 2) ^ Ia + n(n + 2)ju2T2(R, t)/R - (n + 1 )(n - l^T^R, t)/R

+ {n + 1 )Pl(R'/R) f [1 - (s/RyKs/Rr'T^s, I) ds
*0

- np2(R'/R) f [1 - (R/s)3](R/sTT2(s, t) ds = 0. (25)
J R

This equation presents some interesting features. For an inviscid and irrotational flow
it reduces to the one obtained by Plesset [9] in his analysis of the stability flows
possessing spherical symmetry. The characteristic way in which it is modified by the
addition of viscosity will perhaps be appreciated better in connection with the discussion
of the oscillations of drops and bubbles given below. For the time being let us remark
that the terms involving T(r, t), when expressed as functions of a, turn out to involve con-
volution integrals of a(t) and appropriate functions of time, so that Eq. (25) has in
fact an integro-differential structure. A similar feature is encountered in the case of
oscillations of a plane liquid surface [4] and in other viscous flow problems [19]. The
physical reason for this circumstance is that the rate of energy dissipation depends on
the distribution of vorticity generated at the free surface, which is itself a time-dependent
process.

The last two terms of Eq. (25) vanish in the case of constant radius, and therefore
appear to owe their presence to a convective effect. Indeed, it is to be expected that in a
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flow with so strongly converging (or diverging) streamlines as the spherical one the
accompanying concentration (or dilatation) of vorticity would play an important role
in the process of energy dissipation and hence in the equation of motion for a(t).

The set of equations (17), (21), (23-25) supplemented by appropriate initial condi-
tions constitutes a complete system of equations for the motion of the free surface.
Their solution appears in general to be a formidable task, and some approximations
will have to be devised for the analysis of particular problems. A straightforward one
consists in setting pi — 0, Mi = 0 or p2 = 0, yu2 = 0 according as the mechanical effects
of the inner or the outer fluid are negligible; these may be termed the bubble and drop
approximations respectively. The continuity of tangential velocity, Eqs. (20) and (21),
should not be applied in either case. For processes occurring on a time scale r, whenever
one of the two viscosities is such that (v,t)u2 « R, the integrals involving 7\ can be
neglected if 7\(r, 0) = 0, because the vorticity generated at the free surface will not
have time to diffuse appreciably far into the fluid. Even in this case, however, one can
see that the contribution from Tf(R, t) does not vanish. This feature is well known in
other problems involving free surfaces in slightly viscous flows, such as the damping
of water waves [2, p. 623; 14, p. 370; 16, Sect. 25].

5. The oscillations of a liquid drop. Drop oscillations are of great interest in many
diverse fields ranging from chemical engineering and physics of the atmosphere to
nuclear physics, and therefore they constitute a meaningful problem suited to illustrate
some characteristics of our theory and to clarify its connection with previous work.

We consider a liquid drop of fixed radius R in a medium of negligible dynamical
effects (such as air) which is set into oscillation at time t = 0. For simplicity we restrict
our treatment to the case in which Ti(r, 0) = 0; a discussion of the effects of a non-zero
initial vorticity can be made following the line indicated in [4]. With R — constant,
^2 = 0, p2 = 0, the set of equations governing this problem reduces to

d2T dT _2 , . 1V7, „ ,OAs
" T"* ~a7 — vr n{n + 1)7 = 0. (26)dr dt

R~'T(R, t) - 2R-"'3 [ sn+1T(s, t) ds = 2 —— ^ , (27)
Jo fb

a" + 2 n(n — 1 )(n + 2)(v/R2)a' + n(n — 1 )(n + 2)(f/p/?3)o

- n(n - 1 )(n + \)(y/R2)T{R, t) = 0, (28)

where a,(<) has been expressed in terms of T, according to (19a) and the index 1 has been
omitted. Upon elimination of T(R, t) with the aid of (27), Eq. (28) becomes

a" + 2(n - 1)(2n + 1 )(u/R2)a' + n(n - 1 )(n + 2)tf/pR3)a

- 2»(n - l)(n + l>ft-n"4 f s"+1r(s, t) ds = 0. (29)
Jo

If the volume in which T(r, t) is effectively different from zero is so small that the last
term is negligible, we can read directly from this equation the frequency of the oscillations
co0 and the decay constant b„ :

2 = n(n - l)(n + 2)f/pft'\ (30)o>o

D2b0 = (n - 1)(2n + 1 >/R2- (31)
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As will be seen below, these results are valid both when viscosity is small, since then the
vorticity is effectively concentrated in a layer of thickness of order {v/u.>0)1/2, and in the
initial stages of the motion, t «II2/v, since then it has not had the time to diffuse appre-
ciably far from the surface of the drop. Our result for a>0 coincides with that obtained by
Rayleigh [20; 2, p. 473] for the oscillations of an inviscid drop, and that for the damping
constant b0 with the expression derived by Lamb in the approximation of irrotational
flow [2, p. 639].

It is now necessary to express the integral in (29) in terms of a(t), which can be
achieved with the aid of the Laplace transform. Let us denote the Laplace transform of
any function f(t) by a tilde,

Kv) = f exp (-pt)f(t) dt.
*>0

The (ordinary) differential equation for T(r, p) obtained from (26) can be reduced to
Bessel's equation and the solution is found to be

T(r, p) = (r/R)I/2T0(p) (32)
ln+l/2{tt(p/v) )

The unknown boundary datum f0(p) can be determined from (27) with the result

rf} / \ r> n 1 ~n \Ti ^ ^n + 3/2((?)lTM-2 — 0 („)[! - - j—, (33)

where q = R(p/v)1'2*. These results can now be used to compute the integral in (29).
Upon application of the convolution theorem for the Laplace transform this equation
becomes

ct" -t~ 2b0a' -(- co02a 260/^ [ Q(t — dr = 0, (34)
Jo

where /3 = (n — 1) (n + 1) / (2n + 1) and the function Q(t) is defined by its Laplace
transform as

Q(P) = 2 /„ + 3/2(?)[2/„ + 3/2 (q) — qlrl+i/2(q)] (35)

As was anticipated above, Eq. (34) has an integro-differential structure: the acceleration
at any instant t depends not only on position and velocity at that instant, but also on
the values assumed by the velocity in a time interval of length ~/i2/v prior to t, which
is the time scale for the process of vorticity diffusion.

Eq. (34) supplemented by the initial conditions a(0) = a0, a'(0) = u0 can be formally
solved for a(p) to obtain

+ <36a)

We shall consider first the small- and the large-time limits of this result. To discuss the
first case let us set

a(t) = exp ( — a0t)v0(t), (37)

* The function ql,-i(q)/l,(q) belongs to the class of modified quotients of cylinder functions studied
in [211.
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where <r0 is a complex constant to be determined in such a way that v0(t) differs from its
initial value by as large a power of t as possible. Substituting (37) into (36a), expanding
the result in powers of p 1/2 for p —» <», and inverting term by term [22], we find

fo(0 — fo(0)|l — §[c— 26,,<r(1 + a)0"]r + (" — l)*(n + i)v3'2<r0t',/2/R3 + ■

from which it is evident that, as had been anticipated, a„ must be chosen as

<JU = bo ± /(C0(|" — ba)W1

with co(j , bu given by (30), (31).
The other limiting case, I —> can be studied by letting

a(t) = exp ( —o-„(<)), (38a)

with <7„ a complex constant determined in such a way that v„(t) —> constant as / —» or,
equivalently, that

pva(p) = pa(p — <j„) —* constant, as p —» 0. (38b)

It is evident that this condition can be satisfied only if the denominator in (36a) vanishes
for p = 0. Writing out this requirement explicitly, we obtain

Cc°2 - 2b,+ uu2 + 2&b0a„ -—2(Jr3n(fT—rr = °- (39)
®"« + 1/2 Wv n + 3/2\%)

where x = /?(o-co/j>)1/2. An identical equation has been obtained by Chandrasekhar
[5; 3, p. 466] and lleid [6], for the normal modes of an oscillating globe and drop, respec-
tively. The meaning of this limiting result can be clarified by observing that the solution
to an initial-value problem must be obtained through an appropriate sum over the normal
modes given by (39); as t —> <*>, only the least damped of the normal modes will give an
appreciable contribution, and it is precisely this normal mode that is singled out from the
solution of the initial-value problem by our condition (38b)**.

Unfortunately, it does not appear possible to invert the expression (36a) analytically,
and one must make use of numerical methods for this purpose. We shall present here
results for a particular case, deferring a more detailed study to a forthcoming work.
Before proceeding to the numerical inversion, it is advantageous to introduce the follow-
ing nondimensional quantities:

r = U/PR3y/2t, s = (PR3/n'/2p,

a*(r) = a{t)/aQ , w„* = {pR3/$)U2ua/a0 , € = v(p/R^)"2,

in terms of which (36a) becomes

* = I , u0*s - n(n - 1 )(n + 2) 1
s L s" + 2(n — l)(2n + l)es + n(n — 1 )(n + 2) + 2(n — l)2(?i + l)esQ(s)J

(36b)
where now

Q(s) - 2In+3/2[(s/e)'/2}{2In + 3/2[(s/e)1/2] - (s/ty/2In+W2[(s/e)U2}\-\

** It can be shown, as in [4], that this conclusion concerning the asymptotic form of a(l) is true
also if T(r, 0) 0.
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In Fig. 1 the initially valid solution (Eq. (37)), the asymptotic one (Eq. (38a)),
and the complete one (Eq. (36b)), are compared in the case e = 0.3, u0* = 0.3. The
numerical inversion of the Laplace transform has been done with the aid of the method
described in [23], It is seen that the short- and long-time behaviors deduced above are
confirmed by the numerical results. It also appears that the asymptotic regime is here
reached much faster than in the plane case considered in [4], It appears likely that this
characteristic is produced by the slight "focusing" effect acting on the vorticity during
its inward diffusion as a consequence of the geometry.

It may also be of some interest to compare the dimensionless asymptotic (complex)
frequencies {pR3/^)1/'<r0 = /30 + iv0 and (pR3 /^)l,2aa = + iv„ . We present in Fig. 2
the results for n = 2 as a function of the dimensionless parameter e; further results are
given by Tong and Wong [8]. For v„ = 0 the initial motion is critically damped and
becomes aperiodic. This happens for u0R2/v = 5, 14, and 17, respectively for n = 2, 3, 4.
From a table given by Chandrasekhar [3, 5] it results that the asymptotic motion is
critically damped only for values of u0R2/v smaller than 3.630, 6.026, and 8.457 respec-
tively for n = 2, 3, 4. Hence it is seen that, in a certain range of values of e, a motion
that starts out aperiodically will exhibit damped oscillations at later times. It appears
therefore that the effective rate of energy dissipation is a function of time which decreases
during the motion. The same feature is encountered in the damping of surface waves
on a plane surface [4], and is caused by the smoothing out of velocity gradients operated
by viscosity.

EXACT (Eq. 36)
LARGE-TIME (NORMAL-MODE)
SMALL- TIME (IRROTATIONAL)

Fig. 1. Comparison of the complete solution, obtained by numerical inversion of Eq. (36b) (solid line),
with the large-time approximation corresponding to the normal-mode analysis (Eq. (38a), broken line),
and the initially valid approximation, obtained by means of the irrotational approximation (Eq. (37),

dash-and-dot line). The values of the parameters for this example are n = 2, u0* = 0.3, e = 0.3.
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Fig. 2. The real and imaginary parts of the dimensionless complex frequencies of the initial (/Jo, c0)
and the large-time (0a,, "«>) approximations for n = 2. For e = (2/5)2"> the initial motion is critically
damped and becomes aperiodic, while the large-time motion retains an oscillatory nature up

to t = 0.7792.

6. The oscillations of a gas bubble. The oscillations about the spherical shape of a
bubble of constant radius can be analyzed in much the same way as was done in the
preceding section for the drop case. Setting mi = 0, pi = 0 and dropping the subscript 2
in Eqs. (25) and (23), one gets

a" - 2(n - 1 )(n + 1 )(n + 2){v/R2)a' + (n - 1 )(n + 1 )(n + 2)(f/p«3)a

+ n(n + l)(n + 2){V/R2)T{R, 0 = 0,

2(n + 1 )R"-2 f s~"T(s, t) ds+ (n + 1)T(J?, <)/« = 2(n + 2)a'/B, (40)
Jr

from which, upon elimination of 7'(i2, t), the following equation is obtained:

a" + 2(n + 2)(2n + 1 )(y/R2)a' + (n - 1 )(n + 1)(» + 2)tt/PR3)a

- 2n(n + l)(n + 2>K""3 [ s~"T(s, I) ds = 0.
Jr.

The frequency and damping constants of the initially valid, approximately irrotational,
solution are

coo2 = (» - l)(n + l)(n + 2)f/P«3, (41)
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6„ = (n + 2)(2n + (42)

in agreement with the results given by Lamb [2, p. 475, p. 640]. The equation for f(r, p)
is again reducible to Bessel's equation and has the solution

i/2^fr K„+1/2(r(p/v) ')
Kn+1/2(R(p/v)1/2j '

T(r, p) = (r/Ry Ta(p)

and the boundary datum T0(p) is obtained from Eq. (40) as

3Up) = 2 aTl + - '
n + 1 L q Kn+1/2(q)j

with q = R(p/v)"2. The final equation for a(t) is obtained in the same form as Eq. (34)
above with b0 , w0 given by (41) and (42), /3 = n(n + 2)/(2n + 1), and Q(t) defined by

Q(p) = -2 K„-i,a(q)/[qKn+wM + 2 fa)]"1.
By the same method used before one also finds the following characteristic equation for
the asymptotic complex frequency :

<7c°2 ~ 26o<T" + a°* + 2/J6otr° xHn+1J\xf + 2£1/2<TTW = °' (43)

again with x = R(<?a,/v)'/2. After some simplifications with the aid of the relations
connecting contiguous Bessel functions, the characteristic equation obtained by Miller
and Scriven [7] can be reduced to this equation.

No numerical studies of the roots of (43) are available, and therefore no comparison
between initial and final effective damping is yet possible; however, it is believed that a
pattern similar to that found in the last section and in [4] would emerge, i.e. that the
initial effective damping would be found to be larger than the asymptotic one.
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