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Abstract. A second-order theory of hyperelastic thin rods is developed from a three-
dimensional point of view. The basic topics of geometry and kinematics are given and
strain variables are introduced. By means of the virtual work theorem we obtain the
equations of motion; the internal work theorem determines the choice of stress variables
and, under the hypothesis of hyperelasticity, stress-strain relations are shown. Finally a
suitable choice of a second-degree potential, in the Signorini sense, is given.

1. Introduction. Following up a previous paper of Antman and Warner [1], where a
three-dimensional theory of rods was developed, Benenti [2, 3], and the author [5, 6],
studied the problem of a first-order theory of hyperelastic thin rods with perfect internal
constraints. There was, however, a deficiency in this theory, since for the simple problem
of pure flexure the exact displacements cannot be included in that theory, as Green,
Laws, and Naghdi showed in [4],

To avoid this obstacle we introduce a second-order theory, according to Antman and
Warner's theory, which allows us to introduce a second-degree strain-energy function by
means of Signorini's theory of second-degree elasticity (see [7, 8]).

2. Geometry. Let C be a three-dimensional continuum body and / a material curve in
it with parametrical equations OQ = OQ (x3, /), (x", xs) material coordinates, g, = 8,OP
the associated basis. (Latin indices range over 1, 2, 3; Greek indices over I, 2; the
summation convention holds in each case; 8t = 8/8x'). We define C as a second-order
rod, according to [1,2,3], if it can be described by the equation:

OP = OQ(x\ t) + xaa„ (r\ t) + ixax0caBial (x\ t), (1)

where O is a fixed point, a* = (g<)*«-o, and cag' are the connection coefficients on the curve
/ defined by ca0'a, = (82OP/8xa 8xs)xois,0. In fact the coefficients cagl are related to the
connection coefficients Tuh = <9,g;-g" through cag'a, = (ra6')i«.o a,. Moreover, the
coefficients k,J = 83a, •a-' that appear in the linear theory (see [2]) can be included in ours
by means of the general definition;

ctJha„ = (82OP/8x' 8xJ)xa^0 ^ cuh = (dtgj)x<x=0-a",

from which it follows that ktJ = c3iJ.
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It is easy to show that the following relations hold:

g- = &,J aj (2)

£«' = bj + x0 cBa', £3' = <y + xsc3B' + I x"xliV3caBi, (3)

V3 being the "covariant derivative" on / defined by

^3chl' = d-sChi + C3/ Cm' (4)

and 5/ the Kronecker tensor.
We can now give explicit expressions for volume and surface elements dC and dl, of

our body. Note that in the following (J(x3) will be the region of the Cartesian (x1, „v2)-plane
over which the curvilinear coordinates xa range as surface parameters for the cross-section
2 determined by x3 = const. The element of volume dC is given by

dC = Jg dx1 dx2 dx3, (5)

where

g = det ||fy|| = g, X g2-g3 ,

or, by using (2):

•J& = Vijk&i' £3'' X a2■ £3 (6)

T)IJk being the Ricci tensor; according to the impenetrability principle it is

Vljh Si' &2' £3* > 0.

Let us introduce the normal unit vector to the cross-section 2: n (P) = g~ 1/2 g. X g2 (g
- det Ugagll) and the tangent to the curve /: t = (1/e) a3, with t = ds/dx3 = (a33)1/2 > 0 (,v
arc length of 1). Then, introducing

7 = t-n, £ = 7 t]iJk 81' &2J £3", D = (1/e) (g/g)1'2,

we obtain

dC = e ^ja 8 dx1 dx2 dx3, d~Z = Jg dx' dx2, Qa = det ||affa||), (7)

and finally

dC = tDd?dx3. (7')

Formally we obtain the same expression as in the linear case (nine parameter rod, see
[2,3]) and if we reduce our analysis to such a case, i.e. if we suppose cpa' = 0, we find the
formula (20) in [2]: 2D = {D)Cpai=0 = 7(1 + xaka3), being c3a3 = ka3.

3. Equations of motion. In order to reach the equations of motion, we shall use the
relation valid, as shown in [2], for dynamics of classical three-dimensional bodies:

f^k F-£ dC + jacG-lddC + J i?'-d£dC= 0, (8)

where k is the density, F = g — a, the difference between the body force per unit mass g
and the acceleration a of the point P, c|> the surface force on the external boundary, <J>' the
internal stresses; (8) must hold for every arbitrary choice of the vector function f. Let us
take:
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I = Hx3) + xaUx3) + h xax%l0(x3),

Ka £a0 being arbitrary vector functions of x3, and introduce for the acceleration a the
expression

a = w + ,x"v/a +

with

w = OQ, wa = a„ , wa(3 =

Then, by a suitable integration by parts over the cross-sectional area 2, we can obtain the
following equations of motion (see, as an example, [2]):

p(f - w + r"w„ - wp„) - 1/e <93(eR3) = 0,

p(m" - v"w - y""wp - ly""*wp„) + R" - \/t 53(«Mn3) = 0. (10)

p(m"e - ival)w - w - - 1/e d3(e 9TC"") = 0,

with the boundary conditions:

<p0.L ±[eR3]„'- = 0; ± [eM«3]0i = 0; ^ ±[tW"%L = 0. (11)

In formulas (10) and (11) we introduced:

p = / A:Z) linear density,
Ja

r«,«2-«ra = - f xa>x"i- ■ ■ xa-"D (TL //th-order inertia tensor,
P JG

f = - f k g D dZ body force resultant vector,p 4
= — f kax"'-■ xa>"D d~Z «th-order body force momentum,

"! J(x

R'= (p'DdZ stress-resultant vector,At
M"' = / x"(l>'D dZ first-order internal stress momentum,

J/9

;yiX™'3 = - f x"xl3*t>3D d~Z second-order internal stress momentum,
2 Ja

<>«,., = /" (t>DdZ ; <I>o,ia"'a" = Wn\ f xa>-• • dZ
LJ a -*o,i L J a J o,l

Eqs. (10) are 18 partial differential equations in the 18 kinematical unknowns a*, cag' =
Qja', and we can get a complete scheme as soon as we add constitutive equations by
introducing a suitable strain-energy function compatible with this second-order theory, as
we shall show in the following section.

Before doing this we want to point out that reactions do not appear in the equations of
motion, as it is natural in our scheme; however, for a detailed discussion about the internal
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constraints and relative reactions, we refer to [1, p. 153]; at any rate, this is an approximate
scheme obtained by truncation of suitable expansions, without introducing internal con-
straints.

The kinematical variables a*, cap' may be replaced by the variables atJ = a,-a, and ciaJ\
in fact, the differential system

d 3&i = Cu'&j (12)

admits one and only one solution if we know the variables c3lJ. But it is:

c33' = !(a3/ <93033 + aia d3a3a ~ aiac3aJaJ3),

so, if we assign the variables au and c3aJ satisfying the compatibility conditions

<9 3 aaS = c3aha0h + c3S"aak, (13)

we can determine univocally the vectors a*. Afterwards it will be useful to introduce also
the derivatives V3rPa' as variables, but obviously if we know the aus and ciaJs we know the
V3cPa's as well. Finally we note that the relations (13) are the only compatibility conditions
available, as the compatibility tensor Rljn = 8t8jgh - 8 j8tgh vanishes identically making
use of the relations (2), (3), in which conditions (13) appear implicitly through (12).

4. Constitutive relations. In the equations of motion (10) the stress is given by the
vectors

R' = R'Jaj = R/aJ,

M<" = MaiJ&j = (14)

the components of which are not all independent, since the symmetry relation holds: X
gi = 0, and by integration over the cross-section 2, the symmetry of the following object
follows:

s>» = R'k + MplkcP] + 3np^v3C(); = s'". (15)

Moreover the symmetry relations hold: Mail = M"1', EfTI"0 = STZ^", so that the
components given by (14) reduce to 24 independent components. The expression of the
virtual work of internal stresses

5JE'" = f <>'-g,dC= [' [\S'k 8alk + M»aJ deaf+ W,a0 d(V3ca/)](dx3,
J c J O

obtained, as usual, by integration over the cross-section 2, determines the choice of the
tensor function S'k, MaJ,'M,a0k as stress variables and the differences:

Eik = k{aik - Aik), Faik = h(cai* - Caik), - V3*Ca0'), (16)

where Aik, Ca/s', V3* are alk, cag\ V3 in the reference configuration, as strain variables.
If we make the hypothesis of hyperelasticity for the body, i.e. we admit there exists a

three-dimensional elastic isothermal potential E? = JF(E/F/L), referred to the unit volume,
the following equality must hold: ([>'-<9gj = —k d9\ By integration between two arbitrary
cross-sections 2,, 22 we obtain:

f X' [IS'* 8alk + 8cat" + Wlal,k d(V3ca/3')]e dx3 = -8 f ASJZ) d 2
2

e dx3,(l7)
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where the linear operator 8 is permutable with the integral, as shown in [3]. It is natural to
introduce now the one-dimensional elastic isothermal potential <p = <p(E/F/L), referred to
the unit length, by means of

<p= \/p [ k$Dd2,
J 2

so that from (14) we have

— 8 f pipe dx3 = — f *2 p dipt dx3
J x,,,3 ^ X.. ,3

and hence

iStk 8aik + Mkai 8cai* + 31^ 8{V3ca0") = -p 8ip.

By developing the "differential" 8<p and using relations (16), we immediately reach the
constitutive equations:

S'" = -p(8<p/8Eik), Mkai = -\p{8<p/8Faik\ DJLka0 = -\p(8<p/8LaSk). (18)

Therefore, it is enough to assign a suitable three-dimensional potential to get a complete
scheme, as we shall do in the next section.

5. Second-degree potential. Since we are dealing with a second-order theory, we
want to point out second-order effects; we have to choose a second-degree potential, or,
better still in our case, a second-degree strain-energy function.
We shall now follow the approach of Signorini [7, 8] as indicated in Stazi [9], under the
hypothesis that the actual three-dimensional body with a rod structure is an isotropic
system subject to a reversible isothermal process. In this case it can be shown (see [9]) that
the strain-energy function is a function of the strain variables through the invariants

L = £(', Q = e/V, C = e/Vfi\
that is

$=S(L,Q,C). (19)
If we impose the function CF to make strain-stress relations exactly quadratic, then the
strain-energy function must be given by the following formula (see [9]):

5 = H /• i^ , X _ 2u + 3c ,„v{h ~ 1) +  2 ^ + 2(e - p.)I2 + v, (20)

where we put /,, /2 strain-invariant, related to the invariants (19) by

L = A, Q = /,2 - 212,

C = l?~ 3hh + UH2 - 1 - 2h ~ 4h\ (21)
and moreover:

H = (1 + 2L + 2L2 - 2Q + 4/3L3 - 4LQ + 8/3C)1/2; (21')

A, ix are Lame constants, v a constant satisfying the conditions: 3A + 2p > 5i>, p > v, v > 0.
If v = 0 we find the usual linearized potential, within the well-known conditions 3A + 2p >
0, p > 0.



516 FRANCO PASTRONE

To compute explicitly the invariants (19) we recall that t/ = gikt]k = \gih (gJk - GJk). If
we suppose that in the reference configuration the curve /„ is rectilinear and every cross-
section S0 is plane, then GtJ = AtJ, while thegj;s can be obtained from (2), (3) and theg'vs
from the analogous ones:

g' = (22)
where

S*' = y/e em£,k+1"&k+2l (k + r mod 3). (22')

Substituting these expressions in (19) and thereafter in (20), we obtain the three-dimen-
sional second-order strain-energy function in terms of actual strain variables Eu, Fak',
Laff', from which, by integration, we get the one-dimensional second-order potential and
the consequent second-order constitutive equations.
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