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1. Introduction. In [1] we analyzed a class of free-boundary problems for the heat
equation in one space dimension, releasing the sign restrictions on the data and the latent
heat usually required in the Stefan problem. Problems of this kind have been studied by
other authors also in connection with the freezing of a supercooled liquid and with
decision theory (see e.g. [2]-[16], and the references quoted herein).

Two major problems remain open or not completely solved, namely (i) does any
solution exist when the datum prescribed on the free boundary x = s(t) does not fit the
initial datum at x = s(0)?; (ii) how are the data related to the possibility of continuing
the solution in arbitrarily large time intervals?

Sec. 2 of this paper contributes toward answering the above questions. Special results
which are scattered in the literature cited can be found in the framework of our analysis
(sometimes with relevant simplifications of the arguments).

It is known that some free-boundary problems with the Cauchy data prescribed on
the free boundary can be reduced to schemes of the type mentioned above, provided that
suitable compatibility conditions are fulfilled by the data. A typical example in which
such conditions are violated is given by the diffusion-consumption of oxygen in insulated
living tissues, when the initial oxygen distribution coincides with the steady-state profile
corresponding to a given constant input (see [14] and [17]-[23]).

This case is considered in Sec. 3, there we prove the existence of a smooth solution
and remark that the associated problem for the time derivative of the oxygen concentra-
tion is of the type considered in Sec. 2 but with an initial datum behaving like a “4-
function ” at the origin. A very sharp estimate of the lifetime of the tissue is also obtained
by means of elementary calculations.

In Sec. 4 we prove some comparison theorems for the solutions of the problems dealt
with in the preceding sections.

As an interesting consequence, a nonexistence theorem will identify a class of initial
data such that the answer to question (i) above is negative.

2. Some special topics in Stefan problems of general type. Let us consider the follow-
ing problem: find a triple T, s(t), z(x, t) such that:
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(i) T>0;

(i) s(z) is a positive continuous function in [0, T), s(t) € C,(0, T);

(iii) z(x, t) is a bounded function continuous in 0 < x <s(t), 0 <t < T with the
possible exception of the point (1, 0) and such that z, is continuous for 0 < x <
s(t), 0 < T, z,, and z, are continuous for 0 < x < s(t), 0 < t < T;

(iv) the following conditions are satisfied:

Ze—2,=0, Dr={(x,1):0<x<s(t),0<t<T} (21)
s(0) =1; (22)

z(x, 0) = h(x), O<x<1; (2:3)
2,(0, t) =0, 0<t<T; (2.4)
z(s(t), 1) =0, 0<t<T, (2.5)
z(s(t), t)= —5(t), O<t<T. (2.6)

Here h(x) is a given continuous function in [0, 1]; since it is not prescribed to be
positive, the problem differs substantially from the ordinary Stefan problem (for which
the existence for any T is proved and 3(t) > 0). Nevertheless, if h(1) =0 and h(x) is
Holder-continuous for x =1 this problem possesses one solution for suitable T
“sufficiently small” (see [1], where uniqueness and continuous dependence are also dis-
cussed, and [9], where it is proved that the free boundary is analytic in (0, T)).
Moreover, if a solution exists, then three cases can occur (see [1, I] Theorem 8):

(A) The problem has a solution with arbitrarily large T;

(B) There exists a constant T, > 0 such that: lim,_,,,_ s(t) = 0';

(C) There exists a constant T; > 0 such that

inf s(t) >0, lim inf $(¢) = — 0.
te (0, Ty t—=Ty -

We shall investigate the occurrence of these cases in connection with the behavior of
the initial datum h(x).

A first simple result is Lemma 2.1 below. Let us define

1

Q=1+ h(x)dx, (2.7)
M, = —-J'lxh(x) dx, (28)
M, = —J.lxzh(x) dx (2.9)

and prove

LemMma 2.1. If T, s(¢), z(x, t) solve (i}-(iv), then
o)

s(t)=0Q — J 2(x, t)dx, te (0, T), (2.10)

0

! This limit exists since otherwise for any f in (0, Tp), z(x, f) would have infinitely many zeros.
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U]

[s*()-1]2=-M, + J‘IZ(O, t)dt — J xz(x, t)dx, te (0, T), (2.11)

.8(1)

t
[$*¢)-1]3=-M, +2 J 8(t) dr — J x?z(x, t)dx, te(0, T) (212)
0 0
Proof. Consider Green’s identity

JJ (vLu — uL*v) dx dt =<f [(vu, — uv,) dt + uv dx],
* oD,

Dy

where L denotes the heat operator and L* its adjoint. Formulas (2.10), (2.11), (2.12) are
obtained by setting u = z(x, t) and v = 1, v = x, v = x* — 2t respectively.

Other relationships of the same kind could be obtained using higher-order poly-
nomials for v(x, t).

As a consequence of (2.10) we can prove that for some choice of the function h(x) no
solution to (i}(iv) can exist.

THEOREM 2.2 (nonexistence). If h(x) is a constant not exceeding — 1 problem (i)-(iv) has
no solution.

Proof. Under the above assumption h(x) = —1 + Q with Q < 0. Should (i)-(iv) have
any solution T, s, z, it would be

0<s()<1, te (0, T),
z(x,t)>—-1+Q, in Dy,
because of (2.1)-(2.6) and of the maximum principle. Thus from (2.10) we would have
s(t)<Q@+(1-Q)s(e) te(0,T)
ie. 0 < Q[1 — s(t)], which is a contradiction to Q <0, s < 1.

Remark 2.3. Owing to the above result it will be tacitly understood that h £ —1 + Q
with 0 < 0.

Our next aim will be to look for some conditions on h(x) giving an a priori character-
ization of cases (A), (B), (C).

LEMMA 24. Assume h(x) satisfies
(H1) there exists a positive constant H such that

h(x) > —H(1 — x) (2.13)
and let T, s, z be a solution of (i)-(iv) such that
sp= inf s(¢)>0. (2.14)
te(0, )

If there exist two constants d € (0, s7), zo € (0, 1) such that Hd < z, In 2 and

z(s(t) —d, t)> —z,, te(0, T), (2.15)
then

5(t) > min{—H/zy,d™ ! In(1 — z,)}. (2.16)
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Proof. For any ¢ € (0, T) consider the domain
Q ={(xt):s(t)—d<x<s(t), O0<t<T-—¢g
and the function
w(x, 1) = —zo(1 — )" 1(1 = expla(x — s(0)]),
where a is a positive constant to be determined.

We have
Wex — W, = 2o(1 — €)™ }(a® + as)expla(x — s(t))], inQ,
w(x, 0) = —zo(1 — e~ )" }(1 — expla(x — 1)]), l-d<x<1,
w(s(t), t) =0, 0<t<T-—g
w(s(t) —d, t) = —z,, O0<t<T-ec

Choose the constant a such that
a > Hjz,; (2.17)

this implies that w,(1 —d, 0) > H and consequently (since w <0, w,, >0 and (2.13)
holds) w(x, 0) < h(x) for x € [1 — d, 1]. Besides (2.17), we shall require that the constant
a satisfy the following inequality:

a> -0, o,= Inf 3(),
te (0, T'—¢)

so that
W, —w, >0.

Since (2.13) and (2.8) yield w(s(¢) — d, t) < z(s(¢) — d, t), we have from the maximum
principle
2(x, t) > w(x,t) in Q,
and, recalling (2.12),
z(s(t), t) < azo(l —e ™)', O0<t<T-e (2.18)

There are two possibilities: either —o, < H/z, for any ¢ € (0, T) (and then (2.16) follows
letting ¢ —» 0) or —g, > H/z, for some ¢ € (0, T). In the latter case choose a = —g, and
obtain from (2.6) and (2.18)

g, = 6620[1 - CXp(O'C d)]_1
whence (o, is negative)
6, >d 'in(l - zp)

and the conclusion of the proof of the lemma.
Next, we have the following lemma.

LeMMA 2.5. Assume h(x) satisfies
(H2) the equation h(x) = —1 has at most one root in [0, 1]; if h(1) < —1, it has no
root in [0, 1],
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and let T, s(t), z(x, t) solve (i}-(iv). Then

(1 0<0=20,1t)< —1,
(IT) Q > 0= either there are no points in D, where z(x, t) = — 1, or the level curve
z = —1 is separated by a positive distance from the free boundary x = s(¢), for ¢

in (0, T] and such that s(t) > 0.

Proof. First, consider the case h(x) > —1, which implies Q > 0 (actually, Q > 0 be-
cause of (H2)). By the maximum principle, z(x, t) > —1 in D, and (II) is satisfied. In the
other cases, consider the level curve z(x, t) = — 1 originating from ¢ = 0 (which is unique
because of (H2)) and note that if z(%, t) = — 1, then z(x, t) < —1 for x < %, z(x, £) > —1
for x > . Now, from (2.10) it is easily seen that if Q =0, 0 < % < s(t); if Q <0, then
%> 0;if Q >0, then X < s(t).

Remark 2.6. Assumption (H2) can be weakened in the following sense:

(H2') Either h(x) < —1in [0, 1] or no point x* € (0, 1) such that h(x*) < —1[> —1]

belongs to an interval (x,, x,)< (0, 1) such that h(x;)> —1 [< —1] for
i =1, 2 and that h(x,)h(x,) < 1 [> 1]. Moreover, if h(1) < —1 then h(x) < —1.

Indeed, the proof of the lemma needs only minor changes (recall also that h = —1is
excluded by Remark 2.3).

Remark 2.7. When in (H2) or (H2') the value —1 is replaced by the value —1 + Q,
we have that

(I) if s< 1in (0, T)Q >0 =level curve z = —1 + Q
separated from s(t),
0<0=:z0,t)< —1+0;
(IV)ifs>1in (0, T) @ >0=>2(0,£) < —1 + Q,
Q<O0=levelcurve z= -1+ Q
separated from s(t).

Note that (H2) [(H2')] is clearly satisfied by monotone increasing (nondecreasing)
functions (for which (III) and (IV) hold as well). The monotonicity of the function h(x)
will be used in the sequel (see Proposition 2.11, Theorem 2.13) to improve some esti-
mates obtained under (H2').

The next lemma gives a priori estimates for the functions s(t), z(x, t).

Let

So=1+ J:h*(x) dx,
where h*(x) = max[0, h(x)], and let Z(x, t) be the solution of the heat equation in the
half-strip 0 < x < §,, t > 0 with the initial condition
Z(x,0)= |h(x)], O<x<1,
= 0 1<x<S, (if So>1)
and the boundary conditions

Z0,0)=0, Z(So,t)=0, t>0.



444 A. FASANO AND M. PRIMICERIO

Then we have
Lemma 2.8. For any solution (T, s, z) of (i)-(iv) it is true that
s(t)<S,, Vte (0, T)
|z(x, t)| < Z(x,t) inD,.
Proof. Let (S,(t), Z,(x, t)) be the solution of the classical Stefan problem for the heat

equation with the initial conditions

1
S,0)=1 +os Z,(x,0)=h*(x), O<x<l,

= 0, 1$x<1+1,
n

n=12....
If (T, S, z) is a solution of (i)}-(iv), the inequality s(¢) < S,(t) follows from the mono-
tone dependence theorem of [1, I]. Moreover, the equation
.Sn(t)

S.(t) =S, +1 - ' Z,(x, t) dx,
no

and Z,(x, t) >0 imply S,(t) < S, + 1/n. This proves the first part of the lemma. The
second part is an elementary consequence of the maximum principle.
At this point we are able to prove

THEOREM 2.9. Let (H1), (H2') be verified. Then for any solution of (i}-(iv)

(A) < 0>0, (2.19)
(B) < Q=0 (2.20)
(C) <« ¢<o. (2.21)

Proof of (2.20). =: It suffices to perform the limit for t — Tg in (2.10). <: Recall
|z| < Z from Lemma 2.8 and note that Z(x, t) tends to zero for t - + co uniformly with
respect to x € [0, So]. Now, since Q = 0 implies z(0, t) < —1 because of Lemma 2.5 (I),
case (A) is excluded. Moreover, Lemma 2.5 (II) and Lemma 2.4 imply that §(¢) is
bounded from below and also (C) is excluded.

Proof of (2.19). =: Again from Lemma 2.8 we see that the right-hand side of (2.10)
tends to Q as t —» + oo. Hence s(t) has limit s > Q and thus Q > 0 (since the case Q =0
was proved to imply (B)). <=: It suffices to exclude (C): this is immediately accomplished
using Lemmas 2.4 and 2.5.

Proof of (2.21). It follows immediately from (2.19) and (2.20).

There exist some relations between the occurrence of cases (A), (B), (C) and the
quantities Q, M, M, not needing assumptions (H1), (H2'). More precisely, we prove the
following
THEOREM 2.10. For any solution of (i}-(iv)

(A) = 0>0, lims(t)=0, (2.22)
t—+ o

(B) = Q=0 (2.23)
(C) = @<o0. (2.24)
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Moreover, if h < 0 and a solution to (i)-(iv) exists,
(A) = M, <(1—-0%2 and M,<(1-0Q%3, (222)
(B) = M, <1/2 and M, < 1/3, (2.23)
(C) = M, >(1-0%2 or M,>(1-0%3. (224)

Proof. The proof of (2.22), (2.23), (2.24) is accomplished in the same way as the
corresponding statements in Theorem 2.9.

To prove (2.22'), (2.23') it suffices to perform the limits (for t > + oo, t - T, respec-
tively) in (2.11), (2.12) and to note that § < 0 because of the maximum principle. Finally,
(2.24') follows from (2.22'), (2.23").

An extension of (2.24') is found in the Appendix.
In view of Theorem 2.10, it is of some interest to consider a priori relationships
among M, M, and Q. This is the purpose of the following proposition.

ProposITION 2.11. If h(x) is monotone nondecreasing,

M <(1-9Q)2, M,<(1-9Q)s3; (225)
if h(x) is monotone nonincreasing,
My2(1-0)2 M,>(1-0)3 (2.26)

the equality signs in (2.25), (2.26) holding if and only if h is constant.
If h(x) satisfies (H2’), then

0>0=M,<12 and M, < 13, (2.27)
Q<0=>M,<12-Q and M,<1/3-0. (2.28)
Proof. Define
.1
H(x)= | h(¢)dZ (229)
and note that
M, = - J'IH(x) dx, (2.30)
0
M,= -2 J.le(x)dx (2.31)

0

(it suffices to perform an integration by parts in (2.8), (2.9)).
Since H(0) = —1 + Q (see (2.7)) and H(1) = 0, if h(x) is nondecreasing (then H'(x) is
nonincreasing)

H(x)>(1-Q)x—1) (2.32)

and the converse is true if h(x) is nonincreasing. The equals sign holds if and only if
h = —1+ Q. Using the above results in (2.30), (2.31) proves the first part of the lemma.

Now let h satisfy (H2'). This implies that the curve y = H(x) cannot go below the
straight lines y = x — 1 (in the case Q > 0) or y=x — 1 + Q (in the case Q < 0). Then
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H(x)>x — 1 (when Q >0) and H(x) > x — 1 + Q (when Q < 0). Thus (2.27) and (2.28)
follow from (2.30), (2.31).
Now, we prove two theorems giving a more precise insight into cases (B) and (C).
Let us define

h = min h(x) (2.33)

(0, 1
and prove

THeOREM 2.12. For any solution of (i)-(iv) satisfying (B) it is true that A < —1 and

T, > —(12) - M)k (2.34)
.To
J s(t) dt = (1/3 — M,)/2; (2.35)
0
if in addition (H2') is satisfied, then
Ty <12-M,, (2.36)
lim inf §(t)(Ty — )}/ = — 0. (2.37)

t—=To-

Proof. First of all, recall (2.23) to get Q =0 and consequently h < —1 (recall also
Remark 2.3). To prove (2.34), pass to the limit for t > Ty- in (2.11) and note that
(0, t) > h. The upper estimate (2.36) follows in the same way taking into account that
(0, t) < —1 (use (H2') to apply Lemma 2.5, (I) along with Remark 2.6).

Performing the same limit in (2.12) after an integration by parts of the term

b t8(1) dr yields (2.35).

Finally, (2.37) is a consequence of the inequality z(0, t) < —1, which implies that
z(x, t) is discontinuous at (0, Tp); indeed, the free boundary cannot lie below any para-
bola with vertex in (0, Tp) (see e.g. [24]).

Recalling now (2.24), we state

THEOREM 2.13. Assume (H2'). If Q <O, then h < —1 + Q and, whenever a solution to
(1)-(iv) exists,
inf s(t) = so > Q/(1 + h). (2.38)

[0, T1)

If in addition to (H2') it is true that h < 0 and Q < 0, for any solution of (i)-(iv) satisfying
(C) we have

T, <12 =M, — (1 + h)s3/2. (239)

If h(x) is nonpositive and nondecreasing, for any solution of (i}-(iv) satisfying (C) we
have

Ty < (1/2 =M, = 500/2)/(1 = Q/s0), (2.40)

irrespective of the value of Q.
Proof. From (2.10), (2.25) and the maximum principle we have

s(t)— Q< —hs(t), Vie(0, Ty),
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from which (2.38) follows (the inequality h < —1+ Q < —1 is obvious and implies
0<Q/(1+h)<1).

Assuming h(x) < 0, we have 5(t) < 0 and consequently

So = lim s(t).
t—=Ty-

By taking the limit ¢t > T;- in (2.11) and using z(0, t) < — 1, which is valid even if
Q =0 (Lemma 2.5, (I)), and z(x, t) > h, inequality (2.39) is easily derived.

Before proving (2.40), it is worth noting that this estimate of T; is sharper than (2.39):
this follows from (2.38) and the assumption Q < 0 under which (2.39) has been proved.

Whenever h(x) is nonpositive and nondecreasing, then (irrespective of the value of Q)
we can assert that

z(x,t)>0 in Dy, (2.41)
owing to the maximum principle, and that
z(0,t) < =1+ Q/s(t), Vte (0, Ty), (2.42)
from (2.10).
Moreover, we can prove that
.s(1)
- J xz(x, t) dx < s(t)[s(t) — Q)/2. (2.43)
0

This follows from integrating by parts the integral in (2.43):

) )
‘ xz(x, t) dx = [x2(x, t)5¥ — ' 3(x, t) dx,
‘o

where

3(x, 1) = J z(&, t) d¢;
0
noting that 2(0, t) =0, 2(s(t), t) = Q — s(t) (from (2.18)), that ., =z <0 (because of
h <0) and that 2,, = z, > 0 in D, (see (2.41)), we arrive at the inequality
2(x,t)<(=1+Q/s)x in Dy,
from which [5” (x, 1) dx < —s(t)[s(t) — Q]/2, leading to (2.43).
Now, let t —» T, - in (2.11) and use (2.42), (2.43):
(55— 1)/2 < =M — Ty(1 - Q/so) + s3/2 — 5002,

from which (2.40) is obtained.
Remark 2.14. From (2.39) we get the a priori estimate

T, < —M;—h)2. (2.39)
Similarly, from (2.40) when Q < 0 we derive the a priori estimate
<(12-M,-Q/2)/(1 - Q). (240)

We notice that the right-hand sides of (2.39') and of (2.40’) are positive as a con-
sequence of the definitions of M, and h and of the inequality (2.25) (recall also Remark
2.3).
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However, our results do not guarantee a priori that the right-hand sides of (2.39) and
(2.40) are positive: as a matter of fact, it is reasonable to conjecture that other cases of
nonexistence can occur besides the one of Theorem 2.1.

For instance, if one proves that solutions depend monotonically on h(x) and s(0),
then it could be proved that no solution can exist when h(x) < —1in (0, 1). This analysis
will be performed in Sec. 4.

3. The oxygen diffusion-consumption problem. The following scheme:

Uy — U =1, in Dp={(x,t):0<x<s(t),0<t< T} (3.1)
5(0) = (32)

u(x, 0)=g() 0<x<l, (3.3)
u(0,t)=0, 0<t<T, (34)
u(s(t), t) =0, 0<t<T, (3.5)
u.(s(t), t) =0, 0<t<T, (3.6)

is known as a mathematical model for the one-dimensional diffusion of oxygen in a living
tissue [17]. In (3.1)-(3.6) u denotes the oxygen concentration and the source term in (3.1)
accounts for the oxygen consumption in the tissue.

In view of this application we shall assume that g(x) is nonnegative and nonincreas-
ing (and g # 0) in order to have u > 0 (indeed, the maximum principle applied to u,
yields u, < 0 in Dy, implying u > 0 in D; because of (3.5)).

The corresponding free boundary problem consists in finding a triple T, s, u such that

(@) T>0,

(b) s(t) is continuous and positive in [0, T),

(¢) u(x, t)is continuous in D, u, is continuous for 0 < x < s(t),0 < t < T, u,, and u,

are continuous in D,

(d) (3.1)-(3.6) are satisfied.

Existence and uniqueness of solutions of problem (a)-(d) have been investigated in [20],
[21], [14].

It is easily seen that if the function g is regular enough (g € C?, g” Holder-continuous
at x = 1) and satisfies the compatibility conditions g'(0) =0, g(1) =g¢'(1) =0, g"(1) = 1,
then problem (a)-(d) is reducible to a problem of type (i}-(iv) of Sec. 2 for the function
z = u,(x, t) and thus possesses a very smooth solution.

Here, we shall deal specifically with the case in which g(x) represents the so-called
equilibrium distribution [17]:

glx) = 3(1 - x)*. (37)

Since ¢'(0) # 0, the above argument does not apply, but we will show that the same
result holds; we shall also get a sharp estimate of the time T of total oxygen consump-
tion. In a forthcoming paper, a much more general nonlinear problem of this kind will be
analyzed.

Although uniqueness has been proved both in [20] and in [21], we report the follow-
ing argument for its simplicity (see [29]).

THEOREM 3.1 (uniqueness). If g(x) is nonnegative and nonincreasing (g # 0), problem
(a)-(d) has at most one solution.
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Proof. We have already noted that if T, s, u is a solution, then u >0, 4, <0 in D;.
Now, let (T, sy, uy), (T, 55, u,) solve (a)-(d) and set W = u; — u,. If W # 0, it must attain
its (positive) maximum and/or its (negative) minimum somewhere on the curve
x = min{s,(t), s,(¢)}. Let us suppose that W is maximum at a point (x,, ¢,) on this curve.
Assuming  s,(t,) < s,(t,) contradicts W(x,, t,) >0 because u,(x,,t)=0 and
Us(xo, to) >0, while assuming s,(to) > s,(t,) contradicts w,(x,, to) >0 because
Uyx(xo, to) < 0 and u,,(x,, to) = 0. Hence the proof of uniqueness.

The proof of the existence of a smooth solution to (a)}-(d) will be performed by means
of a fixed point argument, which goes through the following steps?.

(1) Definition of the set B(T, X). Given two positive constants T, X, we define the
following set of functions V: [0, T] - R:

B(T, X)={V:VeC[0, T}, —-X <V(t)<0,te [0, T], V(0) =0}

(2) Introduction of an auxiliary free boundary problem. Choose b € (0, 1) arbitrarily
and let V e B(T, X). Let us look for a solution T, s, z of the following free boundary
problem, which is similar to (i)}-(iv) of Sec. 2:

Zy—2,=0 b2<x<st), O0<t<T<T, (38)
s(0) =1, (3.9)
2(x,0) =0, b2 < x <1, (3.10)
z(b/2, t) = V(t) 0<t<T, (3.11)
2(s(z), t) =0, 0<t<T, (3.12)
z,(s(), t) = —5(¢) 0<t<T (3.13)

Existence and uniqueness of the solution of (3.8)(3.13) are ensured by the results of
[1, I] (see Secs. 6, 8).
Moreover,

se C*(0, T) (3.14)

(see [9], [25]), and two constants Ty € (0, T], Ay >0 depending on X (and b) can be
found such that

—Ay<3(t)<0, Vte[0, Ty] (3.15)

(see [1, I], Theorem 1, 2 for § > — Ay, while § < 0 follows from (3.12), (3.13) and z < 0).
(3) An auxiliary initial-boundary value problem. Let T € (0, Ty] be such that

s(¢)>b, te(0,T),
where x = s(t) is the free boundary for (3.8)-(3.13).

2 Different proofs for this existence theorem can be given; one of them will be found in the forthcoming
paper announced above.
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Consider the following initial-boundary value problem:

v~ U =0, in Dy, (3.16)
v(x,0)=—-1, O<x<l, (3.17)
v(0, t) =0, O0<t<T, (3.18)

v.(s(t), t) =0, O0<t<T. (3.19)

By the maximum principle we have —1 <v(x, t) <0, v,(x,t) <0 in D,. Moreover,
ve(b/2, t) is continuous for te[0, T], hence |v.(b/2,t)|] <X in [0, T] for some
positive X.
(4) Definition of the operator 7. Let

Vi(t)=v.(b/2,t), O0<t<T. (3.20)

The equation
Vi=TV (3.21)
defines an operator
7: B(T, X)- B(T, X).

(5) Solutions of (a)—(d) associated with fixed points of 7. Suppose that the operator
7 has a fixed point V in B(T, X) for some positive T, X; then the triple T, s, u, with s
defined in (2) and

.8(1)

u(x, t) = — | [&+v(& 1) dE, (3.22)

where v(x, t) is defined in (3), is a solution to (a)-(d).
To prove this assertion we remark that under the above assumption we can identify z
with v, :
2(x, t) =v,(x,t), b2<x<s(t), O<t<T. (3.23)
Hence v, = z, and from (3.13), (3.19)

du(s(z), t)/dt = vs(e), 1) = —(t),

which in turn implies
v(s(t), t) = —s(t). (3.24)

On the basis of (3.23) and (3.24) it is s easy to check that T, s, u solves (a)-(d).
(6) For suitable T, X, the operator 7 maps B(T, X) into itself. First of all, let us find
a time interval (0, T') in which the function s(t) issuing from (3.8)-(3.13) is greater than
the given constant b irrespective of the choice of V in B(T', X), for fixed X. We need the
following equation:
.s(1)

[s%(t) — 1]2 = JV(I) dv — J xz(x, t) dx, (3.25)

b/2
resulting e.g. from formula (3.5) of [1, I].
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Since z <0 and V > — X, the condition 1 — 2Xt > b? will ensure s(t) > b. Thus we
shall take
T = min{(1 — b)?/(2X), Ty}. (3.26)

Now, if t € (0, T') it is true that s(t) — b/2 > b/2 and by means of standard techniques
(potential theory) we are able to determine a positive constant X (depending on b only)
such that

-X<V(t)<0, te(0,T) (3.27)
Therefore, if we define
T = min{(1 — b?)/(2X), Tz}, (3.28)
we can assert that
7 : B(T, X) - B(T, X). (3.29)

(7) 7 maps a closed, convex and compact subset of B(T, X) into itself. Let us introduce
the Holder norm

M@ n= sup V()= V) Y,

O<t' <t<T

with a € (0, 1), and consider the following subset of B(T, X):
B(T, X, Y)={V:VeB(T,X), |V|@+ <7} (3.30)

Y being a positive constant.

As a set in C[0, T], B,(T, X, Y) is closed, convex and compact.

By means of a standard use of potential theory a constant ¥, >0 can be found,
depending on b only (for fixed a), such that

Vi@ n < ¥, (3.31)

irrespective of the choice of V in B(T, X), i.e. 7 maps B(T, X) into B,(T, X, Y,) and in
particular

T:B(T, X, Y,)-B,(T, X, 1,). (3.32)
(8) Continuity of 7. Let us prove that
|7V* = TV 0.1 < KIV* = V*¥cto, 1 W5 VP> < B(E X), (3.33)

where | ||cjo, 7, denotes the sup in (0, T) and the constant K depends on b only.
We denote by s*, s** the free boundaries of problem (3.8)-(3.13) with the respective
functions V*, V** given in the boundary condition (3.10). The inequality

[TV* = TV**| 0.1 < Ky |5* = s**{|cr0, 715 (3.34)

with K, depending on b (also through X and the constant A, appearing in (3.15)), can be
proved as follows.

Consider the solution v of (3.16)-(3.19) with a boundary x = s(¢) satisfying (3.15). We
can write

v= —erf(x/2,/t) + v,
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where v, solves the heat equation in D with the initial condition vy(x, 0) =0 and the
boundary conditions v,(0, t) = 0 and v, _,(s(t), t) = exp[ — s*(¢)/(4t)]/(rt)"/%.
The function 9, = v,, , satisfies

Do, xx — Do, =0 in Dy,
o(x, 0) =0, O0<x<l,
0.x(0,1)=0, 0<t<T,
Do(s(t), t) = exp[—s*(t)/(4t)]/(rt)"?, O<t<T.

Denoting by v*, b¥, v**, b§* the respective functions obtained replacing s by s* or
s** it is true that

TV* — TV** = p(b/2, t) — 0§*(b/2, t).
The estimate

[98(b/2, t) — D§*(b/2, t)l|cro, 1y < K1 Is* — s**| cro, 795

implying (3.34) is obtained by applying results in [26] (Corollary 3.3) and in [27]
(Theorem 4).
Now we claim that

Is* = s**llcto, 1) < K2 [V* = V**|cro, 115 (3:35)

with K, dependent on b. This is an immediate consequence of Theorem S of [1, I]: the
constant K, depends on b and on X, Ay, in turn depending on b.

Combining (3.34) and (3.35) yields (3.33)*.

(9) Existence of a fixed point of 7 in B(T, X). Owing to (7) and (8) we can use
Schauder’s theorem, concluding that J has at least one fixed point in B,(T, X,
Y,) < B(T, X).

Finally, from (9) and (5) we infer the existence of a solution T, s, u to (a)-(d). The free
boundary x = s(t) of this solution can be identified with the free boundary of problem
(3.8)-(3.19) and therefore it is analytic in (0, T) [9]. Thus we have proved.

THEOREM 3.2. Problem (a)-(d) with g(x) specified by (3.7) possesses a solution T, s, u,
whose free boundary is analytic in (0, 7).

Remark 3.3. By setting z =u,, problem (a)-(d) can be reformulated in the form
(i-(iv) of Section 2, giving the “initial” condition z(x, &) = u,(x, ¢). Actually, z is the
function solving (3.8)-(3.13). It is easily seen that

.s(0)
J z(x, t)dx = —s(t), Vte (0, T);
0

therefore the associated problem of type (i)-(iv) has Q = 0 (the limit of z for ¢ — 0 is thus
a “J-function ™). Moreover, u,(x, ¢) is positive (note that u, (0, t) = 0, u,(s(t), t) = 0 and

* More precisely, Theorem 5 of [1, I] shows that the constant K , in (3.35), and consequently the constant K
in (3.33), is proportional to T. Therefore taking T sufficiently small we deduce that 7 is contractive.
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U,,(x, 0) = 0 out of the origin, and that

lim sup u,,(x, t) = + o0, lim inf u,(x, t) = 0).
(x,t)—(0, 0) (x, t)—(0, 0)

Consequently, Theorem 2.9 ensures that the problem under consideration is of type
(B). Moreover, (2.35), (2.36) and (2.37) of Theorem 2.12 apply in the following sense.

Noting that lim,_, [§” xz(x, t) dx =0, we can take M; =0 in (2.36) and get the
estimate T, < 1/2, which can also be found e.g. in [14].

Considering next [§” x*z(x, t) dx = [§ x*(u,, — 1) dx, we see that it vanishes as
t — 0: this allows us to put M, =0 in (2.35), getting

| Tos(:) dt=14 (3.36)

0

The estimate T;, < 1/2 obtained in Remark 3.3 is rather crude. We recall that in [17]
the value T, = n/16 was assumed as a good approximation. As a matter of fact it can be
shown that n/16 is a lower bound for T, but quite close to the actual value. This is the
aim of Propositions 3.4 and 3.5 below.

PropOSITION 3.4. The following estimate holds in D :

u(x, £) > (x — 1)%/2 — 2(t/m)"'? exp[ - x?/(4t)] + x erfe[x/(2/1)]. (3.37)

Proof. From the Green’s formula we have immediately:

o(x, t) = — J: G(x, t; & 0)dé + J'Ots(r)Gg(x, t; s(t), 1) dr

- J;:s(t)G(x, t; s(t), 1)5(t) dt (3-38)

where we use the standard notation:
G(x,t; &, 1)=T(x, t; &, 1) — T(—x, t; & 1),
N(x, t; & 1)=T(x, t; & 1) + I'(—x, t; &, 1),
[(x, t; & 1) = [4n(t — 7)]” /% exp[— (x — &)*/4(t — 1)].

Differentiating (3.38) with respect to x, we get after simple calculations:

Uy(x, t) = —N(x, t; 0, 0) — J:S(I)N(x, t; s(t), ) dr.
Since § <0 and N > 0 we obtain
v,(x, t) > —N(x, t; 0, 0). (3-39)
But (3.39) is a lower estimate for u,(x, t) since
v(x, t) = uy(x, t) — x,

as is easily verified. Hence

u(x, t) > 3(x — 1)* — J"(ﬂ‘t)_ 12 exp[ — x?/41] dx. (3.40)

0
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By performing the integration in (3.40), (3.37) is obtained.
Now we prove

ProposITION 3.5. The following estimate holds in D,:

u(x, t) <2 Y exp(—a?t)cosa,x - a; 1 — (—1)a, '}
n=0
+ W1
- Y (=1ya'? I {erf[3(x — 2n + 1 — 167/m)/(t — 1)"/?]
n=— ooy *0

— erf[3(x — 2n — 1 + 16t/n)/(t — t}i]} dz, (3.41)

with a, = (2n + 1)m/2.
Proof. The right-hand side of (3.41) is the solution of the following problem:

Uy — U, = q(x, 1), 0<x<1,t>0,
U(x,0)=(1-x)%2, 0<x<l1,
U,(0, 1) =0, t>0,
U(1,0) =0, >0,

where g(x, t) is the characteristic function of the triangle bounded by the straight lines
x=0,t=0and x + 16¢/n = 1. Now we remark that (3.40) provides the following lower
estimate of the time of total oxygen consumption:

T, > /16 (3.42)

and that the free boundary lies on the right of the segment joining the points (1, 0) and
(0, n/16).* Thus an easy application of the maximum principle leads to (3.41).

4. Some comparison theorems; a nonexistence theorem for the supercooled liquid prob-
lem. Let us replace the boundary condition (3.4) with

u 0, t)= —Q, 4.1

with @ = constant.

As a preliminary, we study the sign of the function u(x, t) in D, assuming T, s, u to
be a solution to (a)-(d) with the above substitution.

As in Sec. 3, we assume that g is continuously differentiable in [0, 1]. Here we assume
also the compatibility conditions

g(1)=0, g(1)=0, g(0)=-0. (4.2)

We shall consider the two cases Q >0 and Q <O separately, adding some special
assumption on g.

PropPoSITION 4.1. If 0 >0 and ¢'(x) < 0 (g # 0 if Q = 0), it is true that u(x, t) > 0 in D;.
Proof. The proof is elementary, since the above assumptions imply u, <0 in D.

* The free boundary for problem (3.1)-(3.6) with the initial condition (3.7) is such that § < 0. This has been
proved by the present authors in the paper Convexity of the free boundary in some classical free boundary
problems, to appear on Riv. Mat. Univ. Parma.



CLASSICAL PARABOLIC FREE-BOUNDARY PROBLEMS 455

PropOSITION 4.2. If Q < 0 suppose that the derivative g”(x) is piecewise continuous and

bounded in [0, 1] and that g(x) is nonnegative. We consider two cases:
(o) if

h(x)=g"(x)—1>0 in (0, 1) (4.3)
it is true that u(x, t) > 0 in Dy;
(B) if
h(x)<0, k= min h(x)<0, (4.4)
xel0, 1]

suppose that g'(x) changes its sign only once in (0, 1) and that
g(x)>0, O0<x<l; (4.5)
then u(x, t) > 0 in D,., where
* = g(O)/|K]. (46)

Proof. Case (). Consider a solution T, s, u of (a)-(d). If (4.3) is satisfied the function
z = u, solves the system (2.1), (2.3), (2.4), (2.5), with h defined as in (4.3). Then u, > 0° in
D; and this implies u > 0 in D, because of g > 0.

Case (B). If (4.4) holds true we can assert that

h<u,<0 in Dy 4.7)

by virtue of the maximum principle. Therefore, if t, is the first instant in which u(0, t)
vanishes (recall (4.5)), it is
to > t*, (4.8)

with t* defined in (4.6).
Since T, s, z, (z = u,), solves (i}-(iv) of Sec. 2, owing to (4.7) it is true that § <0 and
from (4.7) we have

u(x,t)>0 for s(T)<x<s(t), O<t<T. (4.9)

This prevents a level curve u = 0 from originating from ¢ = 0.
Thus, owing to (4.5), either the first time u(x, t) vanishes out of the free boundary is ¢,
(then the Proposition is proved because of (4.8)), or there exists a time t; < t, such that

u(x,t)>0 for O<x<s(t), O<t<ty
and that for some x, € (0, s(¢,))
u(x, t1)>0, x%xO, u(xO,t1)=0.

In such a case u,(x,, t,) =0. Moreover, being u(s(t,), t;) = 0, at least one point
X1 € (xo, s(t;)) would exist in which u,(x,, t;) =0. However, the assumption that g’
changes its sign only once in (0, 1) implies that not more than one level curve u, = 0 can
exist in Dy and we have a contradiction.

5 u, = 0 only when g” = 1, which corresponds to the equilibrium solution.
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We are now able to prove a monotone dependence theorem for the oxygen diffusion-
consumption problem. Let T, sy, u,; T, s,, u, be solutions of the respective problems

Ui e — U, =1 in D r={(x,1):0<x<s(),0<t<T}
5i(0)=b; > 0,
ui(x, 0) = g,(x), 0<x<b,
u; [(0,t)=—-0Q,, 0<t<T,
u(si(¢), t) = 0, 0<t<T,
u; o(si(t), 1) =0, 0<t<T, i=1,2.

i, XX

We state the following theorem.
THEOREM 4.3. Let Q,, g, satisfy the assumptions of Proposition 4.1; then
b, <b,, g1(x) < gs(x) for 0<x<b,,
0, <Q,=s,(t)<s,(t)), O<t<T. (4.10)

If Q,, g, satisfy the assumptions of Proposition 4.2, then the implication (4.10)
remains true in the case («), while in the case (f) it is valid for 0 <t < t*.

Proof. First of all, we remark that the condition s(0) = b > 0 can always be reduced
to s(0) = 1 by rescaling the space and time variables; thus the results obtained so far are
independent of the value of 5(0). In particular, we are allowed to say that u,(x, t) > 0 in
D, if Q,, g, satisfy the assumptions of Proposition 4.1 or of Proposition 4.2, case (),
and that u,(x, t) > 0 in D, if Q,, g, are assumed to be as in Proposition 4.2, case (f).

Suppose now that the curves x = s,(t), x = s,(t) meet before u, changes its sign and
let £ be such that

s1()) =s,(f),  si(t) <su(t) for O<t<ct
In the domain D, ; the difference
W=u, —u,
satisfies the heat equation and the conditions
W(x, 0) =g,(x) — g;(x) >0, 0<x<b,,
W.(0,t)=Q,—Q, <0, 0<t<t,
W(sy(t), t) = uy(s,(2), t) > O, O<t<t

therefore W(s,(¢), ) =0 is a minimum. Hence W,(s,(t), £) < 0 and we have a contradic-

tion to Uy, x(sl(i), {) = u2,x(82(f)’ E) =0.
We conclude that s,(t) < s,(t) until u,(x, t) is positive. This proves the theorem.

Recalling now that problem (a)-(d), with (4.1) in place of (3.4), is equivalent to
problem (i)}-(iv), we can obtain a comparison theorem for (i}-(iv).
More precisely, let T, s, z be a solution of (i}-(iv) with s(0) = b and define

0=b+ J'bh(x) dx. (4.11)
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Then the triple T, s, u with

SO st
u(x, t) =[x — s(t)]?/2 + J dé¢ J z(n, t) dn (4.12)
x ¢
solves (a)-(d) with the boundary condition (4.1) and the initial datum
b

o06) = (= 072+ | dc [ Ho)an (@13

Obviously h = g" — 1.
If T, s;, z;, i=1, 2, are two solutions of (i}-(iv) corresponding to initial data
5:(0) = b;, zi(x, 0) = hy(x), i = 1, 2, from Theorem 4.3 we deduce

COROLLARY 4.4. The implication

b1 b1
bi<by, (x—b)2+] d& Jﬁ hy(n) dn < (x — by)*/2

X
b2

b2
+J ch hy(n)dn for 0<x<b,,
x 4

Q1 < Q2= 51(t) < 55(2)

is valid in the same sense as Theorem 4.3, when Q, and g, from (4.11) and (4.13) satisfy
the assumption stated there.
We are now in position to improve Theorem 2.2.

THEOREM 4.5. If h(x) < —1in (0, 1), problem (i}-(iv) has no solution.

Proof. Let us assume that T, s, z is a solution of problem (i}-(iv) with a given h < —1
and compare it with the solutions T,, s,, z,, n = 1, 2, of (i}-(iv) corresponding to initial
data s5,(0) = 1 + 1/n, z,(x, 0) = h,(x), 0 < x < b. We define h, as follows

hy(x)=0 for 1<x<1+1/n, (4.14)
hy(x)=—-1-1/n for 0<x<1° (4.15)
Note that
1 L1+ 1/n
Qu=1+-+|  hfx)dx=0, (4.16)

0o

and that h, is nondecreasing. Therefore the corresponding solutions are of type (B)
(Theorem 2.9), with a time of existence T§’ which can be estimated as follows

TS < 1/2n + 1/2n? 4.17)

(use the same argument as in the proof of (2.36)).
According to (4.13),

gnx)=[2(1 = x) = (1 = x*)* + 1/n}/(2n), O0<x<1,
g(x)=(1=x+1n)¥2, l<x<l+1/n

and Proposition 4.1 applies to the associated triples TY, s,, u,,.

6 Of course, (iii) has to be slightly modified in order to include piecewise continuous initial data.
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For n sufficiently large, h(x) < h,(x), 0 < x < 1, and the comparison between s and s,
can be made by exploiting Corollary 4.4.

We infer that T, s, z must be of type (B) or (C) with a total time of existence not
exceeding TY.

By letting n — oo, we see that T§’ — 0; this contradicts the assumption that a solution
T, s, z exists.

Appendix. An extension of Theorem 2.10. For h(x) <0, x€ (0,1),and 1 > Q > 0, the
condition for (C) may be generalized to: if f(x) e C*[0, 1] satisfies f'(0) > 0, /"(x) > 0,
x € (0, 1), then

!'lf (x) dx + | lf(x)h(x) dx < 0= (C).
TQ 0

Proof. Define F(t) = |5 f(x)(1 + z(x, t)) dx. Then, assuming z and s are well enough
behaved to permit differentiation under the integral sign,

F=f(s)s + jo £(x)zdx, t) dx

= F1O)0. 1)+ | 1)t )

using (i)-(iv). But z(x, t) < 0, so F < 0. Now if (A) or (B) holds, s » Q as t — oo or as
t—> T,. Also, as long as the solution exists, s + jf) z(x, t) dx = Q and so, assuming z is
well behaved, either s—0 or z—0 as t— oo or t— T,. Thus, in either (A) or (B),
F - {8 f(x) dx as s > Q. Applying F < 0, we obtain

.0 1 1

JO f(x)dx < F(0) = JO f(x)dx + jo £ (x)h(x) dx.
Thus, [} f(x) dx + !}, f(x)h(x) dx < 0= (C).

Putting /= x, x? yields (2.24’) but, as we shall shortly show, in an oxygen diffusion
problem of the type considered in Sec. 3, the conditions of (2.24') are not necessary
for (C).

It is convenient to modify the above result before applying it to oxygen diffusion
problems. We must of course only consider situations where g”(1) = 1 and the compat-
ability conditions (4.2) are satisfied so that the supercooled Stefan problem is related to the
oxygen diffusion problem through z = u,. In such a case h =g” — 1 and we now show
that the existence of fe C?*[0, 1] such that f'(0)>0, f"(x)>0, xe(0,1) and
f& f(x) dx + [§ f(x)h(x) dx <O is a necessary and sufficient condition for the existence
of an x_ € (0, 1) such that g(x_) < 0. Then the existence of such an x_ will imply (C).

(i) Sufficiency. Substitution for h gives, trivially,

.1 .1 .0 1
) dx+ [ 7 dx <0 [ f(x) > | 1 (glo) dx + Q1 (0) +1(0)g0)
Hence, if we assume g(x) is always positive,

[ 56 x> [ 77(d) dx +0100) +£10)00)

0
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But h(x) <0=g"(x) < 1 and ¢'(Q) < 0. Hence, since by assumption g(Q) > 0, we may
conclude g(x) > 4(x — Q)% x € [0, Q]. Finally, substituting for g and integrating by parts
yields

.0 N, .0
J, 76 dx > | Hox— Q)Y "(x) dx + Q@)+ 3Q70) = | f(x)dx
and we have a contradiction.

(if) Necessity. If g(x_) < O then, since g is continuous, there is a number a € (x_, 1)
such that g(x) <0 for x € (x_, a). Now choose f so that f(0) = f'(0) = 0 with f"(x) =0
for x < x_ and x > a, and with f"(x) > 0 for x € (x_, a).

For such an f]

J'OQ f(x)dx>0> J'Ol £7(x)g(x) dx + Of (0) + £(0)g(0).

Note: if g(x_) <0, u(x_, t) < 0 as long as the solution exists so that s(t) > x_.

Example. We conclude by exhibiting a function g(x) for the oxygen diffusion problem
such that (C) occurs in the related supercooled Stefan problem and yet the conditions of
(2.24') are not satisfied. Just considering the case Q = 0, this means we require g(0) > 0
and ([} g(x) dx > 0. Moreover, we require g"(x) < 1 for x € [0, 1] and g"(1) = 1 in addi-
tion to the compatability conditions (4.2). The function

|(3/25n%)cos(5mx/2) 0<x<%t-g
|(3/257)cos?(5nx/2), t+e<x<l,

with g not too large and g continuous in [§ — ¢,  + ¢], meets all these requirements and
is negative in (, ). Hence we may conclude that (C) occurs.

g(x) =
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