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Abstract. A general theory of electromagnetic induction is developed based on the

superposition of electric current filaments. The theory has applications in both geophysi-

cal and engineering problems where current sources are used to induce electromagnetic

fields in plane layered media. As an example, three-dimensional integral formulae are

derived for the source and induced fields of a linear induction motor configuration.

1. Introduction. The linear induction motor (l.i.m.) is basically an unwound version

of its rotary counterpart [1], but, unlike a rotary motor, the electromagnetic (e.m.) field

produced by the current-carrying coils is of finite extent. The applications of an l.i.m. are

diverse [2] but its ability to impart motion to adjacent electrical conductors (by inducing

a Lorentz body force) without gear mechanisms means that it is extremely useful in driv-

ing molten metals, both for the bulk transport of the melt and for induction-stirring

[2-6]. In general, a numerical solution (if that is possible) of the nonlinear mag-

netohydrodynamic equations is necessary in order fully to describe the coupling between

the flow of the melt and the (three-dimensional) e.m. field produced by the l.i.m. When the

flow weakly modifies the l.i.m's field, a first approximation for the Lorentz force induced

in the melt can be obtained by assuming the melt behaves as a solid conductor moving

with some average velocity (in this case we refer to the conductor as a rotor). The first-

order solution for the flow of the melt is then obtained by solving the appropriate hy-

drodynamic equations [2, 16]. In this paper we derive integral expressions for the first-

order e.m. field induced in a rotor by the l.i.m.; the first-order flow is discussed, in part,

elsewhere [2].

An example of an l.i.m. is shown in Figure la; here, four groups of three coil-wound

teeth (identified by the labels R—red, Y—yellow, B—blue) form the source field. Each coil

is connected to the same alternating current supply, but the red (blue) coils are phase

retarded (advanced) by 2n/3 radians over the yellow coils. If the e.m. field for a single

coil-wound tooth can be obtained, an l.i.m. can be modeled by superposing suitably

placed and phased coils, provided self-inductive effects are negligible. This is the pro-

cedure followed here.

The problem posed is therefore one of electromagnetic induction by a source placed

above layered plane media. The source here is a coil-wound tooth attached to the lami-

nated iron stator core of the l.i.m. (see Figure la for the definitions and nomenclature). Its

e.m. field can be obtained by superposing current dipole sources over its volume [7],
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Fig. 1. (a) The linear motor/rotor configuration. Six of the twelve coil-wound teeth are shown—the ordering

Red, Yellow, Blue (R, Y, B) is maintained for all twelve teeth; (b) the mathematical model.

taking into account the layered media and iron stator, which modify the free-space solu-

tions. However, the most fundamental building block for a current system is the current

filament (see Sec. 2); we use this approach to construct the tooth-field. A general method

is derived, based on the current filament, which can be used for the calculation of the

induced field of essentially arbitrary sources in multiple-layered plane media of infinite

extent. The theory complements the work of Price [8], Gordon [9, 10], Caignard [11]

and Weaver [12] but has the advantage that the induced fields are obtained directly,

without recourse to free-space source fields. In order not to lose sight of the problem

which motivated this research, we present the method entirely within the context of a

l.i.m. analysis. An advantage of this approach is that the method follows a natural devel-

opment and its versatility becomes apparent.

2. The general method.

2.1 The basic model. The physical structure to be modeled is shown in Fig. la. A

rectangular tooth (width 2a, length 2b, height (h — d)) is attached to the underside of a

laminated iron core (the stator core); the base of the tooth is placed at a height d above a

solid rotor, of thickness L, which moves with the (constant) speed V parallel with the

stator face (which lies at a height h above the rotor) in a direction aligned along with the

(eventual) axis of the l.i.m.

The mathematical model equivalent to Fig. la is shown in Fig. lb. Cartesian axes are

chosen with origin on the surface of the rotor as shown. Denoting electrical conductivity

by a and magnetic permeability by n, we form four regions: region I (a = 0, /i ~ oo, z > h)

represents the laminated fully saturated soft iron stator core; region II (<r = 0, n = fi0,

h > z > 0) represents the tooth/slot/air gap region; region III (a # 0, fi = n0, 0 > z > L)

forms the electrically conducting rotor; region IV (a = 0, /i = n0, z < — L) is an insulat-

ing half-space. The magnetic permeability, , is equal to that of free space. The model

extends to infinity in the x and y directions.

The modeling of the tooth is done by superposing elementary current filaments as

described in the introduction. One of these current filaments occupies the location r0 =

(x0,y0,z0) in region II.
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2.2 The basic equations. The current filament j(r, r0) exp (icot) is defined by [13]

j(r, r0) = c(r0) 3(x - x0) S(y - y0) 5(z - z0). (1)

Here, c = (c1; c2, c3) is a vector (cj = c • x, etc.), of dimension equal to current density,

defining the strength and direction of the current filament; <5(x) is the Dirac delta function;

co is the angular frequency of the winding current. In the quasi-static approximation Max-

well's equations and Ohm's law are linear so we may assume all the electromagnetic

variables have the same time variation exp (icot). Maxwell's equations reduce to

V • B = 0, V x B = jiJ, V x E = — icoB, V • J = 0, V • E = 0, (2)

where B(r), E(r) and J(r) denote the magnetic field, electric field and electric current re-

spectively.

The uniformity of the model in the (x, y)-plane allows the use of the double Fourier

transform, defined for B(r) as

B(P, q, z) =

*oo ro

— 00 J —
B(r) exp (ik • r) dx dy, (3)

with inverse

B(r) =
(2 nf

B(p, q, z) exp (- ik • r) dk, (4)

where k = (p, q, 0). The transforms of the remaining variables may be similarly defined.

Consider now regions II, III and IV and the field structures therein.

Region IT. The source current in (1) does not satisfy the conservation law V • j = 0 at

r = r0. For consistency the scalar current potential $(r, r0) is introduced, so that the total

source current is given by

J(r, r0) = j(r, r0) - V<£(r, r0). (5)

Since V • J = 0, the function 0(r, r0) satisfies the Poisson equation

V2</> = V • j. (6)

From (2), using (5), the Poisson equation for the magnetic field becomes

V2B=-/i0Vxj. (7)

Using the Fourier representation in (3), Eqs. (6) and (7) transform to

~ - k2^j <j) = ^ - ipcj - iqc2 + c3 6(z - z0) exp (ik • r0), (8)

d2 ,,\A / d d
dz-k B = liqc + c.-^ipci+c,-,

i(pc2 - qcj Ho S(z - z0) exp (ik • r0), (9)

where k2 = p2 + q2.
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Region III: By combining (2) and Ohm's law for a moving medium,

J = cr(E + V x B), where V = Fy, the following equation describing the induced fields is

easily derived:

V2 - iwno<J - H0aV B = 0. (10)

By using (2), Eq. (10) may be transformed to

<n)

where

y2 = k2 + ifi0a(co - qV). (12)

Region IV: Eq. (10) holds with a = 0, V — 0. In Fourier space we have

-a (>»

In all three regions V • B = 0 leads to the transformed relation

^ = i(pBi + qBi)- (14)

2.3 Boundary conditions.

(a) Physical conditions. The electromagnetic fields in regions I and IV are assumed

to decay for large values of |z|. Across z = 0 and z = — L, B and (from 14))dB3/dz are

continuous. From an analysis of the second of (2) it may be shown that the vertical

component of electric current dentisy, J3, is zero inside the rotor. Physically the current

paths lie in the (x, y)-plane; if the rotor is made finite in extent, then J3 # 0 in regions

close to the perimeter of the rotor, where return currents form. This, together with the

electromagnetic boundary condition at the stator core B x z = 0 (since n ~ oo in region

I), yields the condition d(f>/dz = 0 (and so d(p/dz = 0) at z = 0, z = h.
(b) Continuity conditions. Consider the differential equation d26/dz2 — X26 =

a S(z — z0) where a and k are constants. Integrating across z = z0 yields the result that 9 is

continuous across z = z0, but d6/dz is discontinuous by an amount a. The equation

d2il//dz2 — X2\j/ = a d(S(z — z0))/dz may be analyzed by writing ip = d6/dz, so that ip is

discontinuous by the amount a across z = z0. Writing F = exp (ik • r0), it is readily

shown that the continuity conditions on <£, B and their derivatives across z = z0 are as

shown in Table 1.

2.4 Solutions in Fourier space.

Region II: The solution for <£ in (8) may be written

. _ (Di cosh k(h - z), h > z > z0, ^

[D2 cosh kz , z0 > z > 0,

Table 1. Discontinuities across z = z0.

Field variable $ dtfi/dz 6, fi2 dSjdz dS2/dz dBJdz
Discontinuous by Fc3 —iF(pc2 + qc3) /i0fc2 —pi0Fci n0iFqcJ —fi0iFpc3 n0iF(pc2 — qct)
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since d(f>/dz = 0 at z = 0, h. By applying the continuity conditions across z = z0 (see Table

1) the parameters D1, D2 are easily obtained; the solution for <$ is

c3 sinh kz0 cosh k(h — z) i(pCi + qc2) cosh kz0 cosh k(h — z)

x sinh hk + k sinh kh >z > zo.
(p = F

— c3 sinh k(h — z0) cosh kz i(pcl + qc2) cosh kz cosh k(h — z0)
 -I ;—■   z0> z > 0.

sinh kh k sinh kh

(16)

The solutions for Bu B2 may be written

^ = |^i,2 sinh k{h - z), z>z0,

1,2 [Afj 2 exp (kz) + Nt 2 exp ( — kz), z<z0.

Region III. The solutions for Bi, B2 are, from (11),

#i,2 = Pi, 2 exp (yz) + Qu 2 exp (-yz). (18)

Region IV: The solutions for B1, B2 are, from (13),

^1,2 = ^i,2 exp (kz). (19)

In each of (17) to (19), B3 can be obtained by inspection using (14). The conti-

nuity of B and dB3/dz across z = 0, z = — L yields eight equations connecting the twelve

parameters of integration above. The remaining four equations required to evaluate the

parameters are obtained from the continuity conditions for Bu B2 in Table 1. The com-

plete expressions for the integration parameters are given in Appendix I. It is important to

note that in regions III and IV, the component c3 does not occur in the solutions, so

vertical source currents do not induce currents in the rotor [8]. Note that the fields in

region I are not required in this analysis.

For brevity we shall present here only the solution for B in region III (the rotor). We

find

si)=- 0 ̂  {(^)—- - »- * <*»
^ _ iFiqci — Uy + k} ^ + 1 ^ ^ _ p[)

A = ■! I - y j eZyL — I [ 7 cosh kh + \(' | e2yL + 1 ̂  k sinh kh. (22)

where

\j — kj J (y)1 — kj

The electric current density is given by the transform of the second of (2).

2.5 Source modeling. It has already been shown that only the projection of the tooth

currents onto the rotor has an inducing effect (since c3 does not occur there). This, of

course, does not hold in region II. As far as stator losses are concerned, vertical source

currents merely produce ohmic losses and so the stator windings should be layered paral-

lel with the stator face. For simplicity, we therefore let c3 = 0. To illustrate the general

procedure to be followed in modeling teeth of any geometry, consider the following exam-

ples.
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(i) Line current. The field solutions in Fourier space all contain the parameter F =

exp (ipx0 + iqy0) which arises because the current filament is located at r = r0 in real

space. If we write x0 = u + xu y0 = v + yu the position of the current filament in relation

to the fixed point (u, v) can be obtained by choosing appropriate values for xx and yv If

the orientation of the element is along the line y = ax + /} in real space, we may write

c = (1, a, 0)/ dXi where dxt is a small increment along the x-axis and 1 is the (here)

constant winding current. Combining an infinite number of current filaments along the

line y = ax + between (x2, y2) and (x3, y3) produces a line current for which we may

define the mapping

F(qct — pc2)—> IeUup+vq)(q — pa) enP+«,)*, dx^ (23)

where F(qct — pc2) occurs in (20) and (21).

(ii) Polygonal coil. This coil can be modeled by a finite combination of line currents.

Summing the formula in (23) for the chosen values of a over the chosen number of line

current edges yields the polygonal coil result. For a rectangular coil of length 2b and

width 2a, we find

F(qcx — pc2)—> 4ik2I sin (pa) sin (qb) eaup+vq)/pq. (24)

(iii) Elliptical coils. To construct an elliptical coil we use the parametric form (x0,

y0) = (u, v) + (m cos 9, n sin 9) where the lengths of its semi-major and semi-minor axes

are, respectively, m and n. An element of the ellipse is oriented in the direction c = I( — n

sin 9, m cos 9, 0) d9 (for anti-clockwise current at t = 0) where d9 is a small angle in-

crement. Summing these elements is equivalent to integrating from 9 = 0 to 9 = 2n. For

an elliptical current loop we therefore have:

rin

F(qci - pc2)-> -/e't-p-1-"") I (nq sin 9 + mp cos 9) e'^p^e + n^ine) dQ

= 27t/i/^J1(i/f) eUup + vq), (25)

where ip2 = m2p2 + n2q2 and Jt(ip) is Bessel's function of order unity. Setting m = n = r in

(25) produces the appropriate mapping for a circular coil. Expressions for infinitesimal

coils can easily be obtained from (25): for example, with m = n = r and r small, ~

t/^/2 and, by writing nr2l = M, the magnetic moment of the coil, the mapping for a current

dipole is obtained in the limit r—> 0.

The solutions for the fields induced in a conductor by a line current or dipole source,

are obtained by substituting (23) to (25) in (20) and (21) using the inversion formula (4). By

letting h-* oo, exact agreement (for V = 0) with earlier analyses of e.m. induction by

antennae sources [8-12] is found. In general, the Fourier integrals can be evaluated only

by asymptotic [14,15], or numerical methods (which are used here).

To model a rectangular coil wound tooth we use (24) in (20) and (21) and integrate the

resulting expressions with respect to z0 from z0 = d to z0 = h. For example, the expression

for B3 in region III becomes

B3 = 4kI Sin {Pa) Sin M sinh W1 ~ A) {(~L±f) e2 r Vz + e-,z| ei{uP+(26)
A l\y~kj

Hitherto we have assumed that the tooth has rectangular structure, with c3 = 0. Elec-
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trie motors are more usually designed with layered windings and therefore the "teeth"

become skew and the point (x, y) is a function ofz0; probably c3 / 0 as well. This struc-

ture is easily incorporated in the solutions (20), (21), etc. The theory therefore allows the

analysis of arbitrary tooth structures; for simplicity, however, we consider the simple coil

structure in (26).

3. The modeling of a linear induction motor. By using the inverse Fourier transform

in (4), the solutions for B, J, E and </> may be written as double integrals. In the particular

case V = 0, Eq. (26) and the equivalent expressions for B,, B2 etc., may be reduced to

integrals with more well-behaved kernels (see Appendix 2). Remembering that only the

real parts of the complex expressions have physical meaning, we write Real {B3 exp

(/cot)} = | B31 cos (cut -I- e), where B3 = B3 r + iB3 , and tan e = B3 JB3 r is a real phase

quantity. The time-averaged Lorentz body force F induced in the rotor by a (model)

coil-wound tooth, is obtained from the formula

F = \ Real {J x B*}. (27)

The force induced in the rotor by the l.i.m. is found by combining suitably placed and

phased (see the introduction) teeth. In this case both J and B in (27) represent, respec-

tively, the total induced current and magnetic field (due to the twelve coils). For illustra-

tion, we consider the particular l.i.m. (Fig. la) used in the float-glass process [2, 17] to

drive molten tin. If f(y) exp (itot) represents the behavior of an induced field variable, for

fixed x and z, then the l.i.m. induces the field fM, where

fM(y) = £ X *M+nf(y + g(c)) e2"™~ l>"3. (28)
n = 1 m = 1

In (28), the reference point y = 0 is chosen as 0 in Fig. la, 6 is a parameter specifying the

phase of the color group y at t = 0, c is the tooth pitch and the function g(c) places each

phased tooth in its approximate position. To include the effect of half-wound end teeth

(which smooths the end effects [2]) we set am+n = 0.5 (m + n = 2 or 7) and am+n = 1

(otherwise). The numerical evaluation (using Gaussian quadrature) of the formulae in

Appendix 2 was made with the following parametrization: a = 5 cm, b = 1.3 cm, c = 5.1

cm, d = 2 cm, h = 4.9 cm, a — 1.7 x 106 mhom-1, a> = 100tt rad s_1. Extensive dis-

cussion of the variation of field quantities with the parameters above is given elsewhere

[2]; for brevity we show (in Figs. 2a, b, c) only the time-averaged induced force structure

on z = 0 (the variation with depth is similar to the usual skin-depth decay). The field

quantities have been normalized with respect to the dipole moment M = AabI, so & =

F/M2. Apart from the non-uniform variation in magnitude (the global maximum and

minimum is labeled) of the force components (see also [18, 19]), the most noticeable

feature is the presence of an oscillatory axial force 2)• It is apparent that whilst a net

axial flow will develop when the l.i.m. is used with a liquid metal secondary conductor,

the major part of the induced axial body force causes circulation [2], The cosine of the

phase parameter for the electric current component J1 is shown in Fig. 2d; in the region

of the motor, cos e may be written approximately as cos (ay + v) where v is a constant

and a = 2nf1c. In fact, this result shows that the current density component (and also the

remaining e.m. field components) behave in a traveling wave manner, with a as the wave-

length of the excitation. More usually, a = n/z where t is the pole pitch, so that t = 3c/2

here (this is consistent with the l.i.m. in Fig. la which has eight magnetic poles). The
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Fig 2. (a) The x-component of the body force; (b) the y-component of the body force; (c) the z-component of

the body force; (d) the phase of the x-component of current density.

locations of the phased-teeth in Figs. 2b, c, d follow those in Fig. 2a, but, for clarity, no

labeling is made.

In summary, then, we note that apart from the geophysical applications of the general

induction method derived earlier, the method has made possible a three-dimensional

modeling of both the source and induced l.i.m. fields of an l.i.m. configuration. The usual

idealized traveling-wave form for the excitation of a l.i.m. [1, 2] has been vindicated in

part; however, it is clear that the local induced flow of a liquid metal secondary can only

correctly be discussed using a spatially inhomogeneous model for the l.i.m.



ELECTROMAGNETIC INDUCTION IN LAYERED MEDIA 403

References

[1] E. R. Laithwaite, Induction machines for special purposes, Newnes, 1966

[2] I. C. Rae, Some theoretical problems related to flows induced in liquid metals by linear motors, Ph.D. thesis,

Univ. of Keele, England, 1978

[3] F. R. Block, Electromagnetic runners and pumps, ECSC Tech. Res. Rep. EUR 5082 d.e.f., 1973

[4] M. G. Rezin, Advances in electromagnetic stirring of liquid metals, Magnitaya Gidrodynamika (2) 1,

130-138(1965)



404 I. C. RAE

[5] Y. Sundberg, Magnetic traveling fields for metallurgic purposes, IEEE Spectrum (5) 6, 79-88 (1969)

[6] L. R. Blake, Conduction and induction pumps for liquid metals, Proc. IEE (A) 4, 49-63 (1956)

[7] V. C. A. Ferraro, Electromagnetic theory, Athlone, 1954

[8] A. T. Price, Electromagnetic induction in a semi-infinite conductor with a plane boundary, Q. J. Mech. Appl.

Math. 3, 385-410(1950)
[9] A. N. Gordon, The field induced by an oscillating magnetic dipole outside a semi-infinite conductor, Q. J.

Mech. Appl. Math. 4, 106-115 (1951)
[10] A. N. Gordon, Electromagnetic induction in a uniform semi-infinite conductor, Q. J. Mech. Appl. Math. 4,

116-128(1951)
[11] L. Cagniard, Basic theory of the magneto-telluric method of geophysical prospecting, Geophysics 18, 605-635

(1953)
[12] J. T. Weaver, The general theory of electromagnetic induction in a conducting half space, Geophys. J. R.

Astr. Soc. 22,83-100(1970)
[13] P. C. Clemmow and J. P. Dougherty, Electrodynamics of particles and plasmas, Addison-Wesley 1969

[14] J. T. Weaver and D. J. Thompson, The field induced in a two-layer conductor by a magnetic dipole, Can. J.

Physics 48, 71-79 (1970)
[15] J. R. Wait, The magnetic dipole over the horizontally stratified earth, Can. J. Physics 29, 577-592 (1951)

[16] I. C. Rae, On the flow induced in liquid metals by a linear induction motor, App. Sci. Res. 39, 71-81 (1982)

[17] L. A. B. Pilkington, The float glass process, Proc. Roy. Soc. Lond. (A) 314, 1-25 (1969)
[18] K. Oberretl, Dreidimensionale Berechnung des linear Motors mit Berucksichtigung der Endefekte und der

Wicklungoverteilung, Arch, fur Elect. 55, 181-190 (1973)

[19] O. A. Gerasev, Yu. I. Koskin and L. A. Tseitlin, A three-dimensional model of a linear synchronous motor

(theory and calculation), Izv. Akad. Nank. SSSR. Energ. Transport (2) 17,49-60 (1979)

Appendix 1. The constants of integration are as follows:

M = F cosh kza + M Si"th - y cosh Hh - z0)

sinh kh,

+
y sinh k(h — z0)(qc

q\ kA

N.) /f c2) , ,,, , f 5] ic3 sinh k(h — z0)
4 ■f (1-4cosh k(h -z°)+\-p —*—-

+ p] (y sinh k{h - ZoXflCj - pc2)

k2 A

y + k

y-k.
e2yL ekh 2 sinh kh,

Pi\ = F M (7 + - pc2) e2yL cosh k(h - z0)

P2 J UJ k2(y — k)A

Qj _ J-pl y(qcl - pc2) cosh k(h - z0)

Q2 J l-«J k2 A

Ri. 2 = e+kL (P, 2 e~yL + 2 eyL).
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Appendix 2. The integral expressions for the induced (region III) magnetic induction

and electric current density (with V = 0) are:

y sinh k(h — d)k2
= M

o

v-b

jv — — o

= a

u= -a ,

y + k\ e2yLeyz _ £-yz

y — k

lJ0(kpt2)-J0(kpu2)-] {^j dk,

B,= - M
sinh k(h — d)k3

'v-b

J0(kp) du dv dk,

„o H , f* sinh Hk- W I7j±|\ e!,v, + 1

Uo(kpt,)-UkplM |j"l jfc

where

p2 = (u- x)2 + (r - y)2, (pf)2 = (a + x)2 + (i> - y)2, (p^)2 = (v - x)2 + (b + y)2,

and the transformation

*00 f*OD

F(k) e',(px+9y) dp dq = In kF(k)J0(ks/x2 + y2) dk
- oo JO

has been employed in deriving B, J above.


