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NONUNIFORM MOTION OF AN EDGE DISLOCATION

IN AN ANISOTROPIC SOLID. II

By
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Abstract. The nonuniform motion of an edge dislocation in a singularly hyperbolic

cubic (or hexagonal) crystal is analyzed, both for general nonuniform motion and for a

motion starting from rest with constant velocity. In the latter case the solution is obtained

in closed form from which the stress behaviour near the wavefront is also derived.

Introduction. In the first part of this research we studied the two-dimensional problem

of the nonuniform motion of an edge dislocation in a material of cubic or hexagonal

symmetry and restricted attention to the regular hyperbolic case. Here we consider the

singular hyperbolic case for cubic symmetry, which occurs when two sheets of the

slowness surface intersect.

According to Duff [1] the slowness cone with vertex at the origin satisfies the equation

S(v, |) = det[i>25/wjr - Cpqrs$p$,\ (1)

where

v2 = v2N(£), N = 1,2,3.

For a hyperbolic system all the roots f of (1) are real for any real £ , and if they are all

distinct the system is called strictly (or regularly) hyperbolic. If there are repeated roots

for some gp then the system is called non-strictly (singular) hyperbolic.

In the two dimensional case of cubic (or hexagonal) symmetry under consideration the

equation (1) takes the form

S(v, £) = p2v4 - p(C66 + Cu)v2tf - p(C22 + C66)i>2£2

+ + [CUC22 + C65 — (C66 + ci2) ]£i~£2 + ^"22^66^2 }

= 0 (2)
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which may be solved for v2 to yield

2 1vl = —
2 p (cu + Qfi)£i +(C22 + Qe)^2 ± (3)

where the discriminant A is given by

A = p2{[(Cn - Cbb)H -(C22 - C66)|2]2 + 4(C66 + Cnfm}. (4)

The system is singular hyperbolic iff A = 0, which occurs iff

^"12 + C66 = 0 (^)

since we have assumed Cn + C66 and C22 =£ C66.

In the cubic case for which Cn = C22, A = 0 iff = ±|2> which means that sheet 1

(the innermost sheet) intersects sheet II (the outer one) at = ±£2. In the hexagonal case

for which Cn # C22, A = 0 iff = +(C22 — C66)£2/(Qi — Cbb) and the treatment will

be similar to the cubic symmetry case which follows below.

For a singular hyperbolic cubic material the slowness surface is obtained from (2) by

setting v = 1 and Cn = C22, Cn + C66 = 0. Then equation (2) reduces to

5(1, 0 = (p - Cu£i - C66£2)(p - C66£i - Cu£2) (6)

and the slowness surface consists of two ellipses (see Fig. 1):

(i) Cn£2 + C66£2 = p

(ii) ^66^1 + Ql^2 = Pi

which intersect for = |2 = yp/(Cu + Q6).

Then for the outermost sheet of the slowness surface (see Fig. 1) we have

^66^1 ^11^2 = P f°r^l > ^2>

Cn£? + C66£2 = p for|j < £2,

ln|(C66'^ll'

_n2(Cn,C66)

Fig. 1. Slowness surface for singular hyperbolic cubic material.
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with corresponding wave surface parts W1 given by

cA 11 c„ \ i I »•

and

_L/£i\2 + _L (±i\2 = I
cuI t J c66\ t ) pQl v 1 ' ^66

respectively (see Fig. 2).

The inner sheet S2 of the slowness surface (see Fig. 1) is given by

QlSl2 + ^66^2 = P f°r£l ^ ^2>

^66^1 ^11^2 = P f°r £l ^ £2 >

with corresponding wave surface parts W2 described by

s2 1 ,r.\2

and

. 1 / x2 \ _ _1

cu I t ) C66 I t ) p

_L(£i)2 + _L(iif,IQfi w / Ci, \ t I p

respectively (see Fig. 2).

Nonuniform motion of an edge dislocation in the singular hyperbolic case. Let us consider

an edge dislocation in a cubic or hexagonal crystal for which Cn + C66 = 0 (i.e. singular

hyperbolic case) being at rest at the origin and starting moving at t = 0 along the xl axis

/ t/CnC6S tycnc66 \ / tc„ tCgg \

\-jp(C„+C66) ' -JP(CM + C66)/ C'W>(CM+C66) ^(C„+C66)/

c: ( 1 C66 tCll \

W(c„+c66)' -jp(cM+c6S)/

Fig. 2. Wave-surface for singular hyperbolic cubic material.
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according to Xj = l(t) or equivalently t = tj(*i)- Then, as in part I, the radiated field will

satisfy for t ^ 0 the differential equations

a2,, <123 M, 3 M, 3"W,

d2u2 32m2 3 2u-i
(8)

C"6 dx2 + Cl2 dx2 P 31

with boundary conditions at x2 = 0:

«i(*i. *2> 0 = i - /(0) - #(*i)).

3m, 3m, , „
uJx^+ 9*7= (»»

superposed to the static solution for an edge dislocation at the origin for all t [2],

The system of differential equations (8) with boundary conditions (9) is equivalent to

the superposition of the following two problems:

Problem I.

d2"i Q6 d2"i P d2»i /1f)x

dx2 Cu dx2 Cu dt2 1 '

with boundary condition at x2 = 0:

ui = ^riH(xi ~ '(')) - #(*i)]- (ii)

Problem II.

dx2 Q6 dxl Q6 3/

with boundary condition at x2 = 0:

82u2 | C22 32u2 p 32u2 ^

3m, 3m, .
c'< + c=5l}-° (13»

where m, is the solution to Problem I.

For Problem I we set x2 = \Cnx2/C66 and b = \jp/Cn so that equations (10) and

(11) become

32"i . 32"i ,292"i
 7 +  T" = "  n
dx2 dx2 3t

+ ~7TT = (14)

with

u1(xl,0, t) = ~[H(xl - l(t)) - Hix^} for / > 0. (15)
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The solution to the differential equation (14) with boundary condition (15) has been

obtained by Markenscoff [3]. For materials of cubic symmetry the slowness surface is the

ellipse (i) in Fig. 1 with corresponding wave surface the ellipse (i) in Fig. 2.
For constant velocity motion with dislocation velocity vd = 1/a < 1/b (subsonic)

d»i , , _ 9"i I Qi _ Au I Cn
av- 352 y C66 2w y C66

v/r2 - r2b2
M2 £u4
r2 I C66r*

- H(t - rb)

and

Am /

dx1 2ir Y C66

- t2x1x2(zar2 — /Xj) + ~^x\t{t2 — r2b2) + axxx2rAb2 (17)

66 —H(t - rb)

r2^t2 - r2b2 (ar2 - txJ2 + yr~x2(t2 - r2b2)
66

with r2 = x2 + Cnxj/C66. For the non-constant velocity case the solution is also given in

[3]. For supersonic motion (i.e. a < b) there will be additional Mach wavefronts on which

the stress is delta-function [4], For constant dislocation velocity these fronts are straight

lines in the xx — x2 plane given by

Cu axx 1
x1 = - +

^66 \jb2 - a2 yjb2 - a2

The solution to Problem II may be obtained by using the solution to the problem of the

regular hyperbolic case developed in part I [2]. From equation (12) of part I, if we set

C\2 + Q6 = 0' we have in the transformed space

U2( X,x2,s)= - — s)X p-sx2]/p/C22-C66\2/C22

C22 [~P c66
 66 -, 2

c c^22 *-22

from which it follows that

31/,,. x G
a^(X,*2, j) = s)\se-sx^p/c*-c<*x2/c« (18)

where

dx2 ' 2' C22

U,\(\,0 ,s) =

We notice here that the exponent of e has only one radical so that with change of variables

the integrand is reduced to a form analogous to the isotropic case, for which the ususal

Cagniard-de Hoop technique applies directly.
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For materials of cubic symmetry the slowness surface is the ellipse (ii) in Fig. 1 with

corresponding wave surface the ellipse (ii) in Fig. 2.

Applying the change of variables d = \jp/C6(t, x2 = \JCfl(t/C22 x2 and inverting (18) we

have

d£d\

the solution to which can be obtained by using the method developed in [3], For the

constant velocity subsonic motion (a > d), the above reduces to

Hai(x x t)= ~~A"(
dx2lXl' 2' ' 2 77 \c22

3/2

C,
— t2x1x2(2ar2 - txt) + t~^-x2(t2 - r2d2) + ax2x2rAd

C2 2

r2y/t2 - f2d2 (ar2 - tx,)2 + ^x2{t2-r2d2)
^22

> ■ H(t - rd)

(19)

where r2 = x\ + ^66X |/C22. Furthermore we have

if (*>•*>.>)-jx .^{sx
and

d"2 / •. I 0,6 ,,{ , ....

rx| [(a?"2 - ) r - xj (r2 - rV2)] f2*2 + (2
22 \

+ *2(,2 - ?V)] (a?2 - tt,)2 + -^x2(r2 - r2</2)

Xi(?2 - r2d2) Xi(ar2 - tx]) +
C22

r2(^xi-x2) + ^^(r2-^2)

rV/2 - r2d2 ^2xI2 + x?(,i-fV)
C22

(a?2 - ttl)2 + ^A:2(r2 - r2d2)
^22

(20)

with

r
A 2 2 I 66 2
/• = *1 + — xl2.

C22

For supersonic motion (i.e. a < d) there will be additional Mach wavefronts as in

Problem I. for constant dislocation velocity they are straight lines:

C65 -axx t
x2 = — +

^22 yjd2 - a2 yjd2 - a2
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The above expressions may be used to derive the explicit wavefronts behavior for a

dislocation starting from rest and moving with constant velocity. For an isotropic material

the wavefront behavior has been obtained in [5].

For to the displacements uY and u2 are the ellipses (i) and (ii) respectively in Fig. 2.

Therefore we may decompose the problem into the cases

(I) xx > x2 and

(II) x1 < x2.

For case (I), at time

' = J -§~*l + ^r-*2 +
V *-11 C66

the stress field is due to the displacement u[ (with corresponding wave surface

l/C11(x1/t)2 + l/C66(x2/t)2 = l/p)and has components au = C1u1 v o22 = Cnulv

a 12 = C66ul 2, which by use of (16) and (21) give:

CUA« b cos 0 sin 0
°n =

v/A7 \j2br | - cos 0 +

C12Am b cos 0 sin 0 . ,
g22 = o. ~ . / —» I22)

~'n {Kt -J2br ̂  - cos 0 +

fQsQi b sin2 6
j,, = —  Aw   

{Kt yj2br (- cos 0 + -j-
l b

where b = \Jp/Cn, r = ]Jx2 + C11x2/C66 and 0 = tan l(\ICn/C66 (x2/xi))- F°r case

(II), at time

t = \l ~r~xi + + At (23)
*-66 C11

the only non-zero displacement is u2 and the corresponding stress components

au = C12u2 2, a22 = Cnu2 2, a12 = C66u21

by use of (17) and (23), yield near the wave front

C12Au / C66 dcos<£sin<#>
TU -

<"11 -fKt i/ldr | — cos <f> +

CnAw / C66 dcos<t>sin<t>
°22 ~

2-n \l Cu v/A7 yjldr | - cos <j> + j

C66A" I C.66 dcos2<f>
°12 ~

2 n \l Cu ,/X7 (— cos<f> + ^\/A7 \!ldr |
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where d = /p/C66, r = ^Jxj+ C66xj/Cu, and <j> = tan 1(-/C66/Cn (x2/x)). Finally for

xx = x2 at time

1 = \ C~Xi + C~X* + A/ = V ~C~Xi + C~X* + A'
V ^11 66 V 66 11

we have contributions due to both wave surfaces as given above.

References

[1] G. F. D. Duff, Phil. Trans. Roy. Soc. (London) 252A 249 (1960)

[2] X. Markenscoff&L. Ni, Quart. Appl. Math. 41, p. 475 (1984)

[3] X, Markenscoff,/. Elasticity, 10, 193 (1980)

[4] C. Callias and X. Markenscoff, Quart. Appl. Math.38, 323 (1980)
[5] X. Markenscoff, Int. J. Eng. Sci. 20, 282(1982)


