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Abstract. When the boundaries of an elastic wedge are straight lines, the asymptotic

solution near the apex r = 0 of the wedge is simply a series of eigenfunctions of the form

rxf(0. A) in which (r, 6) is the polar coordinate with origin at the wedge apex and A is the

eigenvalue. When the wedge boundaries are curved, the eigenvalues remain the same but

the curvatures of the boundaries change the form of the eigenfunctions. The eigenfunction

associated with a A contains not only the term rx, but also rx + 1, rx + 2,... In some cases it

also contains the term rx + 1(ln r ). Therefore, the second and higher order terms of

asymptotic solution are not simply the second and next eigenfunctions. Examples are

given for the first few terms of asymptotic solution for wedges with wedge angle v and 2u.

The latter corresponds to a crack with curved free boundaries and we show that there

exists a term r1/2(ln r) besides the familiar terms r~1/2.

1. Introduction. It is well known that the stress distribution near the apex of an elastic

wedge with straight boundaries can be expressed in terms of a series of eigenfunctions of

the form rxf(6, A) where r is the radial distance from the apex of the wedge, A is a

constant and / is a function of A and the polar angle 6 [1], For given wedge angle 2a and

homogeneous boundary conditions at the wedge boudaries, there are in general infinitely

many eigenvalues A and associated eigenfunctions rxf(6, A). Particularly important in

applications is when one of the A's is negative and hence the stress is singular at the apex.

For instance, for the specimen shown in Fig. 1 under a tensile loading, A = -1/2 at the

crack tip Q where the wedge angle 2 a is 2it. At point M where 2a = 377/2, it can be

shown that there are two negative A's [2], In solving the stress distribution in the entire

specimen numerically by using a finite element scheme, one may use regular finite

elements everywhere except at the singular points Q and M. At the singular points Q and

M, a special element is used in which the singular nature of the stress is given by the

analytical expression rxf(0, A). It may be sufficient to consider only the first term (or
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terms) for which A is negative in the special elements. In many cases, however, more terms

are required [3,4],

When the wedge boundaries are straight lines, inclusion of the second and higher order

terms in the asymptotic solution simply means the addition of eigenfunctions rxf(6, A)

associated with the second and the subsequent smallest eigenvalues A. If the wedge

boundaries are not straight lines, the curvatures of the boundaries change the form of the

eigenfunction. The eigenfunction associated with a given A now contains not only the term

rx, but also /-x + 1, rx + 2,... In some instances it also contains the /-x + 1(ln r) terms.

Therefore, in choosing the higher order terms of asymptotic solution for wedges with

curved boundaries, one cannot simply add another eigenfunction. After presenting the

basic theories of analyses for wedges with curved boundaries we give two examples; one

with wedge angle m and the other with wedge angle 2tt, and show how one can obtain the

first few terms of the asymptotic solution.

2. Formulation of the problem. Consider an elastic wedge bounded by two boundaries T

and T* as shown in Fig. 2. Using a polar coordinate system (r, d), the stress components

a„, aee and ar9 given by [1]

arr = rx{A cos(2 + A)0 — B sin(2 + A)0 + C(2 — A)cos A6

-D{2 - A)(sin A0)/A},

age = rA{-/lcos(2 + A)0 + 5sin(2 + A)0+C(2 + A)cosA 6 (1)

-D{2 + A)(sin A0)/A},

ar8 = rx{-A sin(2 + A)6 — Bcos(2 + A)6 + CA sin \6 + Dcos A6} ,d

where A, B,C, D and A are arbitrary constants, satisfy the equations of equilibrium and

the stress compatability conditions. Notice that placement of A in the denominator of the

terms containing D ensures that these terms do not vanish simultaneously when A = 0 [2].

Using matrix notations, we write Eq. (1) as

o = rxS(0,A)q, (2)

/CI
M

r

Fig. 1.
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where

°rr

°ee

°re

(3)

and S(0, A) is a 3 X 4 matrix which can be defined accordingly.

I. When T and T* are straight lines. We will assume that the boundaries T and T* are

stress-free. If T and T* are straight lines with polar angles 90 and 0*, respectively, we have

°re = °e» = 0 at e = e0 and 6>0*. (4)

We may write Eqs. (4) as, using Eq. (2)

K0(A)q = 0, (5)

where

"NoS(0o, X)

N0S( 6*,X)
K0(A) =

N„ =
0 0 1
0 1 0

(6)

(7)

For a nontrivial solution of q, we must have

l|K0( A) || = 0, (8a)

which is, when the determinant is expanded,

([sin 2(1 + A)a]2 - [(1 + A )sin2a] ~}/X = 0, (8b)

where 2a = 60 — d* is the wedge angle. There are infinitely many roots (real and/or

complex) for X. For the strain energy to be bounded in a region containing r = 0, we must

have X > -1. For each eigenvalue A, Eq. (5) gives the associated eigenvector q and Eq. (2)

provides the eigenfunction for the stress a. Notice that A = 0 is not a root for all values of

a [2] as incorrectly claimed in some literatures.

(r, 6)

Fig. 2.
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Let X = Xj, X2, • ■ • be the roots of Eq. (8). If the roots are real, we let -1 < Xj < X2 <

X3... If they are complex, we arrange according to the real part of the complex roots.

Then the asymptotic solution for a as r -» 0 can be written as

a = VX'S(0, X^qj + k2rXlS(0, X2)q2

+ V"3 S(0,X3)q3+ ••• (9)

where kv k2, ■ ■ • are arbitrary constants.

II. T and T* are curved. When the boundaries T and T* are not straight lines, the

solution obtained in Eq. (9) does not satisfy the boundary conditions for all r because Eqs.

(4) do not apply to curved boundaries. At any point on T, let (nr, ng) be the polar

components of the unit normal n to the boundary, Fig. 2. Then the components (tr, tg) of

surface traction vector t are given by

<r = °rr"r + °r0"e,

h ~ °r6nr + aeene

or, using matrix notations,

where

"" t.
t =

Along T, r is a function of 6 and

(10)

t = No, (11)

(12)N =
nr 0 nt

0 n„ n.

(13)
nr= r(r2 + r'2)~1/2,

ne = -r'(r2 + r'2)"1/2,

where a prime stands for differentiation with respect to 6. We will assume that, as r -* 0,

the curve T can be represented by the asymptotic expression (see remarks in Sec. 5),

e = e0 + <y + e2r2 + ■■■ (14)

We then have

-nr/n9 = rdO/dr = Bxr + 2 02r2 + • • • , (15)

and N of Eq. (12) can be written as

N = ^{No-N1(01/-+202/-2+ ■•■)}, (16)

where N0 is defined in Eq. (7) and

(17)N:
1 0 0
0 0 1

With 6 given by Eq. (14), we can expand S(0, X) of Eq. (2) in power seris of r as

S(0, X) = S(0O, X) + exS'(60,\)r

+ [202S'(0o,X) +012S"(0o,X)]r2+ (18)

where a prime stands for differentiation with respect to 9.
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To satisfy the traction-free condition on T, we generalize the eigenfunction, Eq. (2), and

write

o = rxS(0, X)q + rx+1S(6, X + l)q(1) + rx+2S(0, X + 2)q(2) + • • • , (19)

where q, q(1), q<2),... are arbitrary constant matrices. Substituting Eq. (19) into (11) and

making use of (18) and (16), we obtain

t/n9 = rxNoS(0o,X)q

+ rx+1{NoS(0o, X + l)q(1> - X) - NoS'(0o, \)]q)

+ rx + 2{- • • } + ■ • • (20)

The same equation applies to t*/n% for the boundary T* if a superscript * is added to

d0, 6 v... in Eq. (20). Imposition of the traction-free conditions t = t* = 0 implies that the

coefficients of rx, rx+1,.. must vanish. We obtain

*0(x)q = o, (21)

K0(^ + l)q(1> = K1(X)q, (22)

where A^0(X) is defined in Eq. (6) and

^1{N1S(^0, X) - NoS'(0o> X)}
Ki(X) = (23)

Eq. (21) is identical to Eq. (5) and hence the eigenvalues X and the eigenvectors q are

identical to the case of a wedge with straight boundaries. However, the eigenfunction is

now given by Eq. (19) for each X in which q(1) is determined in terms of q from Eq. (22).

Likewise one can derive an equation for q(2) which will depend on q also. By adding the

eigenfunctions given by Eq. (19) for X = Xl5 X2,..., we write the asymptotic solution for a

when r -* 0 as

o = k1{rx'S(9, Xjq! + rx> + 1S(0, X! + l)q(11) + • • • }

+ k2{rx>S(0, X2)q2 + r^+1S(0, X2 + l)q(2X) + • • • }

+ /c3{...} + ..., (24)

where kv k2,■ ■ ■ are arbitrary constants. Since Xj < X2 < X3.., the rXl term is the first

order term. However, the second order term is rx2 (which is the case in Eq. (9)) if

\2 «c Xj + 1 and rx' + 1ifX2>X1 + l. Thus the second and higher order terms are not

necessarily the same as in wedges with straight boundaries.

Equation (22) gives a unique q(1) provided X + 1 is not a root of Eq. (8a). If it is, a

solution q(1) may still exist although the solution is not unique. In the next section, we

consider the case in which q(1) does not exist.

3. Modified eigenfunction. When X + 1 is a root of Eq. (8a) and hence K0(X + 1) of Eq.

(22) is singular, a solution for q(1) exists if and only if [5]

lrK1(X)q = 0, (25a)
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where T stands for the transpose and 1 is the left eigenvector of K0( A + 1),

lrK0(A + 1) = 0. (25b)

When Eq. (25a) is satisfied, there exists a q(1). Although q(1> so obtained is not unique, the

solution obtained in the previous section nevertheless remains valid.

If Eq. (25a) is not satisfied, there is no solution for q(1) and the eigenfunction associated

with the eigenvalue A cannot be given by the expression, Eq. (19). In this case, consider the

following modified eigenfunction [6,7]

o = rxS(6, A)q + ~ [rx+1S(0, A + l)q(1)(A)]

+ [rx + 2S(0, A + 2)q<2)( A)] + ... (26a)

where q(I),q(2),. • ■ are now assumed to depend on A. Expanding the differentiation, we

have

a = rxS(6, A)q + r x+i (In r)S(6, A + l)q(1)(A)

+ ^-(S(0, A + l))qll)(A) + S(0, A + D^q(1)(A)

+ rx + 2[-■ • ] + • • • (26b)

If we substitute this into Eq. (11), make use of Eqs. (18) and (16), and set the traction-free

conditions t = t* = 0, we obtain

K0(A)q = 0, (27)

K0(A + l)q(1)(A) = 0,

d 9
K0(A + l)^q(1)(A) + UtMA + 1) q(1)(M = MX)q,3A

(28)

where K0 and Kj are defined in Eqs. (6) and (23). Similar equations may be derived for

q(2), dq(2)(X)/d\,...

Equation (27) is identical to (5) and hence A and q are the same as in wedges with

straight boundaries. Equation (28) provides q<L) and dq(l)(X)/dX. A discussion on the

existence of a solution for a system of equations similar to Eq. (28) can be found in [6].

When q(1)(A) exists and is non-zero, Eq. (26b) shows that there is a new term rA + 1(ln r) in

the eigenfunction. We see that while rx is the first order term, the second order term

within the eigenfunction is /-x + 1(ln r), not /-x + 1.

If A + p, where p is a positive integer, is a root of Eq. (8a) and a solution for q^' does

not exist, a modification similar to Eq. (26a) can be made for the eigenfunction. We then

would have the term /■x 4 /J (1 n r ).

4. Examples. In this section we will consider two wedges; one with wedge angle it and

the other with wedge angle 2it. We will present the first few terms of asymptotic

expansion for r < < 1.
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(a) (b)

Fig. 3.

I. Elastic wedge with wedge angle tt. Let 60 = tt and 0* = 0 as shown in Fig. 3a. The

boundaries T and T* of the wedge are circles with radii (2^1)"1 and (20*yl, respectively.

If 0X < 0, we have the wedge shown in Fig. 3b. The first three roots of Eq. (8b) are [2]

\ = 0, A2 = A3 = 1, (29)

and Eq. (5) gives the associated eigenvectors q:

qi = q2 q3 = (30)

Using Eq. (24) and omitting the terms of order higher than r2, the asymptotic solution is

o = ^1{S(0,O)q1 + rS{6,l)q[l)} + k2rS(d, l)q2 + k3rS(8, l)q3, (31)

in which q'/' is to be determined from (22). However, for A = Ax = 0, A + 1 is a root of

Eq. (8b) and K0(A + 1) is singular. A solution for q'/' exists if Eq. (25a) is satisfied. It can

be shown that Eq. (25a) is satisfied if 81 = -Of, which implies that if F and F* form the

same circle. In this case, Eq. (22) has solutions for q^1' and it can be shown that

qi1'

0
80J

0
0

+ c1q2 + c2q3, (32)

where q and c2 are arbitrary constants. Hence is non-unique. However, as we see from

Eq. (31) the non-unique solutions associated with q and c2 can be ignored because they

are already represented by the terms associated with k2, and k}.

If d1 -0f, we use Eq. (26b) for the eigenfunction associated with X1 We then have,

again excluding terms of order higher than r2,

o = /c1{S((9,0)q1 + r [(In r )S(0, l)q<1>1

(33)+ ^-S(0,A+l)|A = oq<1>+S(^,l)-^q<1)(A)|;
VU-0M1 ' d\Hl V'VU-0

+ ^2rS(0,l)q2 + k3rS(0, l)q3.
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It can be shown that

q(i1) = Yq2> Y = 4(0! + 0f)A,

y

A = 0

-80*

0
0

+ Cll2 C2Q3>
(34)

where and c2 are arbitrary constants. Again, the terms associated with cx and c2 can be

ignored because they are represented by the terms associated with k2 and k3. We see that

when 6X = -$*, y — 0 and Eq. (33) reduces to (31). However, as long as 6l # -0f, the

asymptotic solution given by Eq. (33) contains the new term r(ln r ). The example

presented here applies to the point R in Fig. 1 where 6X # 0 while Of = 0.

II. Elastic wedge with wedge angle 2w. Let 60 = n and 0* = -n as shown in Fig. 4a. The

radii of curvature for T and T* are, respectively and (20f)_1. It is clear that we

must have - 81 > 0. If 9{ < 0, we have a cusped crack as shown in Fig. 4b.

The first five roots of Eq. (8b) are [2]

X1 = X2=-l/2, X3 = 0, X4 = X5 = 1/2, (35)

and the associated q are

qi =

l
o
-2

0

q2 =

o
3
0
-1

q3 = = q5 =

(36)

(a)

Fig. 4.
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When r and F* are straight lines, i.e., when 0X = 6* = 0, we have from Eq. (9)

o = kxr~l//2S(9, -l/2)q1 + k2r~l/2S(8, -l/2)q2

+ /r3S(0,0)q3 + k4r1/2S(6, l/2)q4 + k5r^2S{6, l/2)qs (37)

where /c2,... are arbitrary constants.

If T and T* are not straight lines, it can be shown that Eq. (24) applies to all A's except

that Eq. (26b) must be used in place of the eigenfunction associated with \2. The result

can be written as, omitting the terms of order higher than r1/2,

a = *1{r"1'2S(0,-l/2)qi + r1/2S(0, l/2)q(11)}

+ k2^r~1/2S(<9, -l/2)q2 + r1/2 (In r)S{6, \/2)<$

(38)
+ ^ + 1) q?»+S(fl,l/2) ^-q(21)(X)

A = -1/2 a A A--1/2,

where

+ /c3S(0,O)q3 + k4rl/,2S(6, l/2)q4 + /:5r1/2S(^, l/2)qs,

m m 3((9*-6»1)
Qi' = c:q4 + c2q5, q(2 =   — q5,

= 6
X--1/2

-(6* + ex)

2 (flf-flJA
0
0

(39)
+ c3q4 + c4q5>

and c1; c2, c3, c4 are arbitrary constants. We see that the terms associated with cu c2, c3

and c4 can be ignored because they are identical to the kA and k5 terms. We see also that

unless 9X = 9*, the r1/2(ln r) term is present. This term is not in Eq. (37) where the wedge

boundaries are assumed to be straight.

The problem of stress distribution in an infinite plane containing a cusped crack of

finite length has been studied in [8,9] using a conformal mapping technique. One could

recover the solution obtained in (38) by performing an asymptotic analysis of the solution

obtained in [8,9] for r < < 1.

5. Concluding remarks. By introducing a new form of eigenfunction for the stresses in

an elastic wedge with curved boundaries, the correct second and higher order asymptotic

solutions are obtained which satisfy the traction-free boundary conditions on the curved

boundaries. One could modify the analyses for other types of homogeneous boundary

conditions such as vanishing of the displacements or mixed boundary conditions in which

one component of stresses and one component of displacements vanish at a boundary.

The analyses can also be extended to a composite wedge in which two or more wedges are

glued together along curved interfaces.

The asymptotic nature of the curved boundary T as assumed in Eq. (14) is, of course,

the simplest and is most likely to be encountered in practice. In general, however, one

could have any other form of asymptotic expression for the wedge boundary T as long as
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6 —> 60 when r -» 0. For instance, instead of Eq. (14) one could have

6 = 0O + exrp + ... (40)

where /? > 0 is not necessarily an integer. Then Eq. (19) for the eigenfunction is replaced

by

o = rxS(6, A )q + rx + ̂ S(6, \ + /3 )q<11> + ... (41)

In the case of a crack with curved boundaries, the lowest A is -1/2 and if /S = 1/6 one

would have, in addition to the r~l/2 terms, the term r~1/3 and possibly r~1/3(lnr)

depending on the asymptotic nature of the other curved boundary F*.
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