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1. Synopsis and introduction. The potential in a strip with a pair of V or U notches was

solved by the author in a recent paper [1], The solution is expressed as a linear

combination of a set of harmonic functions in addition to some linear terms. Each

harmonic function satisfies the requirements of the problem, except the boundary condi-

tions on the curves of notch. Subsequently, one curve of notch is transformed conformally

into a portion of the circumference of a unit circle, on which the boundary condition is

adjusted. The corresponding condition on the curve of the other notch is automatically

satisfied by antisymmetry.

The present paper is endeavored to give an alternate solution of the problem. Since the

strip with V notches is perhaps the less crucial case, the solution is formulated with

reference to the U notches only. The present solution differs from the previous one

essentially in the following two aspects:

(i) The set of harmonic functions is a subset of the harmonic functions derived

systematically from a single function.

(ii) The boundary conditions on the curves of notch are adjusted without the use of

conformal transformation. Each curve is merely regarded as a piecewise continuous curve.

Finally, several numerical examples are given for illustration.

2. The problem. The geometry of the given strip in the xy plane is shown in Fig. 1. The

lines y = 0 and y = 2a are the lower and upper edges, respectively. The curve of the lower

U notch is denoted by ADCGA'. AD and GA' are two parallel line segments, each of length

h, intersecting the lower edge normally. They are connected smoothly by a semicircle DCG

of radius A. Thus the opening A A' of the notch is 2 A and the depth OC is h + A. b is the

distance from C to the line j = a so that

a = h + A + b. (1)

The upper U notch is of the same size as the lower one and located symmetrically with

respect to the line >> = a. Let the potential on the lower boundary of the strip be unity and

that on the upper boundary be negative unity.
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3. Set of harmonic functions. Define a function Q0 of a complex variable z = x + iy by

Q0{z) = -lnsinh(77z/2a), (2)

where a is a positive real constant. Again, define a set of functions Qs by

e.w-(7TTjf£e°<'> <3>

sinh?|-Sn|l+-^|. (4)

With the aid of the infinite product

77.

2a 2a ff=\ \ 4n2a2

we find for s > 1,

0,(*)-p + £(, I r + f +1- r)- <5>2 „=1 I (z — 2nai) (z + 2nai) )

The sinh in (2) has zeros on the y axis at the points z = 2nai, where n takes all positive

and negative integers and zero. These points are the poles of Qs. Split Qs into real and

imaginary parts in the form:

Qs(z) = Ss(x> y) ~ iTAx> jO- (6)

In particular, the subset of functions T2s_x is useful in constructing the required

solution. Some properties of Tls_x are given below:

(i) It is harmonic in the entire xy plane, save at the poles.

(ii) It has poles on they axis at the pointsy = 2na of order 2s — 1; n being an integer

or zero.

(iii) It is periodic iny of periodicity 2a.

(iv) It has a line of symmetry at x = 0 so that it is even in x.

(v) It has lines of antisymmetry aty = na such that, save at the poles,

T2s_1(x, na) = 0; (7)

n being an integer or zero. Thus, it is odd in y.

Y

o"
y = 2 a

y=a

' 7,

P*!' y=o

Figure 1. Strip with a pair of U notches.
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The corresponding set of functions used in the previous paper [1] is H2s. It is not

difficult to see that

His(x> y) = t2s+i(x, y) (s>0). (8)

Unlike the present paper, the set Hls was derived from an integral.

4. The solution. The required solution is likewise constructed in the form:
oo

V(x, y) = 1 - ^ + I A2sT2s^(x, y), (9)
S=l

where A2s are parametric coefficients. The function is harmonic, even in a\ and antisym-

metric with respect to the liney = a as desired. It has two singularities with alternate signs

on the edges of the strip, one at the origin and the other at the point (x, y) = (0,2a) or

0*. Both singularities are excluded from the strip due to presence of the notches. The

function gives potentials on the lower and upper edges of values 1 and -1, respectively,

save at the singularities.

5. Boundary conditions on notches. The remaining boundary conditions to be satisfied

are those on the notches. Each notch is a piecewise continuous curve. We define a pair of

polar coordinates (r, 9) as follows:

z = ire'9, (10)

so that

x = rsir\9, y = rcos9. (11)

The right half CGA' of the lower notch is composed of two parts. One part is a circular arc

CG with 9 varying from 0 to ft and the other part a line segment GA' with 0 varying from

/3 to 7t/2, where

p = tan_1(A/h). (12)

Let z0 = x0 + iy0 be a point on the curve of lower notch. On the circular arc CG,

x0 = Asin(0 + \p), y0 = h + A cos (9 + xp), (13)

and on the line segment GA',

x0 = X, y0 = Xcot9. (14)

Here, when 9 < /?,

xp = sin1(hsin9/\). (15)

Thus, T2s_x(x0, j>0) is a function of 6 and so also is V(x0, y0). By symmetry, they are even

in 9. Hence, V(x0, y0) can be expanded into a Fourier cosine series in 9 over the range

-m/1 to 7r/2 in the following form:

1 £
v(x0, y0) = ~a0 + £ amcos2w6>, (16)

m = 1

where, for m = 0, 1, 2,...,

4 Crr /2
am = ~\ V(x0, y0) cos 2m9 d9. (17)

77 JQ

The boundary condition of unit potential on the curve of lower notch is therefore satisfied

if for m = 0,1, 2,...,

*m = 2\m, (18)
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where m is a Kronecker delta. This leads to a set of equations in A2s as follows: For

m = 0, 1,2,...,

t m«2sA2s = 250,„, - gm, (19)
9=1

where

= 25or/~yl,cos2m0d&. (20)
TTQ Jn

z rv,(% v0)cos
77 j0

*2 s 2m9 dd.

By antisymmetry, when the boundary condition on the lower notch is satisfied, the

relevant boundary condition on the upper notch is automatically satisfied.

6. Evaluation of coefficients and solution of equations. Simpson rule is used in evaluating

the integrals in (20). In particular, the integral g0 is readily integrable. The value is

g0 = 2 —— {4/3 + 77 tan2 /? — (2/3 — sin 2/2 )sec2 /? — 4 tan fi In sin ft }, (21)
7Td

which may serve as a check. The function T2s_l involved in the second integral is given by

^2j-l(*0' y0) = R-e['(?2s— l(zo)] ■ (22)

Here, Qs may be evaluated from the following:

Qi(z) = (77-/2a )coth( 77z/2a),

Q2(z) = (ir/2a )~csch2( irz/2a), (23)

Qi(z) = Qi(z)Q2(z)>

and recurrently for s > 1,

Qs + Az) = 7 , -I w , £ (" + l)Qn + 2(Z)Qs-n + l(Z)- (24)
(s + 1)($ + 2) n_„

Or, alternately, Tls_l may be evaluated directly for the points on the' curve from the

series:

^25-i(*o> yo)
,25-1

£ Re
n= 1 (z0 — 2 nai)2s 1 (z0 + 2 nai)'s 1

, (25)

which converges rapidly when s is large.

The set of equations in (19) can be solved by matrix inversion or otherwise after

truncated into a finite set containing the first N equations and the first N coefficients of

A 2s. The integer N may be called an index of truncation. When the equations are solved, it

is then straightforward to compute the potential at any point in the strip. In particular, the

potential along the line x = 0 across the narrowest section of the strip is
00

V(0, y) = 1 - ~~ + E ^2^2.-1(0. y) (a-b^y^a). (26)
5 = 1
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7. Numerical examples. The solution is illustrated by the following numerical examples:

b

X

h

1 1 1

0.5 0.4 0.3

0.5 0.6 0.7

In applying the Simpson rule, the integrand of each integral is divided into S double

subintervals. To ascertain the accuracy, the computation is repeated by increasing S by

10% until the resulting value becomes stable at the desired accuracy. The values of the

potential V(0, y) are shown in Table 1 to 4D together with the values of S and N. The

computation indicates that the coefficient Als forms an alternating sequence and the series

in (26) is a positive series with good convergence. The effect of truncation is generally

small whenever a suitable N is chosen.

Table 1. Values of K(0, y ) across narrowest section * = 0 for a = 2 and b = 1.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Remarks

A = 0.5 X = 0.4 X = 0.3

h = 0.5 h = 0.6 h = 0.7

1.0000 1.0000 0.9984

0.8604 0.8541 0.8451

0.7396 0.7312 0.7202

0.6307 0.6220 0.6112

0.5299 0.5219 0.5121

0.4349 0.4279 0.4195

0.3439 0.3381 0.3313

0.2557 0.2513 0.2462

0.1694 0.1665 0.1631

0.0844 0.0830 0.0812

0.0000 0.0000 0.0000

S = 100 S = 100 S = 100
TV =12 #=14 N= 16

In the examples as shown, the value of F(0, y) at y = 1 or the point C of the notch is

unity. The computed value at C shows, however, a slight descrepancy in the case X = 0.3

of amount 0.16%. Further computation reveals that such a discrepancy increases rapidly

with decrease of X.
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