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Abstract. The study of phase change processes governed by hyperbolic heat transfer is at

an embryonic stage. We raise here some of the relevant questions and make some remarks

on the formulation and qualitative behavior of hyperbolic Stefan problems. In particular,

we correct an error in the interface condition appearing in two earlier studies, and present

an explicit solution to a simple one-phase problem and study its behavior. Finally we

describe an enthalpy (weak) formulation for a two-phase problem and report on a few

numerical experiments based on it.

1. Introduction. In [1], [2] a model of a phase change process based on hyperbolic heat

transfer in the material is given. Upon examination one finds that the Stefan condition at

the phase change front used in these studies is incorrect. Developing the correct condition

is an exercise in calculus which is carried out in Sec. 2.

If our interest in understanding phase change processes is sufficiently strong, correction

of the earlier calculus error cannot satisfy us; indeed, this first step can awaken us to the

fact that this "hyperbolic Stefan problem" represents an entirely new facet of the area of

phase change models associated with the Stefan problem. Every question relevant to the

usual parabolic case is open for the hyperbolic case. Examples of relevant questions one

may ask are the following:

(a) What is the form of a well-posed problem?

(b) On what basis can we assign a value to the time derivative of the temperature at the

initial time as required for solving a hyperbolic equation of second order?

(c) What is the nature of the " temperature" that obeys the Telegraphers equation?

(d) What happens if the phase change front moves at a speed greater than the

characteristic signal speed? Is this at all possible?

(e) Is the model of physical relevance?
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The answers to such questions are not clear to us. Formulation of well-posed hyperbolic

phase change problems appears to be difficult in view of the fact that there are known

non-well-posed parabolic Stefan problems [3]. Having to assign the time derivative of the

temperature initially seems to violate one's intuition and (b) is a serious question. Many of

the familiar features of parabolic temperatue profiles are due to the maximum principle,

which is not necessarily obeyed by hyperbolic equations, whence question (c) arises. A

"boundary" for a hyperbolic problem must be time-like [5]; does then a phase change

front have to move slower than a characteristic? Finally, in spite of a fairly extensive

literature in recent years (see references in [1,2]), and occasional appeals to intuition as in

[6], there is still a dearth of reliable evidence that the Telegraphers equation is indeed

relevant (cf. [7]).

In this paper we make a first attempt at examining some of these questions. In Sec. 3 we

study a simple one-phase problem. We construct an explicit solution to it and make

various observations on its qualitative behavior. Sec. 4 is devoted to fragmentary remarks

about the nature of a well-posed one-phase problem. Our remarks include the derivation

of a necessary condition on imposed surface flux in order that the solution to the Stefan

problem be physically meaningful. The last section is devoted to a weak formulation of a

two-phase problem in terms of enthalpy, which is appropriate for numerical solution. We

report on a numerical experiment based on this approach.

We wish to express our appreciation to A. Geist, G. Giles and R. Wood for a number of

discussions, advice and support for the work described.

2. Nomenclature and derivation of the model. We will be modeling the thermal behavior

of a one-dimensional material which undergoes a phase change (say melting) at tempera-

ture Tcr with latent heat H (kj/kg). The termperature at a point x (meters) at time t

(seconds) is denoted by T(x, t) (°C). The relevant thermophysical properties of the

material are:

density p (kg/m3), specific heat c (kj/kg — °C),

thermal conductivity k (kj/m — s — °C), diffusivity a = k/pc (m2/s).

Whenever two phases are present we distinguish their thermophysical properties via the

subscripts "L" (liquid) and "S" (solid). Unless stated otherwise, we will assume throughout

that cs, cL,ks, kL, ps, pz are constants with ps = p,. The heat flux will be denoted by q

(kj/m1 — s), and the phase change front separating solid and liquid will be represented

by a curve x = X(t).

The hyperbolic heat transfer model is an attempt to overcome the physically unreasona-

ble infinite propagation speed inherent in the heat equation which results from Fourier's

law

q = -kTx. (2.1)

Instead, we can assume that a temperature gradient induces heat to flow after a delay r,

namely

q(x, t + t) = -kTjx, t).
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The delay t is called the response or relaxation time of the material. Keeping only the first

order correction term in an expansion of q(x, t + t), we replace Fourier's law (2.1) by

q + jq, = -k Tx. (2.2)

Eliminating q from (2.2) and the energy conservation equation

pcT, = -qx, (2.3)

yields the "Telegrapher's" equation

rpcT„ + pcT, = kTxx. (2.4)

Note that the wave speed of this hyperbolic equation is (a/t)1/2 and that when r = 0,

(2.4) reduces to the usual heat equation.

Next we derive the appropriate interface condition, first in the one-phase case and then

in the two-phase. Without specifying initial and boundary conditions, let us suppose that a

slab of material in its solid phase at the melt temperature Tcr is melting from the left. Let

x = X(t) be the melt front location (Fig. 1). Then conservation of energy requires that

pHX'(t) = q-[t]. (2.5)

Here all material properties are assumed to be those of the liquid and T = Tcr in the solid.

In addition for any function f(x, t) we use the notation

/ T[/] = Lim f(x, t), for x X(t), x $ X(t).

Following [1,2] we wish to rewrite (2.5) in terms only of the temperature gradient limit

T~[t]. Differentiating (2.5) yields

pHX"(t) = q-x[t]X'{t) + q;[t].

Letting x —> X(t) for x < X(t) in (2.2) and (2.3) and eliminating q~, q~ yields

pHX"(t) = -cPTt [t]X\t) -{\/T)[kTx'[t} + q-[t}\

= -cpT~[t) X'(t)-(k/r)T-[t] -(pH/r)X'(t).

t 1

TC,oTtt + cpTf = kTx

LIQUID PHASE

= X(t)

T=Tcr

SOLID PHASE

Fig. 1. The Phase Boundary In the One-Phase Case.
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Since x = X)(t) is an isotherm of T,

T(X(t),t)=Tcr, (2.6)

we find

T;[t] = -X'(t)Tx-[t],

whence we obtain

pHX"(t) = cpX'(t)2T-[t]-(k/T)T-[t] -(PH/r)X'(t)

or

X"(t) +(1/t)X'(t) = (c/H)Tx7[t][x'{t)2 ~(a/r)\. (2.7)

We note that the quadratic term X'(t)2 was erroneously omitted in [1,2]. this term though

plays an essential role as it is balanced against the signal speed (a/r)1/2.

Condition (2.7) represents the hyperbolic counterpart to the ordinary 1-phase Stefan

condition

pHX'(t) =-kT~[t]. (2.8)

Clearly (2.7) reduces to (2.8) for t = 0.

For the two-phase case we may not be able to reach a condition in which only current

values of appear. Indeed, for liquid to the left and solid to the right of the front,

instead of (2.5) we have

pHX'(t) = q \t] - q + [/].

As before,

pHX"(t) = q;[t] + q;[t]X'(t) - q^t] - q;[t]X'(t).

If the phases have distinct response times rt, ts, then we obtain

PHX"{t) = X'(t)2[cLT~[t]-csTx+[t]] +[(ks/rs)T;[t] -{kL/jL)T~[t]]

+ [<7+MAs - <r[']Aj. (2.9)

For ts = tl = t this yields, however,

(2.10) X"(t) +(l/r)X'(t) = (cL/H)T~[t][x'(t)2-(aL/r)\

-(cs/H)T;[t][x'(t)2-(«s/t)]. (2.10)

The formulation of the hyperbolic Stefan problem is discussed in Sec. 4.

3. A model with an explicit solution. Consider now the process of melting a semi-infinite

slab x > 0 of material that is initially solid at Tcr, due to heat being input at x = 0, which

we leave unspecified for the moment. We assume the process to be of one phase, with

liquid to the left of the front X(t)< while to its right we find solid at Tcr:

T(x,t) = Tcr, x&X(t),t> 0. (3.1)

Recalling (2.4,7), the functions T(x, /), X(t) are to satisfy the equation

tTtl + Tt — aTxx, 0 < x < X(r), t > 0, (3-2)
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and the front conditions

T(X(t),t)=Tcr, t > 0, (3.3)

X'(t) +(l/T)X'(t) = (c/H)T-[t][x'(t)2-(a/r)\. (3.4)

We assume the relaxation time t to be a constant.

In order to gain some insight into the nature of the process modeled by these equations,

we try to find a function pair T(x, t), X(t), with a straight line as a front, other than a

characteristic. Thus we take

X(t) = Mt, t > 0, with 0 < M, M # (a/t)1/2, (3.5)

and look for the temperature T. It is easy to check that the function

T(x, t) = Tcr +(H/c)[e\p[M(x - Mt)/(rM2 - a)] - l] (3.6)

satisfies (3.2)-(3.4). The boundary value of T is

r(0, 0 = Tcr+(H/c)[exp[M2t/(a - tM2)] - l] =:TL(t). (3.7)

Looking at this backwards, we can view (3.5), (3.6) as an explicit solution of (3.2)-(3.4)

with boundary condition (3.7) driven by the imposed temperature TL{t) at X = 0, with

M # (a/r)1/2 an input parameter. We discuss this further in Sec. 4.

Let us examine this explicit solution in a little more detail. We distinguish two cases,

according to the value of the input parameter M ¥= (a/r)1/2.

Case 1. M < (a/r)1/2. In this case the phase change front propagates slower than the

characteristics of the equation. To the left of the front, i.e. for x < X(t) = Mt, we see

from (3.6) that T(x, t) > Tcr, so we have liquid there. This is in great contrast with

Case 2. M > («/r )1/2. Now the front speed exceeds the characteristic signal speed of

the hyperbolic equation (3.2). To the left of the front (x < Mt), we find from (3.6),

T(x, /) < Tcr, so that we have "supercooled" liquid there. This "temperature" decreases

exponentially fast, with Tx(x, t) > 0. Substituting Tx from (3.6) into (2.2), multiplying by

the integrating factor e'/T, integrating in t, and using (2.5) to evaluate the integration

constant, we arrive at

q{x, t) = pHMe\p[M(x — 2 — a)], 0 < x < Mt. (3.8)

Thus, even though Tx > 0, the heat flux q is still positive and heat is flowing to the front

from within the "supercooled" liquid phase. This unphysical situation is apparently an

acceptable solution of the mathematical problem. We discuss this further in the next

section.

What of the case where M = (a/r)1/2? In this case we can show that the phase change

front x = X(t) = Mt cannot be found to meet all of the conditions required of it. Indeed,

suppose

X(t) = (a/r)l/2t,t > 0.

Then (3.3) implies

Tx'[t](a/r)1/2+T-[t] = 0.
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Substituting Tx and Tt along x = X(t) from (2.2) and (2.3) we find

?,"['] +(«A)1/2<7

or

jiq-[t]+(l/r)q-[t} = 0,

whence

q [t] = Ae~'/T, A = arbitrary constant.

This however is in violation of the interface condition (2.5), showing that, as one would

expect, our basic conditions constitute an overdetermined set of constraints if the front is

a characteristic of the equation [5].

Remark. Lettting r -» 0 in (3.6), we obtain a function pair

X(t) = Mt,

T(x, t) = Tcr + (H/c)[exp[M( Mt — x)/a] — l],

which satisfies both the ordinary heat equation and the interface condition (2.8) of the

parabolic Stefan problem, as it should.

4. Formulation of hyperbolic Stefan problems. Led by the results of Sec. 2 and the

example of Sec. 3, we may pose the following one-phase melting problems involving

hyperbolic heat transfer.

Find X(t) and T(x, t) satisfying (3.1)-(3.4) and

Problem I. The imposed temperature boundary condition

7(0,0= TL{t),t>0, (4.1)

with prescribed TL(t) > Tcr;

Problem II. The imposed flux boundary condition

<7(0, t) = q0(t), t > 0, (4.2)

with prescribed g0(0 > 0;

Problem III. The convective boundary condition

q(0,t) = h[TL(t)-T(0,t)],t>0 (4.3)

with prescribed TL(t) > Tcr and h > 0 (heat transfer coefficient).

Recall that here the flux q is not simply -kTx as in the parabolic case; instead, q and T

are related via (2.2), the generalization of Fourier's law.

Two-phase problems may be formulated similarly. They would consist of Eq. (2.4) in

the liquid and in the solid (the parameters having their liquid and solid values respec-

tively), interface conditions (2.6) and (2.9), together with boundary conditions like (4.1, 2

or 3) at both ends of the slab; moreover, the equation (2.4) being of second order in time,

requires as initial data both T(x, 0) and T,(x, 0) to be prescribed, which seems physically

unreasonable to us, as we have already mentioned in the Introduction (cf. question (b)).

It is reasonable to conjecture that if the data TL(t) or q0{t) are sufficiently smooth then

Problems I, II or III are well-posed in the classical sense, but we are not aware of any
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existing works along these lines. Our example in Sec. 3 indicates that "strange" things may

happen in some cases and may help to explain the lack of existing work. In particular,

taking as T,(t) the right hand side of (3.7) [or as q0(t) the right-hand side of (3.8)] at

x = 0, with M > (a/r)l/2, the pair (3.5), (3.6) constitutes a solution of Problem I [or II

respectively]. Such a solution is of course physically unacceptable since heat flows

backwards in it, violating the second axiom of thermodynamics.

Following [7], the condition of positive entropy production implies that

-Tx(x,t)q(x,t)> 0 (4.4)

must hold at each point of the liquid 0 < x < X(t). Thus, solutions violating (4.4) will be

physically unacceptable. Note that this condition is obeyed in our example if M < (a/t)1/2

but it is violated if M > (a/x)1/2 (cf. Sec 3).

In parabolic problems, (4.4) is of course automatic by Fourier's law. Apparently, in

hyperbolic problems such a condition may not hold always, and therefore it may be

necessary to impose it as an additional condition in order to ensure a physically

acceptable solution. This, in turn may impose restrictions on the data of the problem, as

we now show for the case of Problem II.

In fact, consider Problem II with the additional requirement that (4.4) hold for

0 < x < X(t). Evaluating (4.4) at x = 0 and replacing 7^(0, t) from (2.2) we obtain

0 < ~{\/k)[q0(t) + Tq'0(t)\q0{t)

whence

JtU o(Oe'A]>0, t>0. (4.5)

Therefore, the imposed boundary flux must not decrease faster than e~'/T. Is this a

reasonable requirement on the data of the problem? Note that the unphysical solution in

our example of Sec. 3 is generated by the flux

q0(t) = pHM exp[M2t/(a — tM2)\, t > 0, with M > (a/t)1/2,

which violates (4.5). On the other hand, if M < (a/r)1/2 then (4.5) is satisfied.

One would think that the front speed, X'(t), cannot be greater than the signal speed

(a, t)1/2, because then the front becomes a space-like wave [5] and conditions (3.3), (3.4)

are too few for the problem to be well-posed. It is therefore disturbing that in our example

we can find solutions with X\t) > (a/t)1/2, unless we impose additional restrictions like

(4.5) on the data.

We close this section with an observation concerning the reasonable case X\t) <

(a/r)l/2. If this holds and also T(x, t) ^ Tcr in the liquid, then T~[t] < 0 and (3.4)

implies

X"(t) +(1/t)X'(t) > 0

whence

d[X'{t)e'/T/dt] > 0.

Thus X'(t)e'/T as well as q~[t]e'/T will be nondecreasing functions of t.
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5. Enthalpy formulation of two-phase problems. Similarly to the parabolic case, hyper-

bolic phase-change problems may be formulated in a weak form by means of the enthalpy.

Such formulations are physcially more reasonable and more general, as experience has

shown (see for example, [8]).

We formulate here a two-phase problem for a one dimensional slab of pure material

initially solid, occupying 0 < jc < 1, insulated at x = 0, being heated at x = 0 by

imposing a flux q0(t).

Conservation of energy is described by

+ ^ = ° (5-1)

where q(x, t) is the thermal flux given by the generalized Fourier law (2.2),

q + rq,= -kTx, (5.2)

and E(x, t) is the enthalpy, given by [9]

0, for T = Tcr (solid),

E)cs{T-Tcr), for T < Tcr (solid)

\H + cL(T- Tcr), for T > Tcr (liquid),

[H, for T = Tcr (liquid),

with a jump of magnitude H, the latent heat, at T = Tcr. In terms of E the phases are

characterized by E < 0: solid, 0 < E < H: interphase, E > H: liquid. Note that, E and q

being discontinuous across the phase change front, the derivatives in (5.1) and (5.2) must

be interpreted in distributional sense over the whose region occupied by the material.

Formally eliminating q between them we obtain

prE„+ pE,= (kTx)x, (5.4)

again in distribution sense. This relation can be implemented numerically in various ways.

Knowing the temperature distribution T at time t, it allows us to update £ at / + Ar and

then T is found from (5.3). The great advantage is that no tracking of the front is required.

The enthalpy formulation of the two-place problem mentioned above is formally given by:

rpE,, + pE, = (kTx)x, t > 0, 0 < x < L,

T(x,0) = T0(x), 0 < x < L,q(0, t) = q0(t), q(L,t) = 0, (5.5)

pE, = (kT0'(x)) , 0 < x < L, t = 0.

Note that the lower order term E, in (5.4) may be replaced by a term involving no

derivative via a change of variables.

Alternatively (5.4) may be written as a first order system. In fact, the original system

(5.1,2) itself may be implemented numerically in the form

Q,= -(k/r)Ux, V, = (l/r )V-Qx/p,

where Q = qe'/r, U = Te'/r, V = Ee'/r. Indeed, knowing U, V and Q at time t, we can

update Q from the first equation, then update V from the second and then U from (5.3).

The relations (5.5) can be implemented numerically in a number of ways. In studies

made thusfar, we have observed that as expected, as r -* 0 the computed solution tends to
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t
Fig. 2. Computed front histories for hypberbolic one-phase problem in

dimensionless case: k = cp = a = 1, J = 1, Tcr = 0 for imposed

temperature r(0, r) = 1, As t -» 0.

that of the parabolic Stefan problem. A typical result for an imposed constant surface

temperature (condition (3.8a)) is seen in Fig. 2.

While superficially, Fig. 2 tends to buttress the conjecture of the "correct" parabolic

behavior as the limiting case of hyerbolic heat transfer, the numerical implementation is

not straightforward. Let us discuss this point.

The enthalpy equation can be differenced using second order central differences for

both time and space derivatives. The resulting difference approximation is conditionally

stable with the same restrictions on time step and mesh spacing as the corresponding wave

equation without the first order time derivatives,i.e. (a/T)1/2(A//Ax).

Unfortunately, since the Telegraphers equation admits discontinuous solutions, other

numerical difficulties enter. A constant imposed surface temperature different from the

initial temperature creates a discontinuous enthalpy wave traveling at the signal speed

(a/r)1/2. The difference approximations at this wave front introduce parasitic waves or

wave packets. These parasitic waves are non-physical. In [10], various situations are

mentioned which give rise to these parasitic waves. For the hyperbolic enthalpy formula-

tion, special care must be taken with the phase change front, where the enthalpy varies

rapidly, with material interfaces and with discontinuities in the temperature profiles.

Future numerical work will address these problems.
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