
QUARTERLY OF APPLIED MATHEMATICS 305
VOLUME XLIII, NUMBER 3

OCTOBER 1985, PAGES 305-315
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1. Introduction. In this paper we discuss the properties of entropy rate, along shock

curves and phase boundary curves, associated with the system of conservation laws

u, + Px = 0,

v,~ux = 0, (1.1)

E, +(/?")* = 0.

The above system expresses the one dimensional flow of a compressible fluid in Lagrangian

coordinates. In this system, m, v, E, and p denote the velocity, the specific volume, the

total energy, and the pressure of the fluid, respectively. Here, the total energy is given by

E = e + \u2, where e is the internal energy, and the pressure is a function of two state

variables, namely,

p =p{v,e) =p(v,s) = p(v,6), (1.2)

where s and 6 are the entropy and the temperature, respectively.

The entropy rate arises in the entropy rate admissibility criterion proposed by Dafermos

[1], [2], It is well known that weak solutions to the Cauchy problem for a system of

conservation laws

+/(")* = 0 (1.3)

are not unique (by weak solutions we mean bounded measurable functions which satisfy

(1.3) in the sense of distributions). In order to choose a physically relevant solution,

Dafermos has proposed the above admissibility criterion. This criterion roughly says that

the entropy decays with the highest possible rate for the admissible solution (the entropy

increases if it is the physical entropy).
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Originally, this criterion was proposed for hyperbolic systems. Recently, the applicabil-

ity of this criterion has been extended in [3] to a nonhyperbolic system given by

u,+p(o)x = 0,

V, - = 0.

Unlike in an ideal gas, we assume that p'(v) is positive on an interval (a, /?), where (1.4)

becomes elliptic. A typical example of this type of fluid is a van der Waals fluid.

This paper consists of 4 sections. In Sec. 2 we explain the assumption on system (1.1)

and the terminology necessary to subsequent sections. Specifically, we introduce the van

der Waals fluid and describe the shock and phase boundary curves and the entropy rate

admissibility criterion. In Sec. 3 we consider the entropy rate for the system (1.4) for

completeness. In Sec. 4 we consider the entropy rate for the system (1.1). We shall show

that the entropy rate for system (1.1) has similar properties to that for system (1.4).

2. Preliminaries.

A. Assumptions for system (1.1). In system (1.1), the main assumptions in the hyperbolic

case are

pv(v,e) < 0, pe{u,e)> 0, ps(v,s)> 0. (2.1)

If we use v and s as the state variables for the pressure, the characteristic speeds are

Xl = -f^pJvTs) , A2 = 0, X3 = <j-pXv, s) . (2.2)

From the thermodynamic relation

de = -pdv + 6 ds, (2-3)

we infer

Pv(v, s) = -ppe(u,e) +pD(v,e). (2.4)

Assumptions (2.1) and the above relation assure the hyperbolicity of (1.1).

Remark 2.1. In the above argument we use w, v and E as the state variables of the

system. In what follows, we continue to do so, unless stated explicitly otherwise. See Liu

[4] for the detailed theory of system (1.1).

If we use u, v, and 6 as the state variables for system (1.1), the main assumptions for

hyperbolicity are

pv(v,0)< 0, ee(v,6)>0, (2.5)

and the characteristic speeds become

A2i, A23 = -p,,(u, 6) + A2 = 0. (2.6)
ed

We assume, in the nonhyperbolic case, that there is a region of v and 5 in which

pv(v,s)> 0 (2.7)

is satisfied. We also assume that

pe(v,e)> 0, ps(v,s)> 0, eg(v,0)> 0. (2.8)

are satisfied even in the nonhyperbolic region.
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Remark 2.2. It is interesting to observe that because of (2.8c) the conditionpv(v, 6) > 0

does not necessarily imply that the system (1.1) is nonhyperbolic. The region where

pr(v, 6) > 0 is called the spinoidal region and is assume to be unstable [5]. As we will see

in Section 2.B, the condition (2.8) is satisfied for a van der Waals fluid.

B. van der Waals Fluid. If we use v and 6 as the state variables, the equation of state for

a van der Waals fluid is given by

{2S)

where R, a, and b are positive constants. In Fig. 1 a few isotherms are drawn. If the

temperature is below the critical temperature given by 0C = %a/21bR, the isotherm has the

following features:

(i)pv(v, 0o) < 0 on (b, a) U (£, oo),

(ii)pv(v,0o)> Oon («,/?),

(iii) PiXa<&o) = PiAP* ̂o) = 0.
The domain (b, a) is called the a-phase (the liquid phase), and the domain (/?, oo) is called

the /?-phase (the vapor phase). As stated before, the domain (a, /?) is assumed to be

unstable and is referred to as the spinoidal region.

In the isothermal case the horizontal line for which the areas A and B are equal is called

the Maxwell line. We denote the pressure at the Maxwell line by pm. The values of v in the

a-phase and the /3-phase at which the pressure is equal to pm are denoted by am and ySm,

respectively. For the equilibrium case in the isothermal flow, the liquid and the vapor

coexist if the pressure is equal to pm. This is based on the Gibbs function and discussed in

[6],

Fig. 1. Isotherms for different values of (
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Since we need the thermodynamic relations, we summarize them in the context of the

van der Waals fluid. Suppose \p is the specific Helmholtz free energy, then we have

dip dip

S=~d0' P =

For the van der Waals equation of state given by (2.9), using (2.11) we get

i = -R8\n(v — b)-- + F{8),

where F(6) is an arbitrary function of 8. As e = ip 4- 8s, we have

e(v,8) = -a/v + F(8) - F'(0).

Following [6], [7], if we set

F(8) = -cv8\n8 + constant,

where c(, is a positive constant, then we obtain

e(v,8) = -a/v + c„6 + constant,

s(v,8) = ln( u — b) + cv In 8 + cr.
(2.12)

Using (2.12), we can express the van der Waals equation of state (2.4) in terms of v and e

or v and s.

C. Shock, contact discontinuity, and phase boundary curves. A jump discontinuity is a

singular line across which the Rankine-Hugoniot condition is satisfied. For the system

(1.1), the conditions are given by

°\u ~ ul\=[p ~ Pl].

aiv ~ vl] = ~[w - ui]■ (2.13)

a[E - El] = [pu - p,uL],

where a is the speed of propagation of the jump discontinuity, and (u, v, E) and

(U/, v,, E,) are the states on the left and the right of the jump discontinuity, respectively.

There are three types of jump discontinuities, namely, the shock, the contact discontinuity,

and the phase boundary. The states on both sides of jump discontinuity belong to the

same phase in case of a shock or a contact discontinuity, and belong to different phases in

case of a phase boundary. A shock with a positive (negative) speed is called a forward

(backward) shock. The same terminology applies to a phase boundary.

For a given (uL, vL, E, ) the set of (u, v, E) forms a one parameter family of states

which can be connected to (uL, vL, EL) on the right by a jump discontinuity. We call this

set a forward (backward) shock curve, a contact discontinuity curve, or a forward

(backward) phase boundary curve, depending on the type of jump discontinuity. We

employ the idea of Liu [4], and denote the above parameter by £. Then, differentiating

(2.13) with respect to £, we obtain the different equations

du/di = h„ (2.14)
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where u = (u, v, E)T and h:(i = 1,2,3) are given by

hT= /j 2a ~ Pe(U ~ UL)

Pv - °2 + Pe(P - Pl) '

(u - uL)(pv + a2) +{u - U,)ppe - lap

« + 2 / \

Pv - 0 + Pe(P - Pl)

hi = (0, pe,-pv), (2.15)

hr __ 2a - pe(u - uL)

3 I ' A. - °2 + - PzJ '

(u - uL)(pv + a2) +{u - uL)ppe - lap
"+ i^ 

Pv ~ a~ + PAP ~ Pl)

Here, pL, = pL,{v, s), pv = pv(v, e), and pe = pe(v, e). The equation (2.14; /' = 1) is for the

backward shock and the backward phase boundary and (2.14; i = 3) is for the forward

shock and the forward phase boundary. Therefore, a is negative in (2.14; i = 1) and

positive in (2.14; / = 3). The equation (2.14; i = 2) is for the contact discontinuity, and a

is zero in this case.

In the isothermal case (1.4), the Rankine-Hugoniot conditions are given by

a[u - u, \ = [p ~ pL], , .

r l r l (2A6>a[v - vL\ = -[u- u, J,

where (w, v) and (uL, vL) are the states on the right and the left of the jump discontinuity.

Solving (2.16) for a, we obtain

a = ±  — . (2.17)
w V — Vr

On substituting (2.17) in (2.16b), we obtain

U - UL= + ^ (v - vL). (2.18)

The set of (u, v) which is connected by a shock or a phase boundary on the right to a

given (uL, vL) satisfies the above relation, and forms a shock curve or a phase boundary

curve.

D. Entropy rate admissibility criterion. A convex function r;(u) is called an entropy for

(1.3), with entroy flux q{u), if

ti(u), + q(u)x = 0

holds identically for any smooth vector field u(x, t) which satisfies (1.3), i.e., if

y drj dfj 9q
L ■ a— = 3—> k = l,...,n.

j_ 1 3 Uj a uk duk

Dafermos [1], [2] has proposed the entropy rate admissibility criterion to choose an

admissible weak solution. A solution u(x, t) will be called admissible if there is no
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solution U(x, t) with the property that for some 17 e [0, T], u(x, t) = u(x, t) on (-00, 00)

X [0, r] and D + H^(t) < D + Hu(t), where is an entropy and

H,u(t) = f r<](u(x,t)) dx.

For the system (1.1), we use the minus physical entropy as the entropy. The correspond-

ing entropy flux is zero (see Hsiao [8]). Then, the entropy rate is given by

D + Hu(r)= £ °(sR — sL). (2.17)
jump

discontinuities

where s is the physical entropy, and sR and sL are the values of entropy on the right and

the left of the jump discontinuity. Notice that along a shock or a phase boundary curve

D +H does not depend on t.

For the isothermal case (1.4) we use the mechanical energy^w2 + fv(-p(w)) dw as the

entropy. The corresponding entropy flux is given by up(v). For the above choice, the rate

of entropy decay is

D + HU(T) = L + p(vl)){vr-vL) + j "p{w) dw(2.18)
jump ^ VL '

discontinuites

where vR and vL are the values of v on the right and the left of the jump discontinuity.

Since the mechanical energy is employed as the entropy, it may be more appropriate here

to refer the criterion as the energy rate admissibility criterion.

It will be interesting to study the properties of entropy rate along the shock and the

phase boundary curves. As mentioned above, in this case D + H does not depend on time,

so that we will use for the entropy rate.

3. Isothermal case. The entropy rate along a shock curve or a phase boundary curve in

the isothermal case is given by

Q(v, vL) = aj--| [/>({;) + p{vL)]{v - vL) + J p(w) dwj, (3.1)

where a is given by (2.17) (we have omitted the subscript R).Differentiation of 4> implies

d® 1 / ,7 2Jv,p(w) dw\+ I— J. (3.2)

where A = {-p'(v). Although most of the results are discussed in [3], we summarize the

properties of 3> in this section for the completeness.

Theorem 3.1. For shocks the contact of $ at v = vL to the line 4> = 0 is at least of the

third order. Namely, d$/dv and d2<b/dv2 are zero at v = vL.

The above theorem is an easy consequence of (3.2) and Taylor's expansion. If p" =£ 0,

we have the monotonicity property for the entropy rate along the shock curves.

Theorem 3.2. If p" > 0 and p' < 0, then the entropy rate is a decreasing (increasing)

function of v along the forward (backward) shock curves.
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Proof. If p" > 0, we see that

(" p(w) dw
A2(<)a2, p(<)pL, p(<) \  , fori;(<)i;i.

V uL

Since A2 — a2 is negative (positive) along the forward (backward) shock curves, d<b/dv is

negative (positive) along the forward (backward) shock curves. Q.E.D.

Remark 3.1. If p" < 0 and p' < 0, "decreasing" and "increasing" should be inter-

changed in the above theorem.

In the following theorem we show that the entropy rate along the phase boundary

curves is not necessarily monotone. We assume that vL is close to am, so that there exists vQ

in the /8-phase such that P(v0) = p(vL). We also assume that if vL is less than am, then

there exists v1 in the /S-phase such that

1 1
~ vl) - J f(w) dw = 0-

If this value vl exists, vl should be less than the value v2 at which a2 - A2 = 0 (see Fig. 2).

Theorem 3.3. Suppose p(v) has the form of the graph in Fig. 2 and 0(f"r)(y > 0) as v

approaches infinity. Then, if vL < am and there exist vQ, vl, and v2(v0 < vl < v2), then $

has a relative minimum (maximum) between v0 and and has a relative maximum

(minimum) at v2 along the forward (backward) phase boundary curves. If and v0

and v2 exist, then $ has a relative maximum (minimum) at v2 along the forward

(backward) phase boundary curves. In either case, $ approaches minus (plus) infinity as v

approaches infinity.

L "0

Fig. 2. Relation for v0, r,. and v2.
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Proof. If we set

Q = (v ~ f/.)(3p - pL) - 2 J p(w) dw,

we see that dQ/dv is negative. Therefore, if vL < anr Q is positive at u0 and negative at vu

and if vL ^ am, Q is nonpositive. It is easy to see that

1 rl
+ Pi)(v - vL) - J p(w) dw

approaches infinity as u approaches infinity, if p is 0(u 7) as v approaches infinity.

Q.E.D.

4. Nonisothermal case. In this section we study the properties of entropy rate of the

system (1.1) along the shock curve and the phase boundary curves given by (2.5; i = 1,3).

The entropy rate along a shock curve or a phase boundary curve is given by

$(£) = a(|)(s(£) - sj, (4.1)

where £ is the parameter introduced in Sec. 2B., s is the physical entropy, and a is the

speed of the jump discontinuity given by

V v-vL

We shall show that 4> in (4.1) has similar properties to 0 in (3.1). We shall, also, see that

d<&/d£, is related to the adiabatic transformation [6].

First, we discuss the properties of the entropy rate along the shock curves. In this case

we set the parameter £ so that (u(£), v(g), £($)) = (uL, vL, EL) at £ = 0.

Theorem 4.1. The contact of $(£) at £ = 0 to the line 0 = 0 is at least of the third order.

Namely, d<b/d£ and d23>/d£2 are zero at £ = 0.

Proof. If we differentiate $, we have

da , , ds , „
+ <42)

To see how each term on the right hand side behaves as £ approaches zero, we

differentiate the Rankine-Hugoniot conditions (2.13a,b) to obtain

da , . ds dv
T( ̂ -"l) + «-p,T( + p,T(,

1°, , , <4J)

«<" " + °T(--1'

Using

dv la - pe(u - uL)

di pv- a2 + pXp - Pl)'
(4.4)



ENTROPY RATE ADMISSIBILITY CRITERION 313

we find

ds_ = Pe(o2 + p,,){u - uL)

Ps{PV~ °2 + Pe(P ~ Pl)}'

do a2 + pv
(4.5)

^ (v - pv - a2 + pXp - Pl)}

Substituting (4.5) in (4.2a), we see

d$ o2 + pv (s-sL pAp-Pl)

d£ pv - a2 +pe(p -pL) \ v v
(4.6)

If we differentiate (4.3) and (4.4), we find that d2s/d£2 is zero at £ = 0. It follows that

(a2 + pv) and (s — sL)/(v — vL) approach zero as £ approaches zero. This implies that

d®/d£ and d2<b/di;2 approaches zero as £ approaches zero. Q.E.D.

Concerning the monotonicity of the entropy rate along the shock curves, we have the

following

Theorem 4.2. Along the forward shock curves the following relations hold:

(i) d$/d£ > 0 if a2 + p0 < 0,

(ii) d$/d£, < 0 if a2 + pv> 0.

Along the backward shock curves we have the following relations:

(iii) d$/d£ < 0 if a2 + pv < 0,

(iv) d<t>/d£ > 0 if a2 + pv > 0.

Proof. Consider case (i). In (4.6) using relation (2.4), we obtain

Pv ~ °2 + Pe(P ~ Pl) = Pv ~ °2 ~ Pe P L < °"

Next, we examine the sign of the quantity inside the braces in (4.6). If £ is positive, from

(2.13) we see that p > pL and v < vL, and from (4.5a) we find ds/d£ > 0, therefore s > sL.

If £ is negative, p < pL, v > vL, and s < sL. Hence, we conclude that d$/d£ > 0 if a < A

along the forward shock curves. The other cases are proved in a similar manner. Q.E.D.

In the following, we consider the entropy rate along the phase boundary curves. As

stated in Section 2, we assume that there is a region in which pv is positive (this guarantees

the existence of the region in whichpv(v, 0) is positive). We also assume that it is possible

to choose the values of vL in the a-phase, so there exist values of v in the /3-phase at which

a is zero. We adjust the parameter £ so that a is zero at £ = 0. The question is whether or

not the entropy rate is monotone along the phase boundary curves. Checking the sign of

(4.6), we obtain the following

Theorem 4.3. Suppose a2 + pv does not change sign (namely, remain less than zero) along

the phase boundary curves as v varies in the /3-phase. If s < sL and j and sL are close, then

$ has a relative minimum (maximum) for the forward (backward) phase boundary curves

as v increases. If s > sL, then $ is monotone along the phase boundary curves.

Proof. Since vL is in the a-phase and v is in the /3-phase, v is always greater than vL.

Then from (2.13) and from the fact that a is real, u < uL(u > uL) for forward (backward)

phase boundaries. Therefore, £ has to decrease (increase) along forward (backward) phase
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boundaries. Let us now examine the sign of d$>/di;. In this case the second term in the

braces in (4.6) is nonpositive. From (4.5), we see that ds/d£ < 0 and £ < 0 along forward

phase boundaries and that ds/di > 0 and $ > 0 along backward phase boundaries. This

implies that if s at £ = 0 is less than sL and close to sL, s — sL will change sign as v

increases. Therefore, d^/d^ changes sign from positive to negative along the forward

(backward) phase boundary curves as £ decreases (increases). Hence, $ has a relative

minimum (maximum) along forward (backward) phase boundary curves. It is easy to see

that (I> is monotonically increasing (decreasing) along the forward (backward) phase

boundaries, if s > sL. Q.E.D.

Several remarks are in order concerning the entropy rate.

Remark 4.1. If f is in the /?-phase a2 + pv might change sign as v increases along the

phase boundary curves, as in the isothermal case. Whether we can set s arbitrarily close to

sL at £ = 0 is an open question. If the pressure and the entropy are given by (2.9) and

(2.12), respectively, then

/ x flexp(sA„ - 1) a-7-

Since cv is greater than R, it is not difficult to show that if the entropy is a small constant

s0, then p{v, s0) has essentially the same features as (2.10). Then, from the continuity we

can easily choose 5 arbitrarily close to sL satisfying p = pL.

Remark 4.2. At £ = 0 (a = 0), d<&/d£ for the phase boundary is given by

d<&

di
(4.7)

v — v,£ = 0

If there is no shock, and the stationary phase boundary which joins two constant states is

observed, then d<&/d£ should be zero at £ = 0. If the fluid is a van der Waals fluid in

which the entropy is given by (2.12), then substituting (2.12) in (4.7), we find

(4-8)

Since the specific volume in the vapor phase v is greater than that in the liquid phase vL,

this implies that if there is no shock and the stationary phase boundary separating two

constant states is observed, the temperature in the vapor phase is lower than the

temperature in the liquid phase. This is in accordance with the result of Slemrod [7], We

should note that (4.8) is a necessary condition. It is interesting to see if the above

argument is reasonable, at least, in terms of the Riemann problem. It is also interesting to

note that (4.8) is the same as the adiabatic transformation [6],

Remark 4.3. In Sec. 2 we used v as the parameter. As a matter of fact we can use u as

the parameter as in this section. Then, from (2.16) we see

da . , ,dv

+ Tu.
do , . dv
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Then,

d<$> a2 - A2 2 Jv°Lp(w)dw
3P ~ Pl     

du 2 (ct2 4- A2)

Since d$/du does not have a singularity at a = 0, this parametrization may be better.
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