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Abstract. French (1977) has suggested a channel form wave energy absorber in which

power is removed from the wave front by flexible bags along the channel walls. He has

given a simple theoretical model for such a device which has, however, several drawbacks

which we attempt to remedy. Several two-dimensional models of the channel are examined

in which one or more of the dimensions are many wavelengths long. In particular, it is

possible to apply realistic boundary conditions at the channel walls and obtain relation-

ships between the wall stiffness /x and the decay rate of the wave front, a. Two main

methods are used; the variational method developed by Evans and Morris (1972) and the

Wiener-Hopf method, as modified by Jones (1952).

1. Introduction. A special type of wave-energy absorber, suggested by M. J. French,

consists of a rigid channel whose walls are lined with flexible bags. The channel faces into

the waves, and as the surface of the water rises and falls, so the bags expand and contract,

driving gas turbines. In this way, energy is gradually removed from the wave front as it

passes down the channel. From the structural point of view, such a device is very

attractive since the channels are aligned parallel to the incoming waves so there are no

complicated mooring requirements. It may even be possible for it to align itself automati-

cally. Mathematically, the problem is fully three-dimensional, however, so precise theoreti-

cal work is difficult.

Probably the simplest theoretical model of a wave energy device is given by Salter

(1974), where an absorbing surface moves in a vertical plane parallel to the waves and is

shaped neither to reflect nor transmit them. A more complicated system has also been

considered by French (1977) in which the vertical plane containing the motion is

perpendicular to the incoming wave direction. The confining surfaces are in pairs defining

channels along which boundary conditions are imposed which attenuate the wave as it

travels along them.
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The simple model problem which French (1977) considers is illustrated in Fig. 1, and is

defined by the following boundary conditions. On the walls of the channel, which are

defined as the planes y = ±b, the normal velocity of the fluid is prescribed, correspond-

ing to a given assumed motion of the wall bags. The z-axis is vertically upwards while the

x-axis is parallel to the planes and the direction of propagation of the waves. The time

dependence of the waves is assumed to be

$(r, t) = Re{cj)(r)e\p(ik(x - cf))} (1.1)

and henceforth we suppress the e~'kcl factor. Since the amplitude of the waves is small, the

surface boundary condition is

~ n<j> = 0 (x = 0) (1.2)

where n = k2c2/g, and since the planes are assumed to be infinitely deep, the potential

can be set as <#>(x, y, z) = e"z4>(x, y), which satisfies (1.2) automatically. Now French

(1977) assumes that, in some way, the walls absorb energy so that the wave amplitude

decays like e'sx. More specifically, the boundary conditions at the walls y = ±b are set

as:

<£>v = ±A Re(l + (')asinh(l + ;)afeexp[-ix + nz + ik(x — c/)] (1-3)

where

k2 = s2 + n2, k2 = gn/c2, a = (ks)1/2. (1.4)

The reason for assuming these apparently unlikely boundary conditions is that the

potential is easily found to be

<f> = /lcosh(l + i)ayE (-b < y < b),

<f> = - <?2(1 + ,)a',)exp[-(l + i)ay]E (y > b), (1.5a-c)

<t> = -i/4(l - e2<1 + ,)a/,)exp[(l -I- i)a.y] E (y < -b).

where
E = exp[-^x + nz + ikx ].

Fig. 1. French's (1977) model
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The constant A can therefore be regarded as the amplitude of the wave at the origin. In

the region marked III on Fig. 1, where -b < y < b, the potential satisfies (1.3), whereas in

the regions II (y < -b) and I (y > b), <p decays as |y\ —> oo. French (1977) then uses the

results (1.5) to calculate predicted values for power absorption and efficiency, which give

results in quite close agreement with experiments.

Theoretically, the model has two major drawbacks. First, the exponential damping in x,

e~sx, leads to infinite potentials at the end x = -oo. It would be more satisfactory if some

account could be taken of the open end of the channel facing the waves, rather than

ignoring it and letting 4> -> oo there. Also, the channel walls considered here are infinitely

deep, whereas in practice they are relatively shallow, about 2 — 10% of a wavelength deep.

In applications, the spacing between the walls is sometimes small (i.e. ab « 1) for single

channels, or quite wide (ab » 1) where a pair or channels is used, or, say, a wall of the

tank in the laboratory needs consideration.

Another problem is that the boundary conditions (1.3) assume that the potential decays

expnentially as enz with depth, and that the ^-dependence is exponential. The actual

boundary condition at a wall depends in fact on the equations of motion of the flexible

bags used to convert power. Suppose for example that the bags obey a mass-acceleration

law like

ml = K$ + Di (1.6)

where f is the displacement of the wall. Then the force is proportional to the variable part

of the pressure, pd'>/dt, and the displacement is proportional to the potential. Since f is

just d<j>/dy at the wall, (1.6) becomes, in terms of tf>,

<t>y + H<t> = 0 (y = ±b) (1.7)

where ju is a complex number related to m, p, K and D. It is interesting to see, therefore,

whether an impedance type boundary condition like (1.7) does in fact lead to exponential

damping in *. In what follows, we consider both boundary conditions like (1.3), called

type (a) (for comparison with French's (1977) results) and the boundary conditions (1.7),

called type (b).

In this paper, some two-dimensional versions of the channel are considered. First, an

infinitely long but not infinitely deep channel is investigated. Then the x-dependence can

be separated out of the solutions, leaving a two-dimensional problem in the (y, z)-plane.

The case ab » 1 of wide spacing can be dealt with using a variational principle similar to

that used by Evans and Morris (1972a, b). When the spacing is narrow, a matching

method can be used between an inner region near the bottom of the channel and an outer

region where the channel appears as a single strip.

We can also deal with a channel which is infinitely deep, but only semi-infinitely long.

In this case, the z-dependence can be separated out, leaving a problem equivalent to the

diffraction of sound by a semi-infinite waveguide. This can be solved using a standard

Wiener-Hopf technique both with type (a) and type (b) boundary conditions. Finally,

using a method due to Jones (1952), the semi-infinite solution can be extended to the case

where the channel is many wavelengths long, but finite.
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2. Infinitely long, finitely deep channels of type (a).

(i) Widely-spaced walls. In this case, the x-dependence can be separated out:

4>(x, y, z) = z)exp[ -sx + ikx\. (2.1)

A diagram showing a (y, z) cross-section is given in Fig. 2. (y, z) has been replaced in this

section by (x, -y), so that the y-axis is vertically downwards. On the sides of the channel,

which has depth 1, the boundary conditions (1.3) are

<j>x — + {A Re( 1 + /) a sinh( 1 + i)ab)e~"y

= ±Be~"y (x=±b,0<y<l) (2.2)

where the factor exp{-jx + ikx) has been left out, according to (2.1). This modified

potential satisfies the partial differential equation

,2,,„ .. j aV
V2<#>(*, J, z) = + — +(s - ik) z)

= (v2- v2}<t> = 0 (2.3)

where v = k + is, and V2 is a two-dimensional Laplacian operator.

Since the problem is linear, we can furthermore set B = 1 and then at the end multiply

our result by any value of B. Far away from the channel, its influence must decay and so

<f> ~ A±e-"y^i)ax U^+oo) (2.4)

where a = (ks)l/2 as in (1.4) and A + = A _, in fact, by symmetry. Finally, on the free

surface,

fj; + n* = 0 (y = 0). (2.5)

The objective of this calculation is to evaluate the power absorbed by each channel wall.

The force on each wall, per unit area, is proportional to <#>, and the local velocity is tf>x as in

(2.2). The compression force on the channel sides is thus proportional to <(>(b + 0, y) —

<t>(b — 0, y), and the power per unit length to

; (' e~"v(<t>(b + 0, y) - <$>(b - 0, y)) dv. (2.6)P = Re

When the spacing 2b is large, it is best to formulate the problem as an integral equation.

-b x—>—

A_

(V-vl)4>=0

* —p-ny t =e"ny
V 6 Tx 6

Fig. 2. Finitely deep, infinitely long channel
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Using a method similar to that used by Evans and Morris (1972a), we can derive two

equations:

0 = - — J j jf (F( t) - e~"')(scos st - n sin st) dt J

(scossy - nsinsj)(l + cothijfc)

^(s2 + n2)

+ A( 1 + coth(l + i)ab)e~"y

0 = |J G(t)(s cos st — n sin st)

-ds

(/ < y < oo), (2.7)

dt

s cos sy — n sin sy
x~,  w

(1 + coth slb)(s~ + n~)

+ ((1 + i)aA + l)e-"y

(0 <y<I). (2.8)

Equations (2.7) and (2.8) are equations of the first kind for F and G, and either one, if it

could be solved exactly, would give a solution to the problem. Unfortunately, we are in

practice limited to approximate solutions only, and so we use a method due to Evans and

Morris (1972a, b). First re-scale F and G so that / and g are given by

/(/) - e~"' = -A~x{ 1 + coth(l + i)ab)~1(F(t) - <?""),

9 77 (2.9a, b)

g(0 = ~^{(1 + ')aA + 1}"1g(0-

Then if h(t) = e'"\ Eqs. (2.7) and (2.8) become, symbolically,

L{f-h) = h, Mg = h (2-10)

where L and M are the integral operators. Defining also the inner product =

fo fs dy and (/, g)2 = JFfgdy, we obtain

</-*.*>,- <«.*>,-^ <2'n)

where

Q = 1 +(1 + t)qy4

/1(1 + coth(l + i)ab)

Bear in mind that the quantity we wish to estimate is Re(g, h)l = ReC"1/™. We can

now use the Schwinger variational principle, which states that if \p is an approximate

solution to Lf = h, then a better approximation to (f,h) is given by (f,h)

~ (\p, h)2/ (\p, L\p). Full details of the theory behind this result can be found in Jones

(1964), but it needs to be slightly modified since here the functions are complex.

Notice that the only complex part of the operators L and M is in the factor

Sj = (s2 + j>2)1/2. Now = (s2 + v2)1/2 but since n2 = (Re v)2 - (Im v)2, changing v to
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v does not alter n. Therefore,

Lf=e-"y=*Lf=e~"v. (2.12)

Writing / = Re / and /, = Im /, this means that

Lfr = e~"y and Lf = 0. (2.13)

If the inner product is such that (a, Lb) = (La, b) for any a and b, then Im(/, h)

= (/,, Lf) = (l/, /) = (0,/) = 0. The inner products ( )2 and ( )j have this prop-

erty with L and M respectively, and so C in (2.11) is real.

Notice also that for any function a(y),

2 (1 + coth 5xb)

■s^s2 + n2)
-ds

/* /*
(a, La)2= / / a(y)(s cos sy - n sin jy) dy

Jo \Ji

so that

Re(a, La)-, ^ 0 Va(y). (2.14)

Suppose fl = a1\p, where a1 = (\p, h)/ (\p, Lip). Then, following Jones (1964),

Re(/-/1, h) = Re{(/, Lf) - 2(fu Lf) + (fu Lf)}

= Re(/-/1,L(/-/1)) >0. (2.15)

Therefore, the approximation (f1, h) always has a real part smaller then (/, h)\ that is,

Re<?rS «<'•*>• (216)

An exact solution to this problem is available in the limit v -* 0, b —> oo where the

barriers no longer feel the effect of each other and the fluid satisfies Laplace's equation.

The solution to this single-barrier radiation problem is given by Ursell (1947) and is

) = r(r2-/2)-|/2 (I < t < oo)
dx x = b

<t>(b + 0, 0 - <t>(b ~0,t) = x(0 = (I2 - t2)l/2 (0 < t < I). (2.17)

Using the method of Evans and Morris (1972a, b),

. . /•» t2J?(t)(l + coth A/)

<+-i+W0 (,! +TTFr ( ^

<X.«X>, "/ ,+J ; I (2.18a,b)
Jo (1 + cothAr)(r + ju")

where ju = n/, A = ft//.

In (2.10), using the approximations ip and x for / - e"' and g respectively, this gives

Re C2 < C ^ Re C\

where

C2 = K2(h)/tt2D, C, = E/7T2I2(fi).
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This gives an exact solution when Re C1 = Re C2, which only occurs in the limit A -> oo.

The approximation can therefore be expected to be good if the barriers are far apart. Once

C is estimated in this way, ( g, h) which is the power integral, can be found from (2.11)

and so the approximation is complete.

(ii) Closely-spaced walls. When the walls are close together, they appear to be a single

wall with a source-like singularity at the tip where the bottom of the channel is. We can

therefore use a method due to Thomas (1981), who had a similar situation with a narrow

fully submerged duct. A diagram showing the present problem and the three regions to be

matched together is given in Fig. 3.

Firstly, in region / we re-scale the coordinates to give

el; = x, T) = y (2.20)

where e is the small spacing between the walls. Using this scaling, the walls are now

separated to £ = +1, and the local potential satisfies

<>nt = 0 (v>0)

<t>iv + "<t>i = 0 (v = 0), (2.21)

</>U = 0 (I = ±1. 0 < 71 < /).

A solution to this problem, valid for |£| < 1, 0 < 17 < 1 but which breaks down near the

bottom of the channel is

<j>1 = C(nr) - 1) (|£| < 1, 0 < tj < 1, C constant). (2.22)

This solution does not, of course, have any waves so it must be matched to the outside

region via the tip region II. Here we scale x and y so that

eX = x, eY = y - I. (2.23)

-> 2e ■«-

■I

II

III

<t> =0T2X<

r* source

Y

W0 v^r° (v-a)x)*=o

I II III

Fig. 3. Closely-spaced walls



344 D. C. SHAW

The problem now is of a semi-infinitely long channel with sides along X = +1, Y > 0. In

region II, the local potential satisfies

a2 a2 \
+ 7777 I ̂ 2 ~ 0.

^ , (2.24)

4>2x = o (m = i,y>0),

<p2~C(ny- 1) (| A'l < 1, Y —> -oo).

Solutions to problems of this sort are given in Lamb (1932) in implicit form, with far-field

behaviours given by Newman (1974). If, as Y —> -oo within the tube,

7tY 1 + e-> / x , .
+ (y -°o> 1^1 < 1) (2.25)

e\ ei

where e, and e2 are arbitrary scaling constants, then the behaviour at large distances

outside the tube is given by

<f>2 logTtR+— (r = (X2 + Y2)x/1 oo). (2.26)
o o ' '

Since C(ny — 1) = C(neY + nl — 1), in definition (2.25) we set

1 + e2 = 7r (1 — nl)/ne. (2.27)

The behaviour (2.26) suggests now that the outer problem in region III is that of a single

barrier with a source at its tip. The outer potential thus satisfies

(v2 - v2)<t> = qS(x)S(y - I) (y> o),

<j>y + n<j> = 0 (y = 0),

<j>x = ±e~ny {x = +0, 0 < y < I). (2.28)

The source strength q must be found later by matching. We can then divide 4> into a

singular part, and a complementary function part which has no singularities:

<f> = q<!> = <j>CF. (2.29)

The singular part, $, can be found by placing an image source above the surface and

adding a correction for the free surface condition:

^(Ho2) -i"{x2 +(y - 02}1/2 + Ho2) -'v{(x2 + 02}17 )

f Z( v)COS SXt' ' (2.30)
J0 n + s 1

Z(s) = — f Hi2)\-iv{x2 + I2 }1/2] cossx dx.
77 J0 1 1

Now the function as in (2.30) satisfies $t = 0 on x = 0, so to provide the necessary

boundary condition on the barrier we add a complementary function:

<t>CF= <7<D 4- J4e-"y±(1+')<*x

rx a(s)(s cos sy — n sin sy)e±s,x

sx(s2 + n2)

*--4-

+

where

+ ^ f {2J1)
w ( x 2 4- n 2 ^
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G(>0 = <k( + 0,j0= {"0 "V (2-32)
0 (/ < y < oo)

(since the problem is even in jc) and then

G(,>--d+- r
•'o s + n

We can invert (2.33) by Havelock's (1929) theorem as before, to give a(i) and A:

a(s) = sin Is, A =--—(l - e'2nl). (2.34)
it (1 + i)a

Similarly

F(^) = <f>( ±0, y) = <7$(0, y) + Ae~n

r°° a(5,)(iCOS5j' — n sin sy)

^(s2 4- n2)

If we define the power integral as P = 2 /,' e~"y F( y) dy, then

fJc\
ds.

1 ri (1 - e~2nl)2
P = q e-'M0, y) dy - 1 '

■>o 2«(1 + i)a2

H* <2J5>77 •'o s^s + n )

by using (2.34).

We now have a solution to the outer problem, but it remains to calculate q by matching.

As 2 —> 0

H^2){z) ~ 1 - ^/jlog(izj + y

where y is Euler's constant. Therefore, from (2.30) and (2.31),

<f> — qk1 log 7rr + qk2 + k3 (r -» 0)

where r2 = x2 + (y — I)2 and

k = -±kl 277 '

k2 --\{hP(-2"I) + i - f {r + ><*(-£;))) + jf ~T7r',s-

_ e~n'(\ - e~2"') _ 2 _nl rx sin sl(s cos si - n sin si) ,

(l+»)« ** h si{s2 + n2) [ '

Comparing this with the result (2.36), and replacing r by eR, we see that

q = , ■ i i  (2.31)
k1e2 + k2 - ^loge
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where e2 *s as in (2.27). The solution is now complete, although many of the integrals will

have to be evaluated numerically to find kv k2 and k3. It is worth noting, however, that

many of the integrals reduce to

,00 gimsl

J ~7~1  ~ds = M±(m,v,l,n). (2.38)
-oo (s + v ) (s + in)

For example, k2 can be written entirely as a sum of integrals of this form. By deforming

the contour of integration around the branch cut from + iv to /oo,

elm" 2i / n\
M Am, v, I, n) - liri-,  —H(-m) + —/( vl\m\, — I, (2.39)

(1 + i)a v \ vl

where

/OO p~at /.oo

   dt = f e~y'K0(t) dt (2.40)
* (t2-l rit + y) J«

which can be found in tabulated form. Here H(x) is the Heaviside function, the first term

being the residue from the pole at s = -in which need only be included if m < 0 and the

contour deformed into the lower half-plane.

3. Infinitely long, finitely deep channels of type (b).

(i) Widely-spaced walls. We repeat the analysis of Sec. 2(i) now, but replace the

boundary condition on the walls by

<t>x ± H4> = 0 (x = ±b, 0 < y < I). (3-1)

The problem is again even, but this time <f>x is no longer necessarily continuous across the

walls. Therefore, re-define F( y) as

F(y) = (<#>* + (y>0)- (3-2)

Using the same method as in Sec. 2, since F = 0 on the barrier and G = 0 off it.

22 f r°o
0 = — / { I F(t)(s cos st — n sin st)

TT Jo \J/
dt

Q(i)(icos5v — «sin sy) , „„ ,, ,
 u2 T^ds + ANe-"> (I < y < oo) (3.3)

(M - si)(-s + «")

and

2 fOO ( r/
0 = — / II G(t)(s cos st - «sin st)

It Jn \ •'nJ0 \J0

dt

where

X -"'i1"') + a(„ -d + /)«)«-'

(/ < y < oo) (3.4)

Q(j) = 1 — (ju — ̂ j) cosh s1b/(sl sinh sxb + jucosh sxb)
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and

N(n, a, b) = 1 — (jli — (1 + /)a)cosh(l + i)ab/(( 1 + /)asinh(l + i)ab

+ ftcosh(l + i)ab).

Now we re-scale F and G so that

/(/) =
77

g(t) = -(1 + i)a)~1G(t) (3.5a,b)
77

and then

Lf = h, Mg = h, (3.6)

where L and M are now given by (3.3) and (2.4), and

(f,h)2=±;C, (g,h\ 1
7Tn ' 1 UYlC

where

c- + (3 7)
N(n<a,b)

Notice that in this problem, (g, h)x, which is related to the power integral, is known

exactly in (3.7). A is, of course, not determined since the problem is linear and homoge-

neous so A is an arbitrary scale factor. It is more interesting, though, to regard this as an

eigenvalue problem relating the damping rate Im v (or, equivalently, a) with the stiffness

of the walls. To get approximate solutions to this, we can use (3.7) in a variational

principle, but it is not really clear what the best initial approximations to take are. For

small ju and large spacings, a possibility is to use the same xp and x as in (2.17). Then

/ , j fx t2J{(t)Q(bt/l)  =
\ ̂ ' Lip) 2 I i , ,

^0 — (t + v I ) j(r2 + n2l2)

/ w \ fX ~(t2 + "2/2)1/2)
(3.8)

Q(bt/l)(t2 + n2l2)

For small and Im v, only, it can then be shown that

Re C2 < Re C < Re Cj,

ImQ < ImC < ImC2 (3.9)

where

C2 = K?{nl)/v2D, Cj = E/rr2I2(nl).

Once C is known, then from (3.7) a is known in a complicated implicit way. For small p.,

the integrals D and E are approximately those in (2.18), so a simpler and possibly quite

accurate approximation may be found using (2.18) instead of (3.8).
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(ii) Closely-spaced walls. The only difference here from Sec. 2(ii) is in the outer problem,

which now has the specification

(V2 - p2)4> = qS(x)8(y - I)

<t>y + n<j> = 0 {y = 0), (3.10)

<j>x ± H<t> = 0 (* = ±0,0 < y < I).

The singular part, $, remains the same, but on x = 0:

3
+ nJ<t>CF = +M^«J>(0, y) {x = +0, 0 < y < /). (3.11)

Letting H(y) = <t>x + ft<J>|x=0, as before, by Havelock's (1929) theorem

2 J,z j, r
(i) = / { H(y) — ixq<b(0, >>)}(.scos sy — n sin .sy) dv (3.12)

IT fl ~ S i J/

/•OO

(, {H(y)-MH0,y)}e~nvdy. (3.13)
jit -(1 + i)a JI

A- 2"

Also, if G(y) = <px(0, y),

2 r'
(s) = ( G(>')(^ cos sy — n sin sy) dy, (3.14)

77 JQ

A • jf^klG{y>e""dy-

The boundary conditions (3.10) imply that F = 0 on the barrier, so that, again using

Evans and Morris' (1972) results,

2 /-OO f /•/
0 = A(fj. — (1 + i) a) e~ny — — / < / G(t)(s cos st — n sin st)

77 J n I Jn
dt

Jo \Jo

(/X — Sj )(.y cos sy — /isin 57) ds

■^(s2 + n2)

Also, the problem is even in x, so below the barrier G = 0, and using (3.12) this gives

2 f°° ( f°° r
0 = - i)aAe~ny / { [//(/)- ft^0(0,/)] (5cos st — n sin st) dt

77 J0 \j/

ij (s cos sy — n sin sy)

(3.15)

(ft - ^(.y2 + n2)
ds. (3.16)

No exact solution to this problem is possible as it was with type (a) boundary condition,

so we seek a variational solution as above. Again, re-scale G and H so that

g(t) = -§^_1(m -(1 + /)«) lG(t),

f{t) = -[(1 + i)aA]-\H(t)-iiqH0,t)). (3.17)
7T
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In the limits —> 0, yu./ 0 we could use ip and x as in (2.30) as approximations. Results

(3.8)-(3.9) now hold, except that

c = ji -(1 + i)a
(1 4- i)a

/•OC

D r (3,8a - c)
o {//t -(/2 + v2l2) ^(l2 + n2l2)

E-r
Jo (t2 + v2l2)w\t2 + n2l2)

This does not help in finding q, however. If and x are used as initial approximations,

they give a value of k3 = 0, which means q = 0 and leads to a trivial inner solution.

Possibly a better idea is to use (2.32) as a first approximation to G. This gives a new

value for E, namely

foo e~2"'sm2 It {Ifi -(/2 + v2l2)l/2}
Ei= I  71  , J dt (3-19)

•*o (t + v I )(t + n I )

and the first approximation to q remains as in (2.37). It is hard, though, to find a

corresponding value for Z), and so a lower bound for C is not easy to calculate. There is

no rigorous way of telling which approximation is better; that involving (3.18b - c) or

(3.19). Possibly (3.19), which gives a non-zero value of q, is better for calculating the

power, while for calculating a as a function of ju, where q is not so important, (3.18) may

be better.

4. Semi-infinitely long, infinitely deep channels.

(i) Type (a) boundary conditions. If the channel is infinitely deep, then the z-dependence

can be separated out:

4>(x, y, z) = e~kz<t>(x, y) (4.1)

where here the z-axis points vertically downwards. (4.1) then automatically satisfies the

free-surface condition, and also the two-dimensional partial differential equation

° = { + ~dy2 + = (v2 +

applies. A plan view of the channel is given in Fig. 4. The symmetry in y implies that only

half the plane needs to be considered. A wave <j>i = e,kx is incident from the left, parallel

x <j>v=e
_Q-<rx+ikx

L ikx
<(>j = e

<t>y =0
—? a

Fig. 4. Semi-infinitely long channel
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to the walls of the channel, and we write

,, (_fl <y < °)' (A

4> = <t>i + , / ^ m (4.3)
1^>2 (^>0)^

where a is the half-width of the channel. The functions <f>1 and <j>2 then satisfy the

boundary conditions

<l>ly = <t>2y = 0 (y = -a), <|>2 0 ( V —> 00),

</>2 = «>! and <J>2_V = <*>!_„ (y = 0,x < 0),

t>iy = <#>2y = e""+rtjt (>> = 0, x > 0). (4.4a - c)

Here (4.4c) is the type (a) wall condition and a is the damping constant. To improve

convergence, let k be slightly complex, k = kr + is, and later let e -> 0. The conditions at

infinity are then

<j>1 and <p2 ~ V(x)e~ex (x —> oo) (V algebraic)

(j)1 and <f>2 = O(l) (x -» -oo). (4.5a,b)

Finally, to fix the problem and ensure uniqueness, we require an edge condition at the lip

of the channel at (0,0). Energy considerations imply that

|V*| = 0(ra) (a > -1) (r —» 0) (4.6)

where r2 = x2 + y2.

Half-plane problems of this sort can be dealt with in a standard way by using the

Wiener-Hopf method. Noble (1958) in fact gives a calculation for a similar problem in

acoustics, but with a different boundary condition in place of (4.4c). Following Noble

(1958) closely, we take the Fourier transform in x of the problem and write

/oo /*o r°°
<t>{x, y)e,sxdx = I <j>e,sx dx + I <f>e,sx dx

-oo -oo 0

= <M*) + <M*). (4-7)

From the behaviour at infinity (4.5a, b), 4>+ is an analytic function of j in the region

Re^ > 0, while 3>_ is analytic for Res < e. Notice that both $+ and 4>_ are analytic in

the strip 0 < Re(s) < e. Using the usual method, we obtain a pair of coupled equations

. coshya . , coshya /
$!_+ $1 _ ^ =   ,

1 y sinh ya y sinh ya s + v '

= - —— (4.8a,b)
1 y yi + ii

where Oj and $2 are the transforms of <j>1 and <j>2 along y = 0, and ' = d/dy. The square

root in y = (s2 - k2)1/2 is chosen so that y = -ik when 5 = 0, with branch cuts along the

lines ±kt (1 < t < oo). There is no known standard way of dealing with coupled

equations like (4.8), but fortunately for channel problems a change of variable reduces

(4.8) to a single equation. If we simply subtract (4.8b) from (4.8a), where D = $2 + — ̂ i +

is the transform of the potential difference across the channel wall. Now let

*(*)- =tf+(i)*_(i). (4-10)
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The factorisation of K into K+, which is analytic in Re s > 0, and K_, analytic for

Res < e, is given in the appendix. Rearranging (4.9) then gives

— n +(s + k)K+(s)D+=—j 1 -j—. (4.11)
a(s — k)K_(s) a(s — k)K_(s) s + v

The sum decomposition of the right hand side can be done by inspection:

1 i ill M
+

a(s — k)K_(s) s + v a(s + v) \ (s — k)K_(s) k + v

iM

a(k + v)(s + v)

where M = 1 /K_{-v), and using this in (4.11) gives

if 1 M

(4.12)

a(s — k)K_ a(s + v) \ (j — k)K_(s) k + v

= (j + k)K+D + + lM
a(k + v)(s + v)

(4.13)

The entire left hand side is analytic for Re s < e and the right-hand side for Re 5 > 0, by

definition. Since they are equal, this means that both sides are an entire function, E(s),

say.

In order to evaluate E(s), we make use of the edge condition (4.6). This tells us that, for

large 5,

D+(s) = 0(l/s), <D;_= 0(lA1 + a) (a > -1) (i-»oo). (4.14)

Also, K±(s) = 0(\/sl/1) (s -> oo) so that both the right and left hand sides of (4.13)

decay at infinity. Because E is an entire function which tends to zero as -> co, E(s) = 0

by Liouville's theorem. In particular, the right-hand side of (4.13) implies that

+ ̂  ^ a(k -I- v)K_(-v) AT+(^)(i + k)(s + v) ^ ^

so that

<j)(x, +0) - <t>(x,-0) = f(x)

i
/co + iy

. rsr\ -!-»•*

•ds.
2na(k + v)K_(-v) J-00 + iyK+(s)(s + k)(s + v)

(4.16)

where 0 < y < e. It is fortunate that f(x) is precisely the quantity of interest since it is

proportional to the net compression force on the walls of the channel.

We can evaluate the integral in (4.16) by closing the contour in the lower half-plane.

The integrand has a pole at s = -v, another at s = -k and poles at the roots of K+(s)

which lie at

„2_2\l/2

= U2-~| , #1 = 1,2,— (4.17)
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A diagram of the contour around which the integral is taken is given in Fig. 5, where

e -* 0. Note that as e -» 0, the pole at 5 = -k gives a travelling wave component. If we are

interested in the behaviour of f(x) as x -» oo, then the exact dimensions of the channel

become important. If, for example,

7T2/a2 — k2 > a2 > 0 (4.18)

then the dominant pole, apart from the travelling wave, lies at s = -v;

, 1 I e^_    
a(k + v)\ K_(-v)K+(-v)(k - v) K _(-v) K+(-k)(-k + v)

 -a2 ( exp i(k2 - v2)l/2a _ivx a~\k2 - v2)~l/2 ,kx
-e —

(k2 — v2)1/2 \ sin(k2 - v2)1/2a K+(v)K_(k)

(x —> oo). (4.19)

If 772/a2 < k, then the dominant pole comes from and the behaviour is quite different.

If we let a -> 0 in (4.19), note that the expression tends to a finite value, as it should.

(ii) Type (b) boundary conditions. In this section, instead of the condition (4.4c) we use

(j>v = iu.<f> on the channel walls, so that

<t>iv = M<f>i - l>-e'kx, <t>2 , = - V-e'kx (j = 0, x > 0). (4.20)

As before, we obtain the pair of coupled equations:

Y tanh ya <J>! 4^ - ~~~r + (ytanhya - ju)<I>1 + = 0,
S i K

y^.+ <b[.+ i +(y + m)<D2+=0. (4.21)

At first sight, there seems to be no way of reducing these to a single equation, until they

are re-arranged slightly

(y tanh ya - /x)$1_-($; - /*$!_) - ^ ^ ^ (y tanh ya - ^.)01 + = 0,

(y + M)<D1_+(<D;^- ̂_) + jfj- +(y + M)<f2 + = 0, (4.22)

and now eliminating <!>!_ between these gives

1 + .A .. If F_+ -±-) + G+=0 (4.23)y + ju y tanh ya — n j\ s + k

-k 0 k

3f

-O.J
«l
<*2

Fig. 5. Contour used for the integral (4.20)
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where

f_= m*!-, g+=$2+-$1+.

It is really quite fortunate that this reduction can be carried out because, as mentioned

earlier, there is no systematic method for dealing with coupled equations like (4.21).

Re-write (4.23) as

ifi
r _ -r ays — k ) i\.\ a + -r —

where

F_+a(s2-k2)K(s)G + + jfj = 0 (4.24)

K(s) = ^e ya(l + /xy ^(sinhya - /ly ^oshya).

K can be factorised, as described in the appendix, into a product K+(s)K_(s). Then (4.24)

gives

F
+ (j + k)G + K++     =0. (4.25)

a(s — k)K_ v 7 + + a(s2-k2)K

The necessary sum decomposition then gives

(s + k)K+(s)G + (s) -
ifi

2kaK _(-k)(s + k)

/jLt / 1 1 ) ifx F_(s)

2ka(s + k) \ K_(s) K_(-k) j 2ka(s — k)K^(s) a(s — k)K_(s)

= E(s). (4-26)

As before, E(s) is an entire function and from the edge conditions and Liouville's

theorem, E = 0. The left hand side of (4.26) this time is

G+(s) =  ^    (4.27)
2kaK_(-k)(s + k) K+(s)

so that the potential difference across the wall of the channel is

/<*> " 4 „ tJ"+'y — > (4.28)
4nkaK_( k) J-cc + iy K+(s)(s + k)

where 0 < y < e.

To evaluate the integral, we again make use of the contour in Fig. 5. Bear in mind that

near .? = -k, K+(s) = 0((s + k)~3/2) and the singularity there is integrable. Poles lie at

the roots of K+(s), which are a0 = (k2 + n2)1/2 and also the roots of

a/?„tanha/?„ = p.a, a2n - k2 = ft2 {n = 1,2,...).

At least for ju, small enough, a0 has a smaller imaginary part than any of the other poles.

There is also a contribution from the branch cut integral, which is estimated for large x by

noting that near s = -k,

K+(s) ~ e"i/4(s + A:)~3/2/ia"1/2.
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We therefore get a travelling wave and a damped mode for large x:

ft \ (ka)l/1 1 e'kX t , : ,

t^TT K+(k) (kx)1/2 2kaK-(~k) K'+{a0)(a0 +k)2 * °° '

(4.29)

A significant feature of (4.19) and (4.29) is that a travelling wave is present rather than

just an exponentially damped mode as predicted by French's fully infinite theory.

5. Finitely long, infinitely deep channels. If the channel is very long, but only finitely so,

then we can use a method due to Jones (1952), who considered a similar diffraction

problem by a finite waveguide. Noble (1958) re-formulated Jones's (1952) method in terms

of Fourier transforms, and it is his formulation which we shall proceed to use here. The

method was developed, however, for waves which strike the channel at a non-zero angle to

the channel walls, so some modification is necessary for this case, where the waves are at

grazing incidence.

Following as far as possible the notation of Noble (1958), consider a wave incident from

the right, 4>l = e~ikx, on a channel extending from x = + d to x = -d and of width 2a.

Define

<M*)= [ 4>(x, y)eis{x~d) dx,
Jd

9_{s) = f~U(x, y)eisix+d) dx, (5.1)
J -r^-00

rd
<&»= f <t>(x,y)e"*dx.

J-d

0+ is analytic for Res > 0, 0.. for Res < e while <t>(, is analytic everywhere. Identical

manipulations to those in section four lead to the equation

1 1
+

y tanh ya — ju y + ju.

instead of (4.28), where

*±= 4>'1±- n<!>1±,

[eidsV + + e-id"*_+ F(j)] + Da = 0 (5.2)

Re-arranging (5.2),

where

Da = <&2a ~ *1,.

F(s) = ~ZTir(e'(s~k)d - e-i(s~k)d). (5.3)
S K

e-idsy + K(S)Da + eid*V + + F(s) = 0

K(s) = e Y"(l + juy 1)(ysinhya - jucoshya). (5.4)

The essence of Jones's (1952) method is the estimation of certain integrals, and to do this

note that

KM) ~ e'VVU- kyl/1 (?-*). (5.5)



THE FRENCH FLEXIBLE BAG WAVE-ENERGY DEVICE 355

Therefore

{A:_(0}-1 ~ e-'"/yi(£ - k)1/2 = hr(Z - k)r+1/2 (5.6)

where

r = 0 and hr =

There are three integrals to be estimated. The first two can be done just as in Noble

(1958). However, care must be taken with the third integral because the pole of F(s) in

(5.3) coincides with the branch point at 5 = k of K_(s):

fia + oc . .
I (Y , ~ 2iriR2(a),
iu oo (s + <*)($ + k)K_($) ^ ^

R2(a)= ^-ErWr_x{-i(k + a)l)
Z7TI

and this value is different from that quoted in Noble (1958). Furthermore, the functions

.Pj and P2 become

Pl(a)= - Miy}' Pl{a)= (a + k)K+(a) (5'8)

Then

-* + = >l*K+(s)

+ ilxClK+(s)T(s),

-*_ = inK+(-s) ~e~ikd7 TY^7~T - e'kdR*(J)
(j - k)K+(-s)

+ inC2K+(-s)T(-s) (5.9a, b)

where Cl and C2 are as in Noble (1958). For large kd,

«'»'/ iK+(k) ,\C' A ]•

c'~e""YM- (510a"b)

Now the quantity of interest is Da, the transform off(x), which is proportional to the net

compression force on the walls. From (5.2),

Da = {eid** + + F(s) + e-'d^_). (5.11)

Using (5.9) the solution divides into two parts. There is a noninteraction term just the

same as for a semi-infinitely long channel:

/ \ ria+oo e'(s~k)d

/n'(jc)= 2irtf+(*)£-» (s- k)K_(s)e"S (5-12)
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This is equivalent to (4.28), except that the K(s) used is slightly different. There is also an

interaction term,

. ids J.. I k (i o ( \ uls- -so <'"R^Tjr)e""+

-C.TU) K;{;\e"" - C1T(-s)e-"")e-'"ds. (5.13)
K_(s) I

In the depths of the channel, where d — x » 0 and d + x » 0, a long calculation shows

that

p-ikd 1.1/2 pik(d-x)

ax)'WKAk)[Hd-x)i^+0{{k(d-x)r) (5J4)

and

i pik(d+ x)

/,(*) ~ --j=eikJ— —I + o{{k(d+ x)}-1). (5.15)
2vw [k(c + x)\

The field in the depths of the channel thus appears to be due to a source at each end. The

major difference between this case and the case of oblique incidence is that the interaction

term in the latter is 0((kd)~1/2) smaller than here, where both sources appear to have

strengths of similar magnitude. Note also that whereas varying ju changes /„, via the factor

K+(k), it has no effect on the interaction term, to this order.
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Appendix, (a) Product factorisation of K(s) = (y a)~1e~y" sinh y a. The factor (y a) -sinh y a

has no branch points, and so the infinite product representation theorem can be used. This

gives

iw- ft,(i - *2a.2,) <a.i>

where (sm) is the set of roots of (ya)"1 sinhya, which lie at

sm=[k2~(~)) (w = 1,2,...). (A.2)

As m —» oo, sm ~ imir/a, so we set

(A3)

We also need to factorise eya, which we write as

£ya = ea</+-/-). (A4)

The sum decomposition y = /++/_ can be carried out using the general theory, giving

/+(J) = ^os'^f )■ (A-5)
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(b) Product factorisation of K(s) = e'ya(l + /iy~l)(y sinh ya — jucoshya). The factor

e~ya can be dealt with as in (A.4) and (A.5). For 1 + juy"\ write

log M +(s) + log M_(s) = log(l +

-^log M+(s) + -J"log M_(s) =  ——
ds + ds (i 4- Juy"1)(i2 — ^2)3/2'

We can now divide this into partial fractions, and perform a sum decomposition as above

to give

-j- log M+(s) = -- 1
ds +v ' 2(s + k)

_ n I f+(s) ~f+(p) + /+(■?) -fA-p) | /A 6x
2 \ s - p s + p I

wherep = (k2 + n2)1/2. Fuller details are in Noble (1958), p. 89. The final factor is

N(s) = y sinh ya — fi cosh ya.

Suppose (am) is the set of roots of

7ramtan ■nam = -ju a (A.7)

then the roots of N lie at (sm), where

2 \ 1/2

k2 — -—j-m21 {m = 1,2,...). (A.8)

Since N has no branch points, its infinite product representation is

1V(s) = (k sin ka — /icos ka) P| |l — ~7 j • (A-9)

Because am~ m (m -» oo), which is easily seen graphically, sm ~ imir/a (m -» oo).

Therefore, we set

OO / \

N As) = {k sin ka - ^ cos ka)l/2U\^ ± —)e±,sa/m\ (A.10)
1 \ Sm I
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