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1. Introduction. Recently, several authors have considered the phase change prob-

lem governed by the hyperbolic heat transfer model [2, 5,6, 7], Let q be the heat flux,

T the temperature, t the relaxation time, k the thermal conductivity, p the density,

c the specific heat, a = k/(pc) the diffusivity. The hyperbolic heat transfer model is

obtained by replacing the classical Fourier heat-conduction law

q = -kTx (1.1)

with the first-order relaxation relation

t q, + q = -kTx. (1.2)

Combining (1.2) and the energy conservation law

cpT, = —qx, (1.3)

one gets the governing equations of the hyperbolic heat transfer model

xq, + q + kTx = 0,
(1.4)

cpTt + qx = 0,

or equivalently, the telegrapher's equation

tTn + T, — aTxx. (1.5)

If r = 0, the telegrapher's equation (1.5) is reduced to the usual heat equation

T,-aTxx = 0. (1.6)

As to the relation between the solutions Tx and Tq of (1.5) and (1.6) with compatible

initial data, it has long been known that Tx —► T0 uniformly when t —> 0, see, e.g. [3].

For the classical heat transfer model (1.6), the one-phase Stefan problem consists

of finding the temperature T(x, t) and a function <p(t) such that (1.6) is satisfied in

the domain x < g>(t) and on the free boundary x = q>{t), the following conditions

are satisfied:

T{(p{t),t) = 0, (1.7)

PH(p'{t) = q. (1.8)
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The two-phase Stefan problem is formulated similarly.

The Stefan problem and the related problems for the heat equation (1.6) or more

general equations have been the objects of extensive study. Therefore, it is only

natural that the problems of Stefan type for the hyperbolic heat transfer model (1.4)

are recently becoming of interest to many mathematicians.

In [6] was given a formulation of the hyperbolic Stefan problem based upon the

traditional assumption that the temperatures on the two sides of the phase change

boundary are prescribed and equal. Also, an explicit solution was given in [6] where

the phase change front propagates faster than sound speed and consequently is phys-

ically unacceptable.

Partly in order to avoid this difficulty, Greenberg in [2] suggested another formu-

lation of the phase change condition based upon the Rankine-Hugoniot conditions

for the conservation laws.

In [5] was given a weak formulation of the two-phase Stefan problem, including

mushy domains. The problem posed and resolved there is different from the one

considered here. The relaxation times in the two phases are adjusted to make it

possible to study the problem in the framework of abstract operators.

In this paper, we study the Stefan problem for the hyperbolic heat model in the

classical formulation of [6]. For both the one-phase and the two-phase problem, we

get the local and global solution. The conditions to guarantee the global existence in

this paper are only sufficient ones, in comparison with the local existence conditions

which are necessary. So the conditions for global solutions should be able to be

relaxed. It remains open as to what extent these conditions could be relaxed.

The outline of this paper is as follows.

In §2, we prove the local existence and uniqueness results for the initial boundary

Stefan problem, and we give the mathematical explanation of the example given in

[6].
In §3, using similar techniques as in [2], we prove the global existence of solution

for the Stefan problem under certain assumptions upon the data.

In §4, we give a brief discussion of the two-phase Stefan problem.

2. One-phase problem, Local solution. The one-phase Stefan problem for the hy-

perbolic heat transfer model consists in solving the following free boundary problem:

zql + q + kTx = 0,
Xq < x < (p(t), t> 0, (2.1)

cpT, +qx = 0,

T(x,t) = 0,
x = <p{t), t > 0, (2.2)

pH(p'(t) = q(x, t),

where H is the latent heat, and (9(0) = 0.

We may impose boundary conditions on the fixed boundary x = Xo < 0. They

could take the following forms, depending on whether temperature or heat flux is

given [6]:

• Imposed temperature boundary condition:

r(x0,0 = T#(t), t > 0; (2.3)
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• Imposed flux boundary condition:

q(x0,t) = q#(t), t> 0; (2.4)

• Convective boundary condition:

q(x0,t) = h[q#(t) - T{x0,t)], t > 0. (2.5)

If xo = 0, then no initial condition is needed. If xo < 0, we have to give the initial

values:

T(x, 0) = To(x), q(x, 0) = qo(x), Xo < x < 0. (2.6)

In the following, we'll discuss separately the cases of Xo < 0 and xo = 0.

2.1. Case 1: xo < 0. Since we consider only local solutions in this section, the

well-posedness of the problem (2.1), (2.2), (2.3), (2.6) (or (2.3) substituted by (2.4)

or (2.5)) is determined completely from the well-posedness of the fixed boundary

problem (2.1), (2.3), (2.6) and the free boundary problem (2.1), (2.2), (2.6) sepa-

rately, because of the finite propagation speed. It is easily checked that the fixed

boundary problem (2.1), (2.3), (2.6) is always well-posed. (It is also true with (2.3)

substituted by (2.4) or (2.5).) Therefore we need only consider the following initial-

free-boundary problem:

zq, + kTx + q = 0,

cpT, + qx = 0,

T(x,t) = 0,

pH<p'(t) = q[x, t),

T{x.O) = T0(x), q(x,0) = qo(x). (2.9)

x < cp(t), t > 0, (2.7)

x = <p(t), t > 0, (2.8)

We have the following theorem.

Theorem 2.1. Let To.qo e C'(-oo,0]. Suppose at x = 0, t = 0, the compatible

condition

cpdxT0( 0)<?o(0) = pHdxqo(0) (2.10)

is satisfied and also

|<7o(0)| <pH(a/r)1'2, a = £-. (2.11)
C/J

Then 3?o > 0 such that in [0, ?o], (2.7), (2.8), (2.9) has a unique solution (T, q, <p) e

C1 x C1 x C2.

Remark. The condition (2.11) implies that at t = 0, the speed of phase change

front should be less than the characteristic speed. This condition is necessary in

the sense that there is no solution depending only on x - (a/r)'^2/, as pointed out

in [6]. And if |p'(0)| > [a/r)1/2, then x = q>(t) would be space-like for small t.

Therefore, besides the condition on q>(t) in (2.8), one should impose two conditions

(for <p'(0) > (a/r)1/2) or no condition (for g>'(0) < -(a/r)1/2) on x = (p(t) for (q, T)

to get a well-posed problem. Otherwise, one would lose either uniqueness or existence

of the solution. This explains the physically unacceptable explicit solution example

in [6]. Actually, in the example of [6] where (2.11) is violated, the solution is not

unique.
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Proof of Theorem 2.1.
i) First, as in [2], we reduce (2.7)-(2.9) into dimensionless form by making the

following substitutions:

Mgr*.

Omitting the bar over the new variables and letting

A = T + q, B - T - q, (2.13)

then (2.7)-(2.9) become

At + Ax + j(A — B) = 0,

B,-BX + {(B-A) = 0,
in x < (p{t), (2.14)

i) = u,

/ (A + B)(x,t) = 0,
< , on x — w(t), (2.15)
I 9 {t) = \(A-B)(x,t),

A(x, 0) = Ao(x), B(x.O) = B0(x), <p{0) = 0. (2.16)

ii) Secondly, we perform the following transformation:

x-x-ip(t), l=t (2.17)

to fix the free boundary in (2.14)—(2.16). Since

d, =dj- (p'(i)d^,

dx =

omitting the bar in the new notation, we get the following equivalent fixed boundary

problem for the unknown (T, q, <p)\

At + (1 — (p'{t))Ax + \(A — B) — 0,

Bt-{\ + cp'{t))Bx + UB-A) = 0,

A(0,t) + B(0,t) = 0,

p'(t) = l(A-B)(0,t),

in x < 0, (2.18)

(2.19)

A(x, 0) = A0(x), B(x,0) = B0(x), p(0) = 0. (2.20)

iii) Now, from assumption (2.11), we know that for \<p'(t)-<p'(0)\ sufficiently small,

x = 0 is noncharacteristic for (2.8). And the linearized problem of (2.18)—(2.20) is

well-posed. Therefore, the nonlinear problem (2.18)—(2.20) can be solved by the

usual technique of integration along characteristics and linear iteration. Hence the

proof of Theorem 2.1 is complete. For details, one may refer to, e.g., [ 1 ] or [4],

Corollary 2.1. If 7o(x), qo(x) e C°°, and C°° compatible conditions are satisfied,

then the solution in Theorem 2.1 is actually in C°°[0, /o]-

2.2. Case 2: xo = 0. In this case, we don't impose the initial condition (2.6) and

consider the free boundary problem (2.1), (2.2) combined with one of the boundary

conditions in (2.3), (2.4), and (2.5). We have the following.
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Theorem 2.2. i) Assume q#(t), T#(t) e C1 [0, oo). At t = 0, x = 0, q(x, t) determined

from (2.4) or (2.5) satisfies

0 < <7(0,0) < pH(a/-c)1'2. (2.21)

Then 3?o > 0 such that in [0, ?o], the problem (2.1), (2.2), (2.4) or the problem (2.1),

(2.2), (2.5) has a unique solution (T, q, <p) e C' x C1 x C2;

ii) The problem (2.1), (2.2), (2.3) is not well-posed.

Proof of Theorem 2.2.

i) We will consider only the Problem (2.1), (2.2), (2.4). The problem (2.1), (2.2),

(2.5) can be treated exactly the same way.

As in the proof of Theorem 2.1, we first transform (2.1), (2.2), (2.4) into the

dimensionless and diagonal form, which can be written as

( At + Ax + j(A — B) = 0,
\ ? in 0 < x < <p(t), (2.22)
I B, - Bx + \(B -A) = 0,
f (A + B)(x, t) = 0,
{ on x = (p(t), (2.23)
I <P'{t) = \(A-B){x,t) = 0, K '

(A - B)(0, t) = 2q»{t), (2.24)

where <p(0) = 0 and the condition (2.21) becomes

0<^(0)<1. (2.25)

Now we perform the transformation (/,x) (t, y):

xt

y~Wr ( }
From (2.23), (2.24), (2.25) we know ^'(0) > 0, hence (2.26) is not singular for small

t when <p(t) is continuous. In (t,y) coordinates (2.22), (2.23), (2.24) become

At + a{f,y,t)Ay + \(A- B) = 0, .
in 0 < y < /, (2.27)

B, + b{<p,y,t)By + ±(B-A) = 0, v 7

(A + B)(y, t) = 0, on y = t, (2.28)

- B)(y,t) = A(y,t), on y = t, (2.29)

where

(A — B)(0, t) — 2q*(t), (2.30)

. y(<p - <p'(t)t) t
a(<p, y, t = ——Y — ' +

t<p cp

t(y.v,0= y«p-fm_L
tcp <p

Now (2.27)-(2.30) is a nonlinear boundary problem in the known angular domain.

From assumption (2.25), we have

0<p'(0)<l. (2.31)
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Therefore, near t — 0, a(tp, y, t) and b{<p, y, t) are nonsingular and

«!'=»= rW *i«—<2 32'
We solve (2.27)-(2.30) locally by linear iteration and integration along characteristics.

By (2.31), (2.32), we see that the linearization of (2.27), (2.28), (2.30) at t = 0

At + {(p'm-*Ay + \{A-B) = 0,

Bt-(cp'(0))-iBy + \(B-A) = 0,
0 <y<t, (2.33)

(A + B)(t,t) = 0, (2.34)

(A-B)(0,t) = 2q.(t), (2.35)

is a typical boundary value problem in angular domain discussed in [4], with two

boundaries y = 0, y = t noncharacteristic. For the problem (2.33)-(2.35), following

[4], we can compute the characterizing matrix

H = (? ;'V (2-36)
, 1 0

and

= v n )• (2.37)
o -(l-p'(0))'

l + /(0))-' 0

Hence, we have det(/ - H) ^ 0 and |//i|min = min{(l + ^'(0))_1,1 - <p'{0)} < 1

by (2.31). From an extension of the results of Li and Yu by Zhao in [8], we know

the linearized problem (2.33)—(2.35) has a unique C1 solution, using the method of

integration along the characteristics.

With the solution (A\,B\) of the linearized problem (2.33)-(2.35), we can solve

<Pi(t) e C2 from (2.29), and iteratively we get the sequence (Aj.Bj.tpj) and we can

prove its convergence for t < To small. This completes the proof of the first part of

Theorem 2.2.

For the second part of Theorem 2.2, we notice that, from (2.1)—(2.3), at point x =

cp(t) = t = 0, we couldn't determine the value of q. Actually, we can choose <7(0, 0)

arbitrarily, i.e., (p'(0) can be chosen arbitrarily. If we choose <?(0,0) > pH(a/?)l/2,

then we can impose an extra boundary condition onx = cp(t), e.g., q{<p{t),t) =

<7(0, 0), and the resultant free boundary problem can be proven to be well-posed just

as above. Therefore, the solution of (2.1)—(2.3) is not unique. So the problem is not

well-posed.

Remark. For the second part of Theorem 2.2, even if we choose 0 < q(0,0) <

pH{a/t)1/2, the resulting linearized problem is not well-posed. To see this, we can

compute the corresponding characterizing matrix H as in the proof of the first part

of the Theorem, and find

*-(? 0.

So det(/ - H) = 0. Consequently, we see that the problem is not well-posed.

3. One-phase problem, Global solution. In this section, we will discuss the global

existence of solutions for the problems considered in §2.
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We will restrict ourselves to discussing only the problem where on the fixed bound-

ary x = Xo, the imposed temperature condition is given.

As in §2, in dimensionless form, the problem for the Riemann invariants A, B can

be written as

A, + Ax + j(A - B) - 0,
: in xo < x < (pit), (3.1)

B,-BX + {{B-A) = 0,

f(A + B)(x,t) = 0,
< on x = (pit), (3.2)
\(p'{t) = A{x,t),

(A + B)(x0,t) = 2T#(t), (3.3)

A(x, 0) = Aq(x), B(x,0) = B0(x), <p(0) = 0. (3.4)

According to Theorem 2.2, we should have Xq < 0 in (3.1)—(3.4). We have

Theorem 3.1. Assume: (i) Ao.Bq e C°°[xo,0], T# e C°°[0,oo); (ii) T#(t) > 0,

A'0 < 0, Bq < 0, 0 < A(0,0) < 1; (iii) C°° compatible conditions are satisfied at (0,0)

and (xo, 0).

Then (3.1)—(3.4) has a unique solution (A, B, <p) e C°° x C°° x C°° for all t > 0,

and the solution satisfies

A{(p(t),t) > 0, Ax < 0, Bx < 0, 0 <q>'{t)< 1. (3.5)

Proof of Theorem 3.1. From Theorem 2.1, we know that under the assumption

of Theorem 3.1, a unique solution exists and if the solution exists in some interval

[0, ?o] where the condition 0 < <p'(to) < 1 is again satisfied, then we can solve the

corresponding free boundary problem beginning from t = to. Therefore, in order

to prove Theorem 3.1, one has only to show that in any interval [0, ?o] where a C°°

solution exists, we can find a 5 such that

\(p\t0)\< l-S. (3.6)

Equation (3.6) implies that the corresponding linearized problem has uniformly non-

characteristic boundaries. Hence the global solution can be obtained with linear

iteration step by step.

Actually, under the assumption of (ii) in Theorem 3.1, we can not only prove (3.6),

but also

<p'(t) > 0, AX(x, t) < 0, Bx(x, t) < 0. (3.7)

To prove (3.7), we use the technique employed in [2], Let t* be the smallest t e [0, ?o]

such that (3.7) is violated. Differentiating A(x, t) on x = <p(t) and employing (3.1),

(3.2), one gets

dA(<p(t),t)
dt

Hence we have

= A,(<p(t),t) + Ax(<p(t),t)<p'(t)

= -Ax(<p{t), t) - A(<p(t), t) - Ax(<p{t), t)A(<p(t), t)

= -Ax(<p{t), 0(1 + A(<p(t), 0) - A(<p(t), t).

dA(g>(t),t) >_A{qt(t)it)i in
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Consequently

A{<p(t), t) > A(0, 0)e~' > 0.

Let sf - Ax, 38 = Bx. Then sf ,38 satisfy the following:

( sf, + sfx + Us/ - &) = 0,
{ . in xo <x<<p{t), (3.8)
I 3§t-gBx + \{&-sf) = 0,

38 - s/ = 2T#{t), on x = Xo, (3.9)

& = on x = (pit), (3.10)
1 + A

&(x,0) = B'0(x), j/(x,0 ) = A'0(x). (3.11)

As in [2], we rewrite (3.8) into

J (0, + dx){e"2s/) = \el!238,

I (d, - dx)(e"2^) = \e'!2s/.

Since in [0,/*), s>/ < 0, 38 < 0, A(<p(t),t) > 0, hence from (3.12), s/(x,t*) = 0 is

possible only at x = xo, 38 [x, t*) = 0 is possible only at x = <p(t*). But at x = xo,

s/ = 38 - 2T#(t) < 0 and at x = <p(t*), 38 = (1 - A)( 1 + A)~ls/ < 0. Consequently,

we must have t* = t0.

Now, the linear problem (3.8)—(3.11) for A, B, has uniformly bounded coefficients,

since A > 0 on x = <p(t). So the solution A,B must be bounded on [0,?o]- In

particular, Tx is bounded on [0, fy],

max |TV| < C(to), (3.13)
[0./o]

where C(to) < oo for any fixed to > 0.

On x = <p(t), by [6], we have

+ = (3.14)

Since |7^| < C(t0), so when <p'{t) —> 1, one should have (p"(t) < 0. Therefore, there

must be a S > 0, such that <p'(t) < 1 - <5, where d = d(to) > 0, for any fixed to. Thus

Theorem 3.1 is proved.

4. Two-phase problem. In this section, we want to extend our results for the one-

phase problems in the preceding sections to two-phase problems. With similar nota-

tions as before, the two-phase problem is formulated as follows:

T\dtQ\ + kidxT\ + <7i = 0,
„„ „ . in x < <p(t), (4.1)

C\pdtT\ +dxq\ = 0,

[ T2dtq2 + k2dxT2 + q2 = 0, .
\ _ n in x > (p{t), (4.2)
I c2pd, T2t + dxq2 = 0,

[ T\(x, t) = T2(x, t) = 0,
^ on <p(t), 4.3)
I pH<p'(t) = (ql-q2)(x,t),

r,(x,0) = r10(x), qi(x,0) = qw{x), x<0,

T2(x,0) = T20(x), q2(x,0) = q20(x), x>0, (4.4)

m = 0.
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Here we assume the densities p in the two phases are equal.

For the two-phase problem (4.1)-(4.4), we have the following local result.

Theorem 4.1. Let T\0, qi0, T2o, q2o € C1, and the compatible conditions are satisfied

at (0,0). Also is satisfied the following:

1(020 - <7io)(0)l < rnm{pH(al/xi)l/2, pH(a2/r2y/2}. (4.5)

Then, there exists t0 > 0 such that there is a unique solution {T\,q\, T2,q2) e C1,

<p e C2 of (4.1)-(4.4) in [0. f0]-

The proof of Theorem 4.1 can be performed exactly the same way as the proof of

Theorem 2.1, i.e., perform the coordinate transformation y = x - cp{t) to fix the free

boundary x = f(t) and then, solve the nonlinear problem by linear iteration. We

omit the details here.

For the global solution of the two-phase problem, we assume

T [ = 12, a\ = «2- (4.6)

On two fixed boundaries x = -xo < 0, x = Xo > 0, the imposed temperature

conditions are given:

Ti(-x0,t) = Tl#(t), Ti(xo,t) = T2#(t).

We introduce the Riemann invariants A,B as in §2:

ij = vf1(4 - B<)-

T'= \rh{A'+ B']

V lj"

Then Aj,Bj (j = 1,2) satisfy the following:

dlAi + ^dxAl + ^(Al-Bi) = 0,

dtBl-yl^dxBi + ±{Bi-Al) = 0,

dlA2+^dxA2 + ±(A2-B2) = 0,

d,B2- ^dxB2 + ^(B2-A2) = 0,

r (Aj + Bj)(x,t) = 0, j = 1,2,

j — 1.2. (4.7)

in - Xq < x < (p{t), (4.8)

in q>(t) < x < Xq, (4.9)

on x = <p(t). (4.10)
\(p'{t) = {pH) l(s/ki/rAi - \/k2/xA2),

(Aj + Bj)((-l)j+lx0,t) = yJcJpTjn, j — 1,2. (4.11)

Aj(x,0) = Aj0(x), Bj(x,0) = Bj0(x), {-l)jx0<(-l)j+lx<0, j= 1,2.

(4.12)

For (4.8)—(4.12), we have the following global result.
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Theorem 4.2. Assume Aj0,Bj0, 7}# are all C°° functions and C°° compatible con-

ditions are satisfied at (0,0) and (±xo> 0). If

(i) (-iy+i7>>o, (-iy+»77# > o,
(ii) A'j0 < 0, B'j0 < 0,

(iii) |^(0)| < \fajx,
then (4.8)—(4.12) has a unique C°° solution in [0,oo).

Proof of Theorem 4.2. As in §3, it is obvious that the key issue for the global

existence is the proof of the fact \tp'\ < y/a/r. As before, we have s/j = dxAj,

38j = dxBj (j - 1,2) satisfying the following:

(d, + \fajxdx)e'!2srf\ = ^-ell23§\,
It

(di - \/ajxdx)elll3§\ = -~-e'l2s/\,

1
(di + \fafxdx)etl2s^2 =

It

(dt - \faptdx)etl1&2 —
2t

xq < x < <p(t), (4.13)

<p(t) < x < xq, (4.14)

C]f>TTl#(t), onx = -x0, (4.15)
a

on x = x0, (4.16)
a

^i = /VgT^\M
\Va/j + cp' J

\Va/r ~(p')

on x = <p(t). (4.17)

The same argument as in §3 shows that under the initial assumption of Theorem

4.2, srfj,38j will remain negative where a C°° solution exists, or equivalently, where

\(p'\ < Va/r.
Let to be the value of t, such that

lim \q>'\ = y/a/x.
t—*to

First, by the relation

pH<p"(t) = Cip({<p')2 - (q/t))dxTx -c2p{{(p')2 - (a/T))dxT2 - pH<p'{t), (4.18)

we see that at t = to, one would have

52(\dxAj\ + \dxBj\) = oo. (4.19)

If not, then \dxT\ \ + \3xTt,\ would be bounded near t — t0, and <p"(t) would have

opposite sign to <p'(t) and be of the same magnitude. This is in contradiction to the

assumption \<p'\ —>■ \fafz.

From the condition (4.17), if <p' - sR~x, then , 3S\ should be bounded, only

may tend to -oo, i.e., dxT\ is bounded and dxT2 —> -oo. Therefore (4.2)
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implies cp" < —<p', which is impossible. Similarly, if would be

bounded, only \,3§\ may tend to -oo. Hence (4.18) implies <p" > -q>', which leads

again to a contradiction.

From the above analysis, one sees that it is impossible to have

lim |/(0I = VoA
t—*t o

for any to. This completes the proof of Theorem 4.2.

Remark. One can get the same results for the Cauchy problem when there is no

fixed boundary condition (4.14).
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