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Abstract. The hoop stress at a hole near the edge of a plate loaded in tension is

analyzed as the hole approaches the boundary. The solution given by Mindlin in

terms of a series is converted to an integral to which singular asymptotics are applied

to obtain the singularity in the limit.

Introduction. The stress distribution around a hole near the edge of a plate in

tension was first studied by Jeffery [1] in 1920 and subsequently, in 1948, by Mindlin

[2], who corrected Jeffery's result.

The solution for the hoop stress at the hole is given by Mindlin in a rather explicit

form as an infinite series. The expression is sufficiently complicated, however, that

certain interesting questions about the behavior of the solution have been impossible

to answer so far. One such problem is the behavior of the stress field as the distance

of the hole from the boundary edge approaches zero. This is the problem that we

address in this paper.

Mindlin's solution to the problem of the stress field in a wide plate under simple

tension T parallel to a straight edge and containing a hole near the edge (Fig. 1) is

obtained in terms of bipolar coordinates a and /?, which are described briefly in the

Appendix.

The boundary of the hole is simply one of the a =constant curves, say a = a\.

From the geometry we have a ■ cothai = d + R and a ■ cosh a i = R (where a is the

parameter of the transformation to bipolar coordinates, R is the radius of the hole,

and d is its distance to the edge), so that cosh = 1 +d/r, which, by series expansion

for small a\, gives a2{ ~ d/R, and hence 1/aj ~
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T

Fig.

The solution of Mindlin for the stress at point A is given by the following expres-

sion, evaluated at P = it,

2 T 1
2 sinh2 a i sin2)?

cosh a i - cos p
+ 2T(coshai - cos /?)

( J
• | - cschoi! + 2e~2a' cos/? + ^ Nn cos nP

where

n2 sinhai cosh na\ - n sinh na\coshai . , . . , .
N„ = 5—T  ?—  ~~ 2n(n sinh a - coshaj)?

sinh na\ - n2 sinh ai

As the hole approaches the boundary, d —» 0 and therefore a.\ —> 0.

This is the limit we will study in the rest of the paper. Using the general methods

of Sec. 1, we will show in Sec. 2 that the stress field has an asymptotic expansion in

powers of a to all orders, the leading term being 0(a

To understand the meaning of the limit c*i —► 0, observe that it can be interpreted

either as d —> 0 while keeping the radius R constant, or as R -* oo while d is

kept constant. As R —> oo, a point with a fixed value for the parameter /? on the

boundary of the hole approaches the x-axis asymptotically, with the exception of the

value p = 0. In the latter case the point remains in the position furthest from the

boundary of the material. Thus we may expect that for all values of /? in (0,2it) we

will have similar behavior as a\ -»0. We also observe, however, that the distance of a

point with a fixed value of P from the point A becomes negligible in comparison with

the circumference of the hole boundary as a\ —» 0. Thus, in the limit a\ —» 0 with P

fixed, the hold is approaching the boundary of the material, but at the same time the

point with bipolar coordinates (a\,p) on the boundary of the hole is approaching

the point A that is closest to the boundary. The value P - it of course corresponds

to the point A itself, which is the only point that does not move on the boundary as

we take the limit. For this reason, values of P different from n have no particular

meaning in our limit.
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According to the results of Sec. 2, the hoop stress at the point A (/? = n) is

4Ta~1 + 0{ 1) ~ 2^27^ + 0( 1)

as «i —► 0. For the point C (/? = 0) the coefficient of aj"1 becomes zero. This limit

agrees with the estimate obtained by Duan et al. [3] by a different method and under

some intuitive assumptions.

The rest of the paper is technical. A large part (Sec. 1) is devoted to some general

singular asymptotics techniques we have tried to develop to deal with our rather

special problem. For us, these results alone were well worth the exercise!

1. Some problems in singular asymptotics. The problem of estimating the stress

field on the boundary of a hole near the boundary of the material is essentially a

problem in singular asymptotics. One encounters some difficulties, however, which

can be formulated in rather general terms and seem likely to arise in many different

situations. We begin by describing these problems and how we resolved them. The

asymptotics of the stress field of the hole can then be dealt with by straightforward

application of these ideas.

A. Classes of functions with singular distributional expansions. Let us review

some of the standard theory of singular asymptotics of integrals. Let h(x,y) 6

C°°(R+ x R~) and assume that it is of compact support in x. Suppose further

that for all x > 0, y > h,

\dkxh{x,y)\<Hk{y)yk,

for some Hk{y) satisfying /0' Hk( \/t)dt < oo. We say that h is a function of class A.

Then
roc

h{x, s/x) dx = J2Ak\-h]sk + J2BkWslns + °(sm+1~E) (1-1)
k=0 k=l

as 5 —► 0, for any e > 0 and m > 0. The coefficients Ak[h], Bk[h] are linear functionals

of h. A thorough discussion of these expansions can be found in [4, 5, and 6].

There is a larger class of functions for which the expansion (1.1) holds, by reduc-

tion to functions of class A. We say that a function h(x,s) is of extended class A if

there exists a function h\x, y,s) € C°°{R+ x R+ x R+) such that

h(x,s) = hl(x, s/x, s)

and

(1) djh1 (x, y, 0) is of class A for each j.

(2) |djhl{x, y, 5)| < Hj(y) for all x, y, 0 < 5 < 1, where /J Hj(\/t)dr < oo.

We can easily see that a function of extended class A has an expansion of the form

(1.1). In fact we can write

fJo

m j .

h\x,y,s) = Y^Jj[dih\x,y, 0) + -^—^d™+{h\x,y,o)sn-usn n^.y,u,Fm+l

7=0

where 0 < a < s. In the integral /0°° h(x,s)dx, the remainder gives 0(sm+l) while

each term in the first part can be expanded as in (1.1) because djh1 (x, y, 0) is of class

A.
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Example l.a.l. Let h(x, y) be such that, for all x, y,

\dkh(x,y)\<Hk(y)yk+a,

where a > 0 and /0' Hk(\/t)dt < oo. Then for any integer m > a, the function

p(x,s) = xmh{x,s/x) is of extended type A. To see this, let x(y) £ C°°[0, oo), x = 1

for a y near 0, and let X\ = 1 - X- Write

xmh(x, s/x) = xmx{s/x)h(x, s/x) + sm(s/x)~mxi (s/x)h(s, x/s).

Choosing hl(x, y,s) = xmx(y)h(x, y) + smy~mx\{y)h{x, y), we see that p(x,s) is of

extended class A.

We will need a smaller class of functions for which the expansion (1.1) holds.

These will be referred to as functions of class B and are defined as those functions

h{x, y) e C°°([0, /?) x [0, /?)) which are of compact support in x and satisfy

\d*d?h(x,y)\ < Hk,m{y)yk-m

for all x, y > 0 and some Hkm with /0' Hkm(\/t)dt < oo. Thus h is of class B if

and only if (ydy)mh is of class A for all m. We say that a function h(x,s) is of

extended class B if there exists a function hl(x,y,s) such that h(x,s) = hl(x, s/x, s)

and dsmhl(x, y,s) is of class B for every m. From Example l.a.l above we see that

if h(x,y) is of class B, the function p(x,s) — (xdx)k(ydy)mh{x,s/x) is of extended

class B for any k and m. Finally we define h to be of (extended) class A or B of

order n by requiring only h e C" and that the respective conditions only hold for

derivatives of order < n. For these classes (1.1) holds if m <n.

Our description of functions of class B can be sharpened if we use the following

lemma.

Lemma l.a.l. Suppose / € C°°[0,y?) and \f(m)(y)\ < Hm(y)yk~m for some k and

Hm with f0' Hm(\/t) dt < oo. Then

\f(m\y)\ < Cm(y)yk~m+l,

where Cm{y) is linear in Hj, j < m, and Cm(y) = 0(1) as y -* oo.

Proof. Let g(y) = y~k~2f(y). Then it is easy to see that

\g(m){y)\ < cmJ2y-j-2Hm-j(y)y-m+j = Hlm(y)y-2—m

7=0

where f0' Hj(l/t)dt < oo. Now for y' > y > 1

f g(m+x\r)dr < f H^(r)r m 3 dr
J y J y

M 7s'

Thus gim)(y) is Cauchy as y —► oo, and therefore has a limit. We must have

lim^oo g(m)(y) - 0, because otherwise H,n{\/t) which is > (l/02+m|^(m)(l/OI
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would not be integrable near t = 0. Thus we can write

\S^m\y)\ — |y g(m+x\r)dr < y~m~l J Hl dt

from which our estimate follows easily.

This lemma gives an improved pointwise estimate of functions of class B, but the

bound satisfies weaker integrability conditions.

B. Singular integrands. Let us show first how these results can be applied to the

case where h(x,y) is a smooth function only for x > 0, i.e., not necessarily up to

x = 0. We need of course some additional assumptions. We might suppose, for

example, that, even though h(x,y) may not be differentiate at x = 0, by applying

enough successive regularizations to h, we can obtain a function which is as many

times differentiable as desired, where by a regularization of a function f(x) at x — 0

we mean in this case the function

/(!)(*) = {\/x)d$f{x')dx'. (1.2)

To see the significance of this kind of regularization for singular problems, consider

first an integral of the form

roo

I{s)= / h(x,s/x)<j)(x)dx,
Jo

(1.3)

where h(x,y) is of class B but <f>{x) is only assumed to be a bounded function of

compact support. This integral can be rewritten in terms of the regularization of (j>:

rOC

I(s)= (ydy-xdx)h(x, y)\y=s/x<f>{l)(x)dx. (1.4)
Jo

Indeed
roo

I(s)= / h(x, s/x)dx[x<t>(i){x)]dx
Jo

roo

= h{x,s/x)x4>(i)(x)\^ - / [dxh{x,s/x)]x<pw(x)dx.
Jo

The boundary term at oo vanishes because h(x,y) is of compact support in x.

The one at 0, however, vanishes if h{x,y) is of class B, by Lemma l.a.l, but not

necessarily if it is of class A. Equation (1.4) is now clear in view of the fact that

xdxh{x,s/x) = x{dxh{x,y) - (s/x2)dyh(x, y))\y=s/x

= (xdx ——dy^ h(x, y)\y=sjx. (L5)

Hence, according to (1.4), /(s) can be written in the form /0°° hi(x,s/x)4>w{x) dx, or,

inductively, J™ hk(x, s/x)(j)^)(x)dx, where hk(x,y) - {-xdx + ydy)kh(x, y). Now

we know that, for each k, hk(x, y) is of extended class B if h(x, y) is. If, in addition,

<j)(k) € C"[0, oo), the latter integral can be expanded in the form (1.1), for any m <

n, because hk(x, y)<f>(k){x) is of extended class B. Thus the integral (1.3) has an

expansion of the form (1.1) for any m if for any given n there exists a k such that

4>(k) e C"[0. °°)-
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This is the result we will need but it is easy to make a more general statement. For

a function h(x, y) let h{k)(x, y) denote regularization k times with respect to x, i.e.,

let

*(i) = (!/-*)/ h{x',y)dx'
Jo

and inductively h^) = i>)(i). Suppose that for each k, is in class B of order

0. Then
roo roc

dx.
rOO rOC

/ h(x, s/x)dx = / (ydy)kh(k)(x,y)\y=s/xi
Jo Jo

As a result, the integral f0 h(x,s/x)dx has an expansion of the form (1.1) for any

m, if for every n there exists a k such that h^) is of class B of order n.

Examples. (1) For <f>(x) = xk, we have

(**)(i) = (1 /x) J X'kdx' = -j^-j xk.

(2) If <t> G C^O.oo) and </>(7)(0) = 0 for j < k we have </>(,) e C^O.oo) and

(/>(0)(j)(0) = 0 for j < k. In fact

j / i\ / r* \ U-i)

4>m(x) = X) (/) (1/-*)(0 <t>{x')dx'^j

= (.\/x)U) fX <t>(x')dx' + y\ (j- ) (-l)/'!jc"i_vc'~i~1)(jc)
J0 ,=0 V ' '

and we have |^(x)| < Cxk~m+i for m < k by Taylor's theorem, so that |0[{j(Jt)| <

C'xk~J+1 for j < k.

(3) If now <f> e C^O.oo) we find e C^[0,oo) and </>|{|(0) = (1/(7 + l))<?!>(-')(0)

for j < k. In fact, <j>(x) = <pl(x) + ]Co( where </>1(-/)(0) = 0 for j < k.

The result follows from (1) and (2).

(4) Let 4>k{x) — xke'a!x, k > 1, a ± 0, which is in C*_1[0, oo). We have <j>^\0) = 0

for j < k. By a simple integration by parts we find

(4>k){i)(x) = i<*~X<t>k+\(x) - ia~\k + 2){(j)k+x)w{x).

Thus

(</»,)(,) €Ck[0, oo) and (^)J{J(0) = 0 for j < k,

and

{<f>k)im) € ck+m~l[0,oo), (0ifc)g)(O) = O for j <k + m - \.

(5) Finally, let <f>(x) = f(el/x)e'^x where f(z) is analytic for \z\ < 1 + e, some

e > 0. We have
OO

4>(x) = J2f"ei{n+P)lx-
n=0

where limsup^,,.^ /„l/rt < 1. Because of the absolute and uniform convergence of the

series we can use (4) to regularize <j> term by term. We find that, if /? 7^ -1, -2, 

^(i)(0) = 0 for j < k, (1.6)

while, if /? = -n, 4>^)(0) = fn a°d (1.6) holds if j ± 0.
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C. Singular asymptotics of infinite series. While dealing with the asymptotics of

series, rather than definite integrals of functions, seems to be difficult in general, some

cases can be tackled by rewriting the series as an integral. A case in point is a series

of the form
OO

^2,H(sn, 1 /n),
n= 1

where we might assume that H(a), 1 /£) is an analytic function in (a>, £) for 8 Re <x> >

|Im<y|, eRe£> | Im <51 for some S, e > 0. Suppose that

H(sn, I/n) < Cs\n\~l~e for 5 near 0 and eRe«>|Im«|. (1.7)

Then we can write

00 i r
y^Hisn, l/n) = — / dzH(sz, 1/z)cottiz, (1.8)
„=. 21 Jc

where C is the contour shown in Fig. 2 (with e > 0 sufficiently small). Since cot nz has

simple poles at z = 0, ±1, ±2 with residue \/n, to check this formula it suffices

to show that the integral converges absolutely and that if we cut off the contour as

in Fig. 3, the integral over the vertical segment Cn = {z Re z = N + 1/2, | Im z| < e}

goes to 0 as the integer JV-^oo. We estimate

1 -I- p—Ht-
| cot nz\ =   -2inz < (1 + ^2ImZ7r)[l + e*nlmz - 2e2nImz cos27r Re z]-1/2.

For given Im z ^ 0 we have

jcot71 z\ < (1 +e27r|Imz|)|l -e2nlmz\'1'2

which is a finite constant. For Re z = ./V + j we obtain cos In Re z = cos n — -1 and

| cot tcz| < 1. These simple estimates prove (1.8).

When we attempt to expand (1.8) asymptotically as 5 -♦ 0, it becomes apparent

that the expansion will be singular at z = oo. To see whether singular asymptotics

can be applied we look at the part of the integral near z = oo; any part for which z

is bounded can be treated by Taylor expansion in s. Thus we choose x G Co°[0, oo),

X - 1 on [0, 1], let X\ = 1 - using xi, the large z part on the C± pieces of the

contour can be isolated as

I± = (2ni)~x / Xi(Rez)//(sz, \ j z)q,o\tiz dz.
Jc±
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Change variables to x = (Re z)-1. Then

rOO

I± = =f(27t/)_1 / X\{x)x~2H{±ise; + s/x, x/[\ ± /ex])cot7r(±/£ + \/x)dx. (1.9)
Jo

The function 4>±(x) — cot7r(±/e+l/x) is of the form f±(eT'/x) with f±(z) analytic

in |z| < r, r > 1, if f± are taken as the functions

/_(z) = i(z2 + e2nc)/(z2 - e2™),

f+{z) = i{\+e-2nEz2)/{\ -e~2ntz2).

Thus, if H(y,x) is a function of class B we can use the results of Example (5) to

treat the integrals (1.9) by regularizing 4>±{x) as explained in part B of this section.

The same analysis can be applied to the series

OO

T; H(sn, 1 /n)e'Pn.
n= 1

We will have to use, in this case,

<P±(X) = e'^±,e+l/x'> cotn(±ie + l/x) (1-10)

which has also been treated in Example (5) above.

Example l.c.l. We will apply these ideas to a very simple example, which can

actually be worked out much more easily by summing the series in closed form.

Exactly because there is an alternative method, however, we will be able to compute

certain integrals that we will need later but seem difficult to evaluate directly. Let

S{a, P) = J2T=2 e~an cos Pn- Summing the series we obtain

S(a, P) = (e~2a cos 1p — e~3a cos/?)/(l + e~2a - 2e~a cosy?).

From this we get

S(a, 0) = e~2a/(l -e~a) = (l/a) + 0(l).

On the other hand, if cos P ± 1,

S(a, p) = S{0, P) + 0(a) = (- cosp + \) + 0(a).

We now compare with our alternative method. We have in this case

H((o,C)^e-(°.
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As in the general case, we use x, X\ t0 separate the parts of the integral (1.8) for

bounded z and for z —► oo. The bounded z part is identified as

^ [ dzH(az, \/x) cos /?z cot nz = ^ [ cos /?z cot nz dx *(Re z) + 0(a).
2' Jc0 21 J

The unbounded z parts are

rOC

I± = T(2i)~la~2 / h±(x,a)<f)±(x)xi{l/x),
Jo

where, in this case, <f>±(x) = cos/?zcot7rz|z=±,£+l/v and

hx±{x,y,a) = y2e*,Ea-y. (1.11)

Since we want to evaluate to 0(a°), any regularization (<p±)^) with k > 3, say k = 4,

will do. Consider first the case /? ^ 2nn, n — ±1, ±2,  We have (4>±)[J4] = 0 for

j < 4. Thus the asymptotics of I± can be computed by a simple Taylor series in a.

If

h±{x,y,a) = J2h±.k(x,a)yk + 0{yn+l)

k=0

we have

(.ydy)mh±(x,y,a) = ^kmh±M{x,a)yk + 0{yn+l).

k=o

For hx± in (1.11) we have

(ydy)Ahl±(x, y, a) = 24y2 + 0(y3) + O(a).

Thus
r OO

I± = t(2/)"' / dxXi(l/x)24<t)±(4)(x) + 0(a).
J o

Comparing with the result we obtain by directly summing the series, we find

f +^+ + I— — (— cos P + j)
JCnWRe z)...

or, in other words,

(2//)-' {/ cos flz cot7izx(Re z) dx + J dx xi(l/^)24[^-(x) - 0+(x)]|

= (-cosfi + j) (1.12)

for cos p ± 0.

Consider now the case cos /? = 0. The bounded z part of the integral can be

ignored in this case, because it gives an 0(1) contribution. The 1± integrals can

be estimated using an explicit formula for some of the coefficients in the expansion

(1.1), applied to the function

h(x,y) = (xdx - ydy)[hl±(x,y,0)xi(l/x)](t>±{i)(x),
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with h± given by (1.11). Note that we only need a single regularization of <j)± for an

expansion to 0(a). According to the results of [4], we have Aq = 0 and B\ = 0. For

A i we have the formula

rOC

Ai = - ^ln£3^*2(0, l/{)]^±(,)(0),
J o

where R2 is the remainder in the Taylor expansion of h with respect to y after two

terms. In this case, R2 = h and </>±(i)(0) = ±i, so that

rOG

Ax = - =
Jo

for the two values of ±. From this we obtain S(a, /?) - (1 /a) + 0( 1), in agreement

with the result obtained by directly summing the series.

2. Asymptotics of the stress field on the boundary of a hole in a material. The stress

field we would like to estimate is given by 2TS(a\, /?), where

0/ , 2 sinh2 a sin2 /? . ,
S{a. fi)=\- j—r — ff.2 + (cosha - cos 0)

(cosh a — cos p)z

x |^(M,(a) + N^(a)) cos fin + ^ cscha + 2e la cos^j ,

where

Nn = [n2 sinh a cosh na - n sinh na cosh a]/[sinh na - n2 sinh* a],

N'„ = - 2n(n sinhacosha)e~"Q.

The meaning of the parameters is described in the Introduction. The asymptotic

limit is a —>• 0+. Only the value /? = n has a clear meaning in this limit. However,

we can work it out for any p.

The N'n part can be summed in closed form. The N„ part is what prompted us to

develop the machinery of the last section. To see how it actually applies observe that

N„(a) = - cosha^ rj(a>, a),

where a> = na,

r](a), a) = cosh co[f (qj) - f{a)]/[g(co) - ^(q)],

/(eu) = tanh <x>/co = 1 - w2/3 4 ,

g(co) — sinh2 a)/(y2 = 1 + <y2/3 + • • • .

We encounter a new problem here, because a) is not manifestly of extended

class B, even though it is written in a very simple form. That is to say, we can-

not expand rj(a),a) in a Taylor series in a and then treat each term using singular

asymptotics. The trick is to use

H(co,l/£) = r1((o,(o/Z).



SINGULAR ASYMPTOTICS ANALYSIS AT A HOLE NEAR A BOUNDARY 243

We have rj(an,a) = H(an, 1 /«) and H(a>,Q is of class B ((x, y) = (£,a>)), as

we easily check. The procedure of Example l.c.l can be used. Retaining the same

notation otherwise, we will have, instead of (1.11),

h±(x, y, a) = y H(o), £)\0}=±iae+y,£=x/(±iex+i)-

It turns out that to 0(1) this problem is identical to Example l.c.l. In fact, for

cos P ^ 1,

(ydy)4hl±(x, y, a) = 2*^y2 + 0(y}) + 0(a).

Thus, up to the factor f"(0)/g"(0) the result is the same as in Example l.c.l. Since

this factor is -1, we have

^tj(an, a) = (cos P + 5) + 0(1).

Thus

Y. Nn cos/?« = -a-'(cos P + 5) + 0(1).

X} N'n cos Pn is obtained by a combination of the a- and /?-derivatives of Example

l.c.l and it is 0(1). Thus we obtain

S(a, P) = -(1 - cos P)cospa~l +0(1)

for cos/? ^ 1.

From the mathematical point of view, it is interesting that a full expansion of

S(a, p) can be written down to all orders in a. To expand the integral representing

S(a, P) to a given order in a, we need to regularize cj)± to a sufficiently high order

k. For cos P ^ 0, the derivatives of 4>± of order less than k at 0 will be 0. From

the formulas in [3] we see that the coefficients of the logarithmic terms are linear

functions of these derivatives, and therefore will be 0 in this case. Thus the stress

field has an expansion of the form

OO

E <Ack{P).
k=- 1

where we have already computed

C-i(P) = -2T(\ - cos p) cos p.

Consider now the case P - 0. The asymptotics of ^2 Nn can be obtained as a linear

combination of the first and second derivatives of the p = 0 result of Example

l.c.l, with coefficients 2 cosh a and -2sinha, respectively. We then see that is

0(a^2). In the expression for the stress field, however, this is multiplied by 1 - cosh a,

so that its final contribution is 0(1). To estimate the term Y^Nn we mimick the

procedure at the end of Example l.c.l. We then find J2 '/(a".a) = 0(a-1), although

the coefficient of the leading term seems to be difficult to evaluate. The corresponding

contribution to the stress field is then again 0(1). The remaining terms in S(a,P)

are also 0(1). Thus the stress field on the boundary of the hole is 0(1) as the hole

approaches the boundary for p = 0. This is not surprising because p = 0 corresponds

to a point which never approaches the boundary in our limit.
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a = a, (HOLE)

Fig. 4.

Appendix. In this appendix we give a few basic facts about the transformation

to bipolar coordinates used by Jeffery and Mindlin in the derivation of the formula

for the stress field that we study in this paper. A more detailed discussion and the

elementary proofs of the statements that follow can be readily found in [2],

The two bipolar coordinates a and /? are defined by the conformal transformation

[1,2]
x + iy = z'acoth\(a + if}),

where a is an arbitrary positive constant that defines a scale in the problem. Referring

to Fig. 4, this transformation maps the strip -n < /? < n in the a + if} plane onto

the x + iy plane with the straight segment connecting the points P = (0, -a) and

P = (0, a) removed. The singular points P and P' correspond to a = oo and a = -oo,

respectively, while the segment x = 0, -a < y < a is obtained for /? = n or —n. A

simple calculation shows that, if we write

x + i(y + a) = rie1*1,

x + i{y - a) = r2^2,

we have

a = \n(rl/r2), P = <t>\ ~ <l>2-

The curves of constant a and constant /? are then seen to be circles, as shown in

Fig. 4. The latter pass through the points P and P' so that their centers lie on the
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x-axis, while the former are orthogonal to them and their centers lie on the y-axis.

The /? coordinate has a discontinuity of 2n at .x = 0 for -a < y < a.

These coordinates are obviously convenient for the problem at hand, because the

boundary of the hole and the edge of the material are represented as a = a\ and

a = 0, respectively.
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