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Abstract. The initial value problem for acoustic-gravity waves in atmospheres

composed of one or two isothermal layers is solved. For the case of two layers

the problem is formulated in an indefinite space.

Introduction. Acoustic-gravity waves are small-amplitude disturbances which

propagate through a perfect, compressible fluid stratified in a gravitational field. A

discussion of the physical properties of these waves including their properties in var-

ious parameter regimes, such as the acoustic limit at high frequencies, etc., can be

found in reference [1], which also includes an extensive bibliography. In this pa-

per we shall solve the initial value problem for such waves by formulating it as an

eigenvalue problem in a Hilbert space, or, in the case of two layers, in an indefinite

space. The form of the solution is convenient for application to problems involving

a disturbance which is initially strong enough to require nonlinear techniques; if the

nonlinear problem can be solved until the disturbance is weak, the end of the non-

linear calculation can serve as an initial condition for the present technique. The

method is also of particular value for problems where one is interested in calculating

the coupling of an initial configuration to one particular type of mode, such as ducted

modes; since these modes appear in our formulation as eigenvectors orthogonal to

other modes, the coupling can be calculated without solving the full problem; for

example, in the case of an atmosphere composed of two isothermal layers one can

calculate the coupling to the ducted modes without solving the full problem. We

have found the formulation convenient to use for practical problems and think oth-

ers may find use for it, but another reason for presenting the results is the possibility

that mathematical physicists interested in indefinite spaces may find the space used

here to solve a physics problem useful as an example of indefinite spaces.

The case of one isothermal layer.

Hydrodynamic variables and equations. To begin with, we consider the case of one

isothermal layer. The hydrostatic solution about which we wish to perturb is given
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by
v = 0,

p = p0e(1)

p = p0e~z/H,

where v is the fluid velocity, P the pressure, and p the density. Po,Po, and H are

constants related by P0 = poHg, where g is the acceleration of gravity. Another

quantity we shall use is the sound speed, c = \JygH. We now define the variables V,

P, and p which will be treated as small, perturbing quantities:

v = y ez/(2H)^

p = e~z'H(P0 + Pez!(2H)), (2)

p e~z/H{p0 + pezl(2H)).

We have chosen the exponential factors so that the perturbing functions V, P, p will

be bounded for all values of *, z, and t, and, for compact disturbances, will be square

integrable functions of x and z for any value of t. (This fact is not obvious but is

seen in the results below.) For these variables the linearized hydrodynamic equations

take on the form:

dVz 1 /> 1 dPg
dt 2Hp0 podz p0

_ ..DdVx _DdVz p AP,

dt

dVx _ _J_dp_

dt podx'

dt 2H z Po Ox Po dz '

We assume a time dependence e~""' for each of the variables and obtain

' n i dP *8 ~ T>
P- —  — p = Q)VZ,

2Hp0 Po dz pq

dVx . „ dV2 ,/y Nft,

-IT-"*-
Po dx

ipOf, ■ dVx . dVz
-m— =0>p.

We now wish to construct a Hilbert space in which our solution will lie. We arrange

the functions into a column vector in the order

( P\

\v) = p (5)
V X

\ P J



ACOUSTIC GRAVITY WAVES 297

and define the inner product

/OO

p;h + v:a Kb + Ka Kb + Kh dx dz.
-OO

Equation 4 takes on the form

(6)

7» = w|u), (7)

where the operator T is given by

( 0 -iyP0f2 ~iyPofx 0 ^

+ 0 0 -fo
0 0 0

Pa Ox

V 0 -'Poik + in 0 J
This operator is not symmetric; nor does it appear to have any of the other normally

desirable properties for operators. We define a new vector space

/a, \

CLl

(8)

I a)
ai

w
where

P
a i -

a2 =

vW
sfy%

a3 = —;

a< = ̂ hv(£~r7o)

t o -£-r 0

M = ic
-£ + r o o

~ih ooo
V o o o )Hy

where we have defined

r=-(--~
H \2 y

The operator M is self-adjoint.

(9)

(10)

V7(M)
The inner product is

/OO

a\b\ + albi +alb->, + albidx dz. (11)
-OO

In the new space our eigenvalue problem, Equation (4), becomes

M\a) = <y| a) (12)

where

(13)
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Eigenvectors. The spectrum of the operator is all real numbers, co, which satisfy

w2 < or a>2 > oi\, where
_ ys

?r '

 e (14)
cob = Vv - i-

{coA and % are usually called, respectively, the acoustic cutoff frequency and the

Brunt-Vaisala frequency). For each point in the spectrum there are an infinite number

of degenerate eigenstates which we can label \a>,kx,j) where the index j runs from

1 to 4. These eigenvectors are conveniently given in terms of a vector, p, in the

finite-dimensional space

(P\\
Pi

| p{(o,kx,kz,c)) =

where

P 3

\PaJ

co( l-(^f)2)
Pi = 

ckz - i\J(o2A - co2b

Pi = 1,

krC
P* = —PU

,u>b
Pa ~ ~l~w'

and kz is determined by the dispersion relation

c

The eigenvectors can now be given as

\<o,kx,l) = ±\p(co,kx,kz,c))eik<xeik=*,

\(o,kx,2) = ^\p{(D,kx,-kz,c))eik*xe-ik=z,

\(o,kx,3) = jj\p(co,-kx,kz,c))e-ik<xeik=z,

\0J,kx,4) = ^\p{(o,-kx,-kz,c))e-'k"xe-'k:Z.

N is a normalization which we take to be

N-2 = (2n)2ur(p\p) - (2*)2-^-r l^'l2dk
dw

djL.,
1

87T2

cok.c2

(15)

(16)

kz = -^(M2 - 0>a) + ( (tt) -1)- (17)

(18)

(19)

c2kl + cj2a- oj2b

With this choice of N we have

{(o',kx,l\a),kx,m) = S,m8{o) - (o')d{kx - k'x). (20)
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For a given value of a> lying in the spectrum of M we find the range of the parameter

kx to be

kx > F(co,c), 0)2<a)2B,

kx < F(o),c), (02>m24,

where

F(w,c) =
CO2. - (O2

1/2

(22)

Notice that in the way we have labeled the states both kx and kz are positive numbers.

The solution. The machinery so far accumulated solves the initial value problem

for the case of a single isothermal layer. If we know the configuration of the system

at time / = 0 to be |/(0)), the configuration at time t will be )/(/)), given by

I/(')> = £ // (Q),kxJ\f(0))\a,kxJ)e-io"dkxda, (23)
7=1 ■* Jr

where the region of integration, R, is (see Eq. 22)

{co<-(oA; kx < F(a>,c),

- a>B < (o < cl>b', kx>F(a>,c), (24)

CO>COA\ kx < F{(o,c).

The case of two isothermal layers.

Formulation. We now consider the case where the medium consists of two isother-

mal layers having two different temperatures (stability requires that the hotter layer—

the layer with larger values of H and c—be the upper region). We shall use the con-

vention that parameters for the lower region be labeled with the subscript 1 (e.g. H\)

while those for the upper region are labeled with the subscript 2. We shall assume

that the adiabatic constant, y, is the same in each layer although this assumption is

not necessary. We define the ~-variables as in Eq. (2) using the value of H and

Po appropriate to the layer in question (Pq is the same in the two layers) and then

find that Eqs. (3) are satisfied where again we must choose the parameters appropri-

ately. The transformation (10) can then be made for each layer and the dynamical

equations can be written as (see Eqs. (12) and (13))

M{cx)\a) = (o\a), z < 0,

M{ci)\a) = oj\a), z > 0,

where we have taken the discontinuity in temperature to occur at z = 0.

The (linearized) boundary conditions at the interface between the two layers (z =

0) are usually written as

r>l =K |z=0-,

dP_P0y

dt h 2

= [9P_Poy

z=0, \dt H 2

(26)

z=0-

These equations result from linearizing the full boundary conditions which require

that the z-component of the velocity and the pressure be continuous at the (moving)
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interface. For our purposes the appearance of the time derivative is very inconve-

nient; we use the equations of motion, (3), to eliminate the time derivative and use

Eq. (10) to write the result in terms of the a-vector. We get

C2^2\z=0+ = Cl#2|z=0- >

("'+ Tr^F"4) u-°*= ("'+ shr"4) u"°"' <27)

From the first line of Eq. (27) we see that the function a2 must be discontinuous

across the interface; from the second line we see that a\ and a4 may be separately

discontinuous so long as the particular linear combination of them is continuous

(it is this last possibility that makes the trouble). The difficulty which prevents the

extension of our one-layer methodology to two layers from being completely straight-

forward is that the boundary conditions (27) make the operator M nonsymmetric in

the space with the inner product ( | ) defined by Eq. (11). The operator ijp is usually

not symmetric if there are boundaries across which functions change discontinuously.

The nonsymmetry of M in the inner product ( | ) is shown explicitly in the appendix.

A means of alleviating the problem is to redefine the inner product. Given two

vectors in a-space we define

{a\b}= [°° (r {a\b\ +alh + ath + albA)dz-^[alHbA]YiS) dx. (28)
J — oo \J —oo r * J

The form (28) is linear in the right-hand element and antilinear in the left-hand

element but it is not positive definite when a and b are the same so we have an

indefinite space. In the appendix we show that the operator M is symmetric in the

new space.

Eigenvectors. The eigenmode structure of the two-layer case is substantially more

complicated than that for the one-layer case. Figure 1 is useful in sorting out the

structure. The particular case shown there is C\ = 0.5; c2 = 1; io.4t = 4/\/3; coBl - 2;

coA2 = 2/\/3; (Ob, = 1 (these numbers imply that y = 4/3). The qualitative aspects

of the eigenmode structure are the same as long as c\ < c-l (which is necessary for

stability) and 1 < y < 2. The solid curve is the line

k ~ -Kx -
C\

- U1

col - CO2

1/2

(29)

For values of kx and a> which lie on this line, kZl =0. If <±> < a>B, then we find that if

kx is above the line, k^ is positive; if kx is below the line, k]f is negative. If to > o)A[

then if kx is below the line, k^ is positive while if kx is above the line, k\x is negative.

If < a) < cdAi, k^ is negative for all values of kx. Similar remarks apply for k\^

where the relevant line is shown by the dashed curve in Fig. 1; the equation for the

line is
1/2

(30)k - -Kx — —
C2

U)\ - CO2
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Fig. I. The mode structure of the two-layer case

The two curves cross at two values of co given by

2 (r-1 _l_ <^2 r i c<i \ ~lr2_ 16(y-l) cfcj

y2 (cf + cj)2

l/2>

(31)

Let us call the solution to Eq. (29) kxt and the solution to (30) kXl. (Note that these

do not indicate the value of kx in regions 1 and 2; kx must have the same value in

each region in order to satisfy the boundary conditions.) First consider the region

R\ which consists of

*i G
coc- < o) < o>b2

o)Ai < at < a>c+

(Dc+ < CO

kx > kx i,

kx > kx 2,

kx < kx |,

kx < kx^.

Also included in R\ are all points in the image region generated by the substitution

co —» -co. For each point in R\ there are four eigenvectors, called the freely propa-

gating modes. These modes exhibit oscillatory behavior in both regions 1 and 2 and

are much like the modes for the one-layer case. As shown in the figure the region Ri
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consists of:

!co < coc-
coA2 < co< coAl

CO,4, < CO < COc+

kx2 < ^JC < »

< kx2 > (33)

< kx < kX2.

R.2 also includes the image region created by the substitution co —► -co. At each

point in R2 there are two eigenvectors, called mixed modes. These modes exhibit

oscillatory behavior in the z-variable in layer 2 but exponentially decaying behavior

in z in layer 1. Region includes

*3€

<yc_ < co < cob,

o>b2 < oj < CObf

coc * < co

kX] < kx < kX2,

kXl<kx, (34)

kXi ^ kx < kXl,

plus the image under co —* -co. At each point in Rt, there are two eigenvectors also

called mixed modes. These modes exhibit oscillatory behavior in z in layer 1 but

exponentially decaying behavior in z in layer 2. The points in the half-plane kx > 0

which are not in R\, R2, or Rt, are in R4. There are no eigenstates for points in

except for the dotted line shown in the figure which corresponds to the solution to

the equation

-it t ? krCi(o.i, co I, .,
i-2r2 _ ,.,2 I ' ' , 'I -L -J- ik-r
~j~2 2    ^ = 0- (35)
kici — CO 2 !, to..,,

2 y co* ~ c2 ~ ^2

kZ] and kZ2 are solutions to the dispersion relation, (17), in their respective layers

(recall that since we are in the region R4, kZ] and kz, are both pure imaginary). At

each point on the line, (35), there are two eigenvectors. These are called the ducted

modes [2]; they are exponentially decaying in both layers 1 and 2.

We shall label the eigenvectors in R\, \co,kx,j)F where j runs from 1 to 4. A

convenient choice is

I oj,kx,\)F

' \p((o,kx,-kz, ,cx))eik*xe~ik:<z, z < 0,

A\p(co, kx, kz,, c2))eik*xeik--2Z (36)

. + B\p(co,kx,-kZ2,C2))eik*xe~ik:2z, z > 0.

\co,kx,2)p is proportional to the RHS of (36) with kx everywhere replaced by -kx.

For the other two states we have

\co,kx,3)F

C\p{co,kx, k2l,ci))e'k*xe'k:iz + D\p{co,kx, -kZl,cx))eik^xe~ik:>z,

z < 0,

\p(co,kx, kz, ,C2))elkxXe'k:2z, z > 0.

(37)
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|w,kx,A)F is proportional to the RHS of (37) with kx everywhere replaced with -kx.

The coefficients A,B,C, and D are determined by the boundary conditions. We get

•""■i / "2

h-1
Pi{a>,kx,-kZl,cl) - %Pi{(o,kx,-kZ2,c2) + (| ~ *)

P\(w, kXl, kZl, c2) - Pi (co, kx, -kZ2, c2)

Pi{(o,kx,kZl,c2) - %Pi((o,kx,-kZl,Ci) + -7=^ (| - l)

B — — — A,
c2

(38)

C =

D = — — C.

P\{(o,kXx,kZi,C\) -p\(p),kx,-kz,,c\)

c 1

These eigenvectors have two convenient properties: they are mutually orthogonal;

subsets of them analytically continue into the mixed mode eigenvectors of regions

R2 and Ri. In particular, when we cross from region R\ to region R2, we label

the eigenvectors |co,kx,j)\f1 where j is 1 or 2 and find that these are proportional,

respectively, to the analytic continuation of \(o,kx, l)f and \a),kx,2)F- If we cross

from region R\ to region Rt, we label the states \(o,kx,j)M} where j is 1 or 2 and find

that they are proportional, respectively, to the analytic continuation of \(o,kx,3)F

and \(o,kx,4)F. The normalization of the states does not analytically continue across

the boundaries. We define normalization functions:

/ f1 - (^)2) cokZ]c\ (l - (^)2) cokZ2c2

N2 = (In)2 V V ' ' - - V V ' '

N2 = (2n)2

c? kl + < -

(* - (^)2)

"I = (2 nY

C2kl + 0JA2 ~ 0j2B

7 = 3,4,

J cokz,c2

4kh + 0JX - 0Ji
(\a\2 + \b\2),

.1 -
^s^)2W^r('c |2+|Z)|2)- (39)

The vectors \(o,kx,j)F, \o),kx,j)Ml, or \to,kx,j)M} are given by the RHS of (36)

divided by the appropriate normalization factor from (39); with this normalization

we have

{(y', k'x,l\cD,kx, m) - Shnd(kx - kx)d(a> - w')
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for all the vectors whether of type F, M2, or M3.

For each point on the dotted line in region R4 there are two eigenvectors corre-

sponding to ducted modes traveling in the plus or minus *-directions. Since there

is only one value of kx for a given a> we could label the eigenvectors with <y; it is

somewhat more convenient to label them with kx thus obtaining four eigenvectors

for each kx—two for the two x-directions times two for the two possible signs for

0) each of which corresponds to the given value for kx. We shall call these vectors

I kx,j)o where j runs from 1 to 4 and

f 7ir\p{\u>\,kx, -kz. ,C\))eikxXe~'kz<z, z< 0,

fe,i>D= • (40)

jkx,2)o is the same function with the replacement kx —► -kx on the RHS.

lk = I ^klP(-H,kx,-k2l,Cl))e^e-ik'i',

° I ^\P{-M>kx,kZl,C2))eik'xeik'z.

\kx,4)D is the same function with the replacement kx —► -kx on the RHS. We choose

the normalization to be

N2d = 2n{\\p(\io\,kx,-k2l,ci))\2 + \\p(\co\,kx,kZ2,c2))\2 2c^ ^

+ y^{Hx\p^\oj\,kx,-k^,c{)\2 - H2\p4{\o)\,kx,k2l,c2)\2} (42)

for j = 1,2 and similarly for j = 3,4 with \<x>\ —► -|to|. With this choice we have

D{k'x,l\kx,m}D = S,mS(kx - k'x). (43)

The solution. If, at time t = 0, the configuration of the system is |/(0)), at time t

it will be |/(0) where

I /(')> = E f f {<o,kxJ\m}\o>,kx,j)Fe-i»<dkxdcD
~7 Jf

+ J2 f [ {(o,kx,j\f(0)}\(o,kx,j)M,e-ia"dkxd(o
J=[ Jr2 Jm2

2

+ J2 [ [ {^,kx,j\f(0)}\o),kx,j)M^e~iwtdkxd(o (44)
j=l Jr, Jm3

2 nOC

+ E / D{kx,j\fm\kxJ)De-^)l dkx
j= i Jo

4 rOO

+ E / D{kxJ\f(0)}\kxJ)De^'dkx.
j=3 J°

In the last two lines the function to{kx) is determined by Eq. (35).

Remarks. It may happen that the dotted line in the figure (the solution to Eq.

(35)) crosses one of the lines which defines the boundary of R4. If that happens it

will cross in two places and there is a gap in the last two integrations in Eq. (44). If
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one wishes to solve problems with radial symmetry the necessary replacement is

/PA
P2

Pi

\PaJ

e±ikxx

( PiJ0(krr)\

PiMKr)
P3J\(krr)

\P4J0(krr)J

dx dz —► krrdrdz,

where kr satisfies all the equations kx satisfies in the Cartesian case. Note that all the

eigenvectors of M have positive norm even though the space is an indefinite space,

a result which might seem impossible at first thought.
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Appendix. In this appendix we will discuss in detail the considerations which lead

us to use the inner product defined in Eq. 28. The operator M was defined to be

/ n   L + _L_jL n \
' U dz 2H + yH dx U

M = ic -h + TH-jH 0 0

-fx 0 0 0

V 0 o o J

(A-l)

where H and c take on the values H\ and C\ if z < 0 and the values Hi and cj if

z > 0. The inner product for the one-layered case was taken to be

/OO rOO/ (a*b\ + a^b2 + a^b?, + a\b^)dxdz. (A-2)
-oo J — OO

We shall first show that the operator M is not symmetric in the space whose inner

product is defined by Equation A-2. We have

WMb) = £ ,■ [c, £ (-H

^ [°° (. (_dh_y-2h _db1
+ 2 J0 I 1 [ dz 2yH2b2 Ox

+a2* w2bi + ^rb\

+ a''\-^srb2))d' dx.

(A-3)
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For the conjugate matrix element we have

+ b* +64 dz
dx J yH\

r (u ( da2 y- 2 . 9a? \

1 u 1 da* 2 — y„* , \/7 - 1
+ft2,~^7~2^ai + _^rfl4

dx. (A-5)

8l/"-\ yHl");-dX{ A-4)

We now calculate (integrating the <9/dx terms in (a|A/6) by parts):

{a | A/A) - <Wa|4) = j_j[c, di

f°° ( ,db2 tdb{ , da; , da*{\ , 1

Jo \ dz dz dz dz J

Integrating the second two terms in each pair of brackets by parts we have

/OO

(ic\[a\bi + a^illo- - ic2[a\b2 + a^illoOdx. (A-6)
-OO

Looking at the boundary conditions given in Eq. 27 in the text we see that there are

vectors for which

(a\Mb) - {Ma\b) ± 0

in the inner product defined by Eq. A-2.

The solution to the problem of the nonsymmetry of the operator M in the standard

Li space is to subtract off the remainder term in Eq. A-6 within the inner product.

That this is possible is due essentially to the fact that although the boundary condition

as written in Eq. 26 involves the time derivative, we can rewrite it in such a way that

it does not, as is done in Eq. 27. We now redefine the inner product as (see Eq. 28)

{a\b} = J (a*b\ + alb2 + a^b) + a^b^ dz

7 (a;H2b4\0+-alHib*\o-)dx. (A-7)
7-1
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Repeating the arguments which lead to Eq. A-6 but using the new definition of the

inner product we find

{a\Mb} - {Ma\b}

= ~j i | [a*\b2c]

0"

y- 1

0"

+ [a*ib\c]

o+

*• y/y - 1 .
- aAic\ — b2

o+

+ b^ici^-—-«2 - bAic\ —-Cl*2

o-

dx.

(A-8)

The boundary conditions (27) now give

{a\Mb}-{Ma\b} = 0

so that the operator M is symmetric with the form (A-7) taken as an inner product.

The form, (A-7), has most of the properties of an inner product: it is linear in

the right-hand element; it is antilinear in the left-hand element; it is real when the

elements are the same, but, it is not positive definite when the two elements are the

same. The space we are working in is thus an indefinite space.

References

[1] The literature on acoustic-gravity waves is extensive. See S. H. Francis, J. Atmos. and Terr. Phys.

37,1011,1975
[2] G. D. Thome, J. Geophys. Res. 73, 6319, 1967


