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Abstract. The stream function is found for the creeping flow between two cylin-

ders. The inner cylinder is approximately circular and is rotating with constant an-

gular velocity. The outer cylinder is fixed and corrugated or spatially periodic. The

boundary vorticity on the outer boundary is discussed in relation to separation of the

streamlines, as a function of the parameters describing the boundary geometry.

Introduction. There is engineering interest in connection with flow in the pres-

ence of a corrugated or spatially periodic boundary. The present paper describes

the creeping two-dimensional motion between two cylinders, the inner of which is

approximately circular and the outer of which is fixed and corrugated. The inner

cylinder rotates with constant angular velocity a>.

The generalized fluted column transformation [2] is used to describe the boundary

geometry and the flow is modelled by constructing suitable spatially periodic solutions

of the biharmonic equation appropriate to the boundary conditions. A solution for

the stream function is found in a finite form as a function of the mapped coordinates

and is correct to 0(X") where X < 1 is the radius of the inner boundary and n is the

number of peaks of outer boundary corrugation. Alternatively, the expression found

for the stream function may be interpreted as the exact solution for a two-dimensional

line rotlet located at the center and in the presence of the outer corrugated cylinder.

The vorticity and pressure field are calculated on the outer boundary and, for

certain relations satisfied by the parameters describing the geometry of the outer

cylinder, there is separation of the streamlines. There are many examples of flow

separation of zero Reynolds number [3] but the solution found here seems to be new

for a periodic boundary. Simple expressions for the torques are given as functions

of the boundary parameters.

The generalized fluted column transformation. This transformation is defined by

z = f + ^2esCsn+], z = x + iy - re'e (1)

j=i
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Fig. 1. Sketch of the fluted column with N = 12.

In this case r.! (1 + e2) > 4e2 and the inner peaks occur at cos n<t> = — 1.

and C = P?"t>- The case N = 1 originates in [1] in connection with the torsion

problem in two-dimensional isotropic elasticity. For N > 1 the transformation is

regular analytic in the interior of |£| = 1 when n is a positive integer and if 0 < es < 1,

5 = 1,..., N, with ms = e{sn + 1) then for

1 > m\ > m2> ■ ■ ■ > mN > 0, (2)

the roots of

^=i + £>,;» <3)«C 5=1

lie outside the unit circle |£| = 1 and the transformation is conformal within |£| = 1.

This result depends on the example given in [2]. The case to be considered in the

present paper is N = 2, so that

z = C + £iC"+1 +EiC2n+i, (4)

where 0 < e7 < 1 ,j= 1,2, and 0 < mj < m\ < 1 with m\ = («+ l)£i, mi = (2« + l)£2.

In terms of x,y the mapping can be written as

x = pcos</> + £\pn+i cos{n + 1)0 + £2/>2"+i cos(2« + 1)0, (5)

y - psin</> + £ipn+l sin(« + 1 )(p + £2p2n+x sin(2« + 1 )<f>, (6)

so that

r2 = x2 + y2 = p2 + 2e\pn+2 cos ncp + 2£l£2/?3'I+2cos«0

+ 2s2P2n+1 cos 2 n(j) + e2p2n+2 + e2 p4n+1 (7)

and, in particular on p = 1,

r2 — 1 + 2fii(l -I- £| + £2)2 - 2(1 - COS A20)[£| (1 + £2) + 2fi2(l + COS«0)]. (8)

The absolute maxima of r2 occur at cos rup = 1 where there are n peaks and r = 1 +£1 +

£2. There are extremal points at cosrup = -1 and also at cosncj) = -£i(l +£2)/(4£2) if
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£i(l+fi2)/(4e2) < 1- If £i(l +£2)/(4e2) > 1, then the minimum occurs at cos n<p = -1,

where r = 1 - e\ + £2 but if ei (1 + £2)/(4£2) < 1 then the minimum occurs at

cos n4> - —£](1 + £2)/(4£2) < 1 where

r2 = (r-e2)2[l-e2i/(re2)] (9)

and the points cos/20 = -1 correspond to local maxima. In this latter case there are

2n inner peaks where r is a minimum while if £1 (1 + e2)/(4e2) < 1, there are n inner

peaks where r is a minimum. Sketches of the fluted column for £i(l + £2) > 4e2 are

given in Figs. 2 and 3.

Fig. 2. Sketch of the fluted column for «i(l + e2) < ^£2-

Fig. 3. Sketch of the fluted column for e,(l + e2) > 4«2-

Again if 0 < X < 1 with A" <C 1, then on p = X,

r1 = A2 + 2£iA"+2 cos n</>+2ei£2A3n+2 cos n<j>+2fi2A2n+2 cos 2rt(j)+EjX2"+2 +S2^n+2 (10)

so that

r,2 :A2 (11)

and the region X < p < 1 maps into the region between the approximate circle r = X,

and the fluted column p = 1. For example if X — 0.5, n = 12, X" < 2.10-4.

The flow problem. The flow problem to be considered is the creeping motion be-

tween the approximate circular cylinder which is rotating with constant nondimen-

sional angular velocity co, and the corrugated outer cylinder which is fixed.

The nondimensional fluid velocity q can be described in terms of a stream function

¥ by

q = curl(-^k) =-i//y i + y/x] (12)

and y/ satisfies the nondimensional Stokes equations

dp d _2 dp d _2
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where p is the pressure field, and V2 is the two-dimensional Laplacian defined by

v2^ + ^- (14)

Elimination of the pressure field from (13) yields the biharmonic equation for y/,

viz.,

vy = o. (15)

The boundary conditions of zero velocity on the corrugated boundary p = 1 are

satisfied if

\u — constant, ^^ = 0 at /? = 1. (16)
dp

The inner boundary conditions are satisfied approximately if

if/ - constant, = wl at p — X (17)

provided A" < 1. The boundary conditions force spatially periodic solutions of

the biharmonic equation. Using the fact that the two-dimensional Laplace equation

is invariant under conformal mapping, suitable solutions can be constructed in the

following way:

y/i = xp cos 4> + ypsin (p = p2 + E\pn+2 cos «</> + e2p2n+2 cos 2n<p, (18)

¥2 = xpn+> cos(n + 1 )<(> + ypn+] sin(« + 1 )<f>

= p"+1 cos ncj) + E\p2n+2 + E2pin+2 cos n<f>, (19)

^3 = xp2n+l cos(2/7 + \)4> + yp2n+l sin(2n + \)4>

— p2n+2 cos 2ncj) + e{pin+2 cos ncj) + eip4n+1. (20)

A solution appropriate to the present flow is given by

y = A log/? + 5^2 + Cy/4 + Dp" cosn</>, (21)

where

1//4 = y - £2(^3 = p2 - E2p4n+2 + [e 1 p"+2 - E\E2pin+2] cosn(fi. (22)

The stream function may be written as

i/y = A logp + B{[pn+2 + S2P3n+2] cos n<f> + S\p2"+2}

+ C{p2 - e2p4n+2 + £1 (pn+2 - £2pin+2) cos n<i>) + Dp" cos ncf) (23)

where A, B, C, D are constants to be determined by the boundary conditions. After

application of these conditions the constants satisfy the system of equations

5(1 +£2) + C£i(1 -e2) + D = 0, (24)

B[n + 2 + s2(3n + 2)] + Ce,[n + 2 - s2(3n + 2)] + nD = 0, (25)

A + 2s,(n+ 1)B + 2C[1 - (2n + l)ej] = 0, (26)

and neglecting terms of 0(k") the inner conditions are satisfied if

coA2 = A + 2CA2. (27)
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Elimination of A, D from the above system yields the equations

coX2 = 2C[A2 - 1 + (2n + l)e|] - 2(n + 1 )e]B, (28)

B[ 1 +{n + l)e2] + Ced 1 - (n + l)e2] = 0. (29)

The constants B and C are then found to be

B = -\(oA2Si[l ~(n+ 1 )e2]  f3m

{[A2 — 1 + (In + 1 )^2 ][ 1 + (^ + 1)^2] + (n + 1 )ef [ 1 — (n + 1 )^2 ]}

c = ^A2et[l + (n + 1)62] 

{[A2- 1 +(2n + l)e|][l + (n + l)e2\ + (n + l)e2[l - (n + l)e2]}' 1 '

and the stream function y/ is expressed by

if/ = (coX2 - 2CA2)log/? + 5{(e2/?3"+2 + p"+2)cosruf) + £jpin+2}

+ C{p2 - e2p*n+1 + £\{pn+2 - £2pin+2) cosri(f)}

- {5(1 + e2) + Cei(l - e2)}/>" cosn<j>. (32)

As a check on the stream function in the case £1 = e2 = 0, Eq. (32) reduces to

iol2 1 coA2 2= - ' (33)

which is the known stream function for flow between concentric circles in which the

inner p = A rotates with angular velocity a> and the outer p = 1 is fixed. In the case

e2 = 0, the stream function is a function of p only and is given by

" = [l-^-(»+l)e;] {[1 " + l)£?ll0e" " ^ ; <34)

so the streamlines coincide with the fluted columns p = constant, corresponding to

N - 1. Clearly there is no separation of the streamlines at the corrugated boundary

in this case.

The vorticity £i is defined by

<3»

where

w = VPP + - VP + -^2 Vw (36)

and
2

= 1 + m\p2n + mlp4" + 2m2p2n cos2n(j>+2m\pn cos n(f>+2m \ mi pin cos ruf).
dz 1

dC
(37)

A straightforward calculation shows that

W = 4 B{n + 1){[/?" + (2 n + l)e2/73"]cosn</> + £,(/? + 1 )p2"}

+ 4C{1 - (2n + 1 )2e2p4n + (n + l)fii p" cos ntf>

- (2n + \)(n + 1)^3"£|£2 cos/70} (38)
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so that the vorticity is given by

Ci = vV = [4 B(n + 1 ){[pn + (2 n + l)e2p3n]cosn(j) + ^(/z + 1 )p2"}

+ 4C{1 - (2n + 1 )2e|p4n + (n + l)£i p" cos ncp

- (2« + 1)(« + l)e1e2/?3" cos«0}] (39)

x [1 + m]p2n + m2p4n + 2m2P2n cos 2ncp

+ 2m\p" cosn<f> + 2m\m2Pin cos

From Eq. (13), Ci and p are conjugate two-dimensional harmonics and the pressure

field is expressed by

p = 4(n + 1 )B[p" sin ncp - m2/?3" sin ncp]

-I- 4C[-2m2P2" sin2n<j> - m\m2p3" sin ncf> - m\pn sin ncp] (40)

x [1 + m\p2n + m\p4" + 2m2P2n cos2ncj) + 2m\p" cosncp + 2m\m2P3n cosn(p]~l

On the corrugated boundary p = 1,

W(\,<f>) = -4Cmiy[(l + m2) cos/i0 + m\] + 4C[l - m2 + m\{ \ - m2)cosn<p] (41)

where
1 - (F. -H)t;

7 1 + (« + l)e2

In particular at cos n(f> = 1,

W - 4C[1 - tri2 - + m\ + m2) (43)

and at cos ncj) = -1,

W - 4C[1 - m2 + + m2 - mi). (44)

Since C < 0, and y > 0, 0 < m2 < m\ < 1, the vorticity at cos ncp = -1 is negative

and there is no separation of streamlines at these points. Separation occurs only when

the boundary vorticity is positive and this will take place at points where cos ncp = 1

which corresponds to the maximum distance of the corrugated boundary from the

origin, provided that

1 - m2 - m\y < 0. (45)

For example, if m\ — m2 =

l~nh~miy = mr^)<0 <46)

since 0 < e2 < 1. Again since cos ncf) < 1 the separation first occurs at the points

cos ncp = 1 considered as a function of the boundary parameters and spreads around

the boundary but not reaching points where cos n<p = -1. In fact, for this particular

choice of m\ and m2, 4e2 > £i(l + e2) and the minimum values of r occur at cos ncf) =

—£j (1 +£2)/(4e2) from which it is readily shown that the vorticity is negative at these

peaks. It follows that the separated region of flow is confined to the most concave

regions of the boundary in agreement with the results of Stokes flow separation [3].

There is no separated flow in the regions -£i(l +£2)/(4£2) > cos ncp > — 1. As already
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pointed out there is no separation of the flow for = 0. See Fig. 1. However, the

boundary vorticity is expressed by

-2<yA2(l - m\)

l/'~l [1 - X1 - mi£i][l + 2m\ cosn(f> + m\]Ci = VV|P=1 =      1',?, (47)

and if m\ = 1 - 8, 0 < 8 < 1, so that Ci = 0(8) at cosncp = 1 and 0(8 ') at

cos ncj) = -1.

The torques. Neglecting terms of 0(A") the torque per unit thickness of inner

cylinder is found from the standard formula as

G = 2n{2CX1 - coX2} (48)

= 2nkw { /l2[l + (n + l)e2] A

\ [A2 — 1 + (2n + 1 )^2][+ (" + 1)^2] ■+■ (n + l)c2[l — (n + 1)62] J

(49)

The torque on the outer cylinder is -G. It is perhaps of interest to point out that

even in the case of separated flow the corrugated boundary has little influence on the

torque in comparison to that of circular cylinders, the difference being of 0(n~l).
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