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1. Introduction. In this paper we discuss a model for diffusion of populations

with age dependence in several space variables. The fundamental principle states

that in a fixed region in space the population can change only through births, deaths,

immigration, and emigration (see [12]). In a small interval of time dt the change in

the population p is

Dp = (B-D + I-E)dt. (1.1)

1.1. Age dependent populations. Let p(t, a) be the age population density, i.e.,

f°2 p(t, a) da represents the number of individuals at time t of ages between a, and
1

a2. In particular u(t) = /0°° p(t, a) da is the total population at time t. A change of

h units in time implies a change of h units in age. Thus assuming differentiability

DP ~ Pt + Pa ■ When using Malthus's law for births and deaths, with 7 = E - 0, eq.

(1.1) becomes

p, + pa = -pp, (1.2)

where p might depend on a . Integrating along characteristics we arrive at the formal

solution

x [ p(0,a-t)e-f>(a-'+s]ds t < a,
P(t, fl) = < f ~ 0-3)

\p(t-a, 0)e~foM(s)ds t > a.

Thus in addition to specifying the initial age distribution p(0, a) = p0(a), we

also need to specify p(t, 0), the number of newborns at time t. Assuming that

the population sex ratio remains constant, the birth rate P(a) is defined such that

P(a)da represents the average number of offsprings produced per unit time by an

individual aged between a and a + da . In this way there is a birth law

B(t)
r OO

= p{t, 0) = / P(a)p(t, a)da. (1.4)
Jo

The Lotka-Von Foerster model (also McKendrick-Von Foerster) consists of Eqs.

(1.2) and (1.4) along with a nonnegative initial condition p0{a) >0. In [15, 18]

Gurtin and MacCamy proposed a model in which the birth modulus and the death
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modulus depend also on the total population u(t). The Gurtin-MacCamy model for

age dependent populations without diffusion is:

P, + Pa= ~P(a> U)P>
roc

p{t,0) = B{t) = P{a, u)p{t, a) da,
Jo

rOC

p{0, a) = pQ(a) > 0, u(t) = / p[t, a)da.
Jo

1.2. Diffusion of populations. Let p(\, t) be the number of individuals present at

time t at position x, x 6 Ra. Immigration and emigration are modeled here by

diffussion

/>( + divv = CT, (1.6)

where v(x, t) is the diffusion velocity and er(x, t) the population supply. The first

model of this type was given by Skellam [28] in 1951. Assuming random motion of

the individuals, v = -kVp , he arrived at

pt = kAp + a(t), (1.7)

where k and p are constants. It has been observed however that several species

instead of dispersing at random actually disperse to avoid crowding (see for instance

[7]). This corresponds to v = -kpVp which gives

pt = k div(pVp) + a. (1.8)

In [12] Gurney and Nibset arrived at this equation after considering a probabilistic

walk in which individuals either stay at their present location or move in a direction

of decreasing population. In [16] Gurtin and MacCamy considered

pt= A<p{p) + a{p), (1.9)

where (p has properties similar to <p(p) = p"', m > 1 .

When a = 0 the equation
pt = A(pm) (1.10)

is the porous medium equation which models the flow of a homogeneous gas with

density p flowing through a homogeneous porous medium. There is an extensive

literature for this equation (see for instance [1, 26, 29] and the references contained

there). The most striking difference between the solutions of (1.10) and those of the

usual heat equation

pt = Ap (1.11)

is their speed of propagation: Assume the population is initially distributed in a

bounded region Q in space, i.e., supp/?0 c Q. The solutions of (1.11) have an

infinite speed of propagation: p(\, t) > 0 for xeR", t > 0, thus the population

would spread immediately to all the space. On the other hand Eq. (1.10) has a

finite speed of propagation. There are two fronts that separate the populated region

p{\, t) > 0 from the unpopulated region p(\, t) = 0.

1.3. Age dependence and diffusion. In 1981 Gurtin and MacCamy [14, 17] pro-

posed a complete model with age dependence and diffusion. They let p(\, t, a) be
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the population density at time t, age a and spatial position x. The anticrowding

model is:

/,, + /?a = 'cdiv(^Vw)-Ju(<z, u)p, (1.12)
rOC

p(x,t, 0) = / P(a, u)p{x, t, a)da, (1.13)
Jo

rOO

u{x,t) = / p(x, t, a)da, (1-14)
Jo

p{x, 0, a) = p0(x, a) > 0. (1.15)

This system is too general to be treated in this form and some simplifying assump-

tions are necessary.

The model (1.12)—(1.15) can be reduced to a system of partial differential equa-

tions when the birth modulus /? has the form fi{a, u) — P(u)e~aa and the death

modulus p depends on u alone. These assumptions correspond to the case in which

individuals are more fertile at younger age and age is not a significant cause of death.

This is typically true both in the case of a population exposed to a harsh environ-

ment and that of a population in the presence of predators that do not discriminate

by age. We introduce the auxiliary function G(x, t) = /0°° e~"ap(x, t, a) da and the

per capita distribution term
. , G(x, t)

p(x, t) — — -
u(x, t)

for u ^ 0, and p = 0 for u = 0.

Integrating (1.12) with respect to a from 0 to oo and multiplying by e~aa and

integrating with k normalized to be 1, one arrives at the system

ut = uAu + |Vw|2 + {fi(u)p - p(u))u, (1-16)

pt — VuVp = (/?(«)- a)p - P(u)p2 , (1.17)

and the initial conditions

r OO

u(x, 0) = w0(x) = / Pq(x) dx, (1.18)
Jo

f™e~aapJx, a) da
P(X, 0) =p0(x = —-2——j • 1.19

Jo P0(x'a)da

This is a mixed system. The first equation is of porous medium type. It is nonlinear

parabolic for u(x, t) > 0, but it degenerates to ut = | V«|2 at the points u(x, t) = 0.

The second equation is of first order nonlinear hyperbolic type.

In [17] Gurtin and MacCamy treat the case in which p(a, u) = jie~aa, /? and

p constants, in the one-dimensional domain 0 < x < 1, obtaining existence of a

solution under these conditions.

Because of the similarity of (1.16) and (1.10) we should expect that the population

u(x, t) would disperse at a finite speed. Also under specific conditions on the birth

and death modulus the population might remain localized for all times or under

other assumptions extend to all of R V . In the one-dimensional case these results
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were proven in [20] and [19]. Namely, there exist two interfaces that separate the

populated region from the unpopulated region, i.e., the support of u(x, t) is finite

for all time. Also if

sup aM < inf ^u)~a
o<u<mx m o<u<Mt m

then the support of u grows to R as t —► oo. In this case all the region will be

ultimately populated. On the other hand if

P{u)-a ^ n{u)
P OI \ OI \

0<u<Ml />(«) 0<u<M, f}(u)

then the population remains localized in an interval [-L, L] for all times. Here the

interaction between age dependence and diffusion is such that the population persists

in a limited region.

1.4. Weak solutions. It is well known [23, 3] that the porous medium equation

(1.10) even with real analytic data will not have classical solutions unless uQ is

strictly positive in R . This is due to the fact that if uQ(x) has compact support

the solutions will not have a continuous first derivative when crossing the interfaces.

Thus we need to introduce a suitable definition of weak solutions of (1.16)—(1.19).

Assume u and p are classical solutions. Multiplying (1.16) by p, (1.17) by u and

adding we arrive at

(up)t = div(/?Vw2) + (/?(«) - a - n)up . (1-20)

We define a test function <p(x, t) as a continuously differentiable function in

Qt - Ra x (0, T) with compact support in Qr = Rx[0, T] and that equals 0 near

T. Multiplying (1.16) and (1.20) by q>(x, t), integrating and using the divergence

theorem we arrive at

ft - uip^j dxdt

= [P{u)p - n{u))u<p dxdt + / uJx)rp(x, 0) dx,
JJqt Jrn

(1.21)

ILljpVu2Vtp - purpt ) dxdt

- (P{u) - a - iu(u))pu(p dxdt + / uJx)p0(x)<p(x, 0) dx.
JJqt J Rv

(1.22)

We define a weak solution of (1.16)-( 1.19) as a pair of functions u{x, t), p(x, t)

such that u e W(QT), u has partial derivatives in the sense of distributions, p 6

J?loc(QT) and (1-21), (1.22) are satisfied for any test function <p(x, t).

The proof of existence of solutions of (1.16)—(1.19) was given in [20] for the

one-dimensional case. There are no results in anticrowding model (1.16)—(1.19) for

N > I . This is due to the fact that the porous medium equation (1.10) is much

better understood in dimension 1 than in higher dimensions.
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In the one-dimensional case of (1.10) Aronson [2] proved that if u'q~1{x) is

Lipschitzian then v(x, t) = um~1 (x, t) is also Lipschitzian with respect to i £

R x (0, T). Benilam [4] and Aronson and Caffarelli [8] proved that v also satisfies

a Lipschitz condition with respect to t in the same domain. In particular u(x, t) is

a-Holder continuous for any a £ (0, 1), i.e., the a-norm of u

. . \u(x, t) - u{y, t)| ...
\u\ = sup \ u\ + sup   tV (1-23)

\x-y\a + \t~x\a'2

is bounded by a constant K that depends only on uQ, m , and T. In higher dimen-

sions Caffarelli and Friedman [5] proved that w(x, t) is continuous with modulus of

continuity

2

and

w(p) = C\logp\ , N>3,0<e<n.

w{p) = 2 c|log^|1/2, N = 2,

where p = (|x-y\ +11- t|) ' is the parabolic distance between (x, t) and (y, x).

Thus if uQ is a-Holder continuous for some a € (0, 1) then |u(x, t) - u(y, r)| <

w(p) uniformly in RA x [0, T], The same authors in [6] proved that u(x, t) is

actually a-Holder continuous for some a e (0, 1) but a is unknown. In [1] Aron-

son describes an example due to Graveleau which shows that if the support of u0

has holes then it is possible for Vw to blow up near the boundary. Hence v{\, t)

cannot in general be Lipschitzian in x (r, T) for arbitrarily small x. Specifi-

cally for the porous medium problem in the radially symmetric case, if the gas lies

initially completely outside a ball around 0, as time increases the gas will fill the ball

and ultimately reach its center. The Aronson-Graveleau example shows that at the

moment v(r, t) is like ra , where a e (0, 1) depends on the dimension N and the

constant m. For N = 1 , a(l, m) - 1. For N > 1 , a has only been estimated

numerically. For example, it is given in [1] that a(2, 2) = .832221204... .

The one-dimensional porous medium type problem

ut = (um)xx + h(x,t,u)u, (1.24)

u(x , 0) = u0(x) > 0,

was treated by the author in [21]. It is shown there that the corresponding v(x, t) is

a-Holder continuous for any a e (0, 1) provided v0 is a-Holder continuous and h

is bounded. The proof of existence given in [20] is largely based in this fact. Related

results are given by Di Benedetto [10], Paul Sacks [27], and others.

In this work we shall prove existence of weak solutions for radially symmetric

initial distributions when N > 3 . For the random dispersal model we refer the reader

to Garroni-Langlais [11], Langlais [24], di Blasio [9] and the references contained

there.



92 G. E. HERNANDEZ

2. Main results.

2.1. Statement of existence of solutions. Let r = |x| = be the Eu-

clidean norm in RA . Radial solutions u(r, t),p(r, t) of (1.16)—(1.19) satisfy

Ut = uurr + u] + {N - \ )^y- + {P{u)p - n(u))u, (2.1)

pt- urpr = (P(u) - a)p - P{u)p2, (2.2)

ur(0,t) = 0, u{r, 0) = u0(r), p{r, 0) = pQ(r). (2.3)

We shall assume that the population is initially concentrated in a ball 5(0, 5,)

and it is strictly positive in some interior ball B(0, R2). From the definition of u and

G it is easy to see that if p0(\, a) = 0 a.e. with respect to a then w0(x) = G0(x) = 0.

On the other hand if pQ(\, a) > 0 in a set of positive measure, then 0 < G0(x) <

m0(x) and p0(\) < 1 . The birth and death modulus /? and p are assumed to be

smooth and bounded along with their derivatives. We introduce a final change of

dependent variable q(r, t) = e"'p(r, t), and the problem to be considered is

Ut = UUrr + K + ~ + (P(U)e~a'Q - /*("))"> (2-4)

Qt~urqr = P(u)q(\-e~atq), (2.5)

ur(0,t) = 0, u{r, 0) = u0(r), q{r, 0) = q0(r), (2.6)

where it is assumed 0 < m < qQ{r) < 1 , 0 < riQ < uQ(r) < MQ on [0, R2) u0(r) = 0

for r > Rl , and 0 , p., \p'\, \p'\ < M0 , /?, p > 0.
We let &a(Q) be the Banach space consisting of functions whose a-norms (1.23)

are bounded in £2. Similarly define the spaces ^1+Q(Q, W2+a(Cl) with the corre-

sponding norms \u\l+a = \u\a + \ur\a and |w|2+q = |u|1+a + \ur\l+a + |ut\l+a .

The corresponding weak solutions are given by:

Definition. A weak solution of (2.4)-(2.6) is a pair of bounded functions u , q

such that u is continuous in Qr = (0, oo) x (0, T), u is differentiate in the sense

of distributions, rN~l(u2)r e -z?Loc, q £ £?^oc and for any <p(r,t) which is 0 near T

and for r large, the following two equalities are satisfied

IL r*~l drdt

= ff rA_l (f}(u)e~"'q - p(u))u<p drdt + f rA^'<p{r, 0)w0(r) dr,
JJnT Jo

IL rA_l ~qu<p')drdt

= [[ rN~l(P(u) - p{u))qu<pdrdt + [ rN~] u0{r)qQ{r)<p{r, 0) dr.
JJqt Jo

Our first result establishes the existence of solutions for the radially symmetric

Gurtin-MacCamy model.

Theorem 1. Under the previous hypothesis there exists a weak solution for the sys-

tem (2.4)-(2.6).

(2.7)

(2.8)
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Proof. We shall follow the approach presented in [20] using a fixed point tech-

nique. The proof is long and it is done in several steps: First we prove existence of

solutions of a smoother version of (2.4)-(2.6) depending on two parameters e and

n . Then we let «-»oo and e —► 0 after proving a priori bound for these solutions.

Our main tool is an appropriate estimate for the Holder modulus of continuity of

radial solutions of (2.4).

Let y = (r, t). In R2 we consider a mollifier J{y), a symmetric i?°°-function

such that J(y) > 0 if \y\ < 1 and fR2 J(y)dy = 1 . (For instance

ke~'/O-M ) |y| < 1}
J(y) =

0 M>i,

for appropriate constant k.) We let Jn(y) = (1 /n )J{ny). It is then clear that

if q € J? , {q * Jn} is a 9?°°-sequence that converges to q in S?1, and if q

is continuous {q * Jn} converges to q uniformly on compact sets. We will apply

Schauder's fixed point theorem to the following e-n-approximating systems:

ut = uurr + ur+(N- 1)~~~~~~ + (p{u)e~atz - n(u))(u - e), (2.9)
1 1 O

Q, ~ urqr = fi{u)q{l-e °"q), (2.10)

z = -2 [ J(n(y - y))Q{y) dy',
n J \y—y'\<(\/ n)

ur(0,t) = 0, u(r, 0) = u0(r) + e, q(r, 0) = qQ(r). (2.12)

Here e is introduced to regularize the porous medium part and n is introduced to

smooth out the term h(r, t, u) = (fi{u)e~atz - fi{u))(u - e) in (2.4), z = q * Jn .

2.2. Solution of the equation for q . We begin by studying the existence and reg-

ularity of solutions of (2.10) for u given. In this case the equation is nonlinear

hyperbolic first order and can be solved by integration along characteristics.

Lemma 1. Assume u € <S'2+a(Q.T). Then (2.10) has a unique solution q e

Wl+a(ClT) . This solution has q[r, 0) = q0(r) and m < q < eat.

Proof. We define characteristic curves r{t\ x, r) by

= -ur{r{t), t), (2.13)

r(r;x,r) = x. (2.14)

Since m < q(r(0), 0) < eal, it follows that any solution q increases along char-

acteristics and m < q < eal. In particular we expect q to be positive. Let

Q{r, t) = q"x{r, t). Along characteristics we have:

d-£ + P(u)Q = l3{u)e-at, (2.15)

(2.11:

Q(r,0) = q~\r(0)).

Upon integration (2.15) yields

q{x, t) = eJ<>f'mds % V(o))+ f meS>{u)-a)d° cm
Jo

(2.16)
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Since ur is Lipschitzian there is always a local solution of (2.13)—(2.14). Since ur

is bounded this solution can be extended to the boundary of .

Direct differentiation of (2.16) shows that q(x, r) is a solution of (2.10), (2.12).

Haar's lemma implies uniqueness. Since u 6 W2+a(D.T) then q e Wl+a{ClT).

Lemma 2. There exists a solution of (2.9)—(2.12).

Proof. Let Kl be a constant and denote V = {w e W2+a(£lT)/\w\2+a < kx ,

w > s}. Define T: V ff2+a(ClT) in the following way: Given w e V, by the

previous lemma there exists a unique solution q(u>) £ &,+a(fiT) and m < q < eal.

Then z e W°°(QT) and \z\a < 2n for any a e (0, 1), so by standard results in

parabolic differential equations coupled with the fact that u(r, 0) > e , there exists a

unique solution u e W2+a(QT) with \u\2+a < k2, where k2 depends only on n and

e ; let u - T(w).

Taking kx < k2 and a < a we have that T maps V into V. Further, since

bounded sets in W2+a(Q.T) are precompact in W2+a for a < a we also have that

T{V) is precompact. It is clear that T is continuous since the equations and func-

tions involved are smooth (depending on n and e). It follows then by Schauder's

fixed point theorem that T has a fixed point u = T(u). This u and the correspond-

ing q and z form a solution of (2.9)—(2.12).

Next we show that after letting n tends to infinity we obtain a solution of the

following e-approximation problems:

ut = uurr + (N - l)^U + (P{u)e~a,q - n(u))(u - e), (2.17)
i "T" C

Qt ~ urqr = P{u)q(l - e~a'q), (2.18)

ur(0,t) = 0, u(r, 0) = u0(r) + e, q{r, 0) = q0(r). (2.19)

2.3. Estimates for u. The solutions of (2.9) with the initial conditions in (2.12)

can be obtained as limits when R —* oo of the solution of the problems

2 (u — e)u
u, = E(u)urr + u-r+(N- 1)—^

+ {P(u)e~atz - ti(u)){u - e),

u(r, 0) = u0(r) + e, ur(0,t) = 0, u(R,t) = e, (2.20)

where E(z) is a f°°-function satisfying E(z) = z for z >e, E(z) = | for z < |

and E(z) increases from | toe in | < z < e.

The function v = e~ °'{u - e) satisfies

vt = E{u)vrr + eM°'v2r +{N - 1 )eM°' ̂  + (h - M0)v, (2.21)
V ~j~ &

v(r, 0) = u0(r), vr(0, t) = 0, u(R,t) = 0.

Since h < M0, the maximum principle implies that 0 < v(r, t) < M0, indepen-

dently of R. Therefore e < u(r, t) < Mx = M0eM°T in QT.

Now we derive an appropriate estimate for the gradient of u and the gradient

of q .
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Lemma 3. Let u e &2+a{Q.T) be a solution of (2.9), z 6 Wl+a(£lT). Then there

exist constants , K2 (depending on e) such that for any c, > 0

\UrLzKl + T+Cl\Zrt-
L1

Proof. This is an application of Bershtein's technique as in Oleinik [25] and Aron-

son [2], The details involve some straightforward calculations that are only sketched.

Let (p{y) = (.Ml/3)y(4 - y). (p\ [0, 1] i-> [0, Mx] with positive first derivatives

bounded away from 0 and negative second derivative. Let w = <p~l(u), then w

satisfies

Wt = (pwrr +

/ mm" N- 1
<p H r H <p
Y tp1 r + eY

w_

+ {fi(<p)e a'z-n)(^) ■ (2.23)

Differentiating with respect to r and letting v = wr, we obtain

1,2 \ .2 N — \ i i D 4 N — I .
jiv, ~ <Pvvrr) = Av vr + -y^r<P v +Bv + ~ e)vvr

- N~ \(<p -e)v2 + Cv2 + Dvzr, (2.24)
(r + e)2

where the coefficients A, B, C, D depend only on <p, <p', <p" . Next take a cutoff

function £{r) € W°°(R), £(/•) = 0 for r > mx + 1 and f (r) =1 for 0 < r < m, and
2 2

let p = 4 v . At an interior maximum of p we should have

Pr = 0, P,-<PPrr> 0. (2.25)

Using (2.23) and (2.25) we arrive at

-2£2Bva < N — 1 /
2 <p 4 - 2A£

r + £ r & (2.26)

+
N - 1 N - 1 2

V2 + 2D£2\zr\v.

3 2
Let E and F be the coefficients of v and v , respectively. Note that

>\Mi<P
' 1

and the triangle inequality gives

„.2 zr2
1 V E 2 4

iv

thus for any c? > 0

2|0|{V< (lij + F + ̂ ) f2+^k,lL.
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From here it follows that there exist constants K[, K\ such that

for c2> 0 arbitrary.

Since

for re (0, m.) we have

^v1<K\ + ^+c11\zr\2oo
C2

2 12 2 12,.2, . 2
ur = <p wr =rp £ (r)wr ,

ur<Kx(p'2 + ^f- +c\(p'2\zX00. (2.27)
c2

Since m, is arbitrary and tp < (2Af,/3) this proves the lemma.

2.4. Estimates for q .

Lemma 4. Let q e W>+a(Qr) be a solution of (2.10) where u is a solution of (2.9).

Then there exist constants K3, K4 (depending on e) such that

\Vr\<K3 Woo 31ld l«,l < • (2*28)

Proof. Differentiating with respect to the parameter x in (2.15) we obtain

dt
rjr)= 1.

= (2-29)

Thus

- pH UrMS)>S)dS
X C

f\u,-u2r)/u-[(N-l)(ur/(r+e))-{Pe~'"z-n)]((u-e)/u)ds

rv = e

< e

<**).<) f&+±y-I + emT
u{r{x),z) \r(r) + e J

<Ks(e).

The function V(t) — rr(t) - ur(r, r)rx(t) satisfies V'(t) = urrV(t) and F(t) = 0.

Thus V = 0 and rx = ur(r, x)rx. It follows that rx < .

Differentiating expression (2.16) we have that qx and qT are bounded by multiples

of /?', ur, rx, ^o"1 , and q'0 , and using the previous estimates we obtain that

and are bounded by multiples of |Mr|00 and |«r|00 , respectively.

With the aid of the previous two lemmas we obtain bounds for u" and q" in-

dependently of n, for a solution u" , q" of (2.9)—(2.12). By Lemma 4 we have

l«r loc ̂  ^3l»"loo' thuS lZrloo ̂  KiK\oo 3nd ^ Lemma 3> with C1 = l/2Kl We
have

\urt<K, + 2K2Kl + \\u"rt,

i.e.,

\unr\l< 2{KX+2K2K])

independently of n.
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Also

I?"Ioo < K?>{2{Kx + 2K2k\))X'2

is uniformly bounded.

Since \q"\a and \z"\a are bounded independently of n we can extract a subse-

quence {q"k} of {qn} that converges uniformly to a function q£ on compact subsets

of C1T . The corresponding sequence {z"k} converges uniformly to q . We rename

these sequences {qn} and {z"}. Since un > e, Eqs. (2.9) are uniformly parabolic

in n . It follows then from the standard theory that \u"\2+a < K6, a constant inde-

pendent of n , and for a < a there exists a subsequence {u"k} that converges to a

function ue in W2+a (flr). In particular {u"k} and {u"k} converge uniformly in

compact sets to u£ and uer, respectively.

The uniform boundedness of |u"k\a implies that also qe satisfies (2.16), thus the

pair u£, qE is a solution of (2.17)—(2.19).

2.5. The a-norm of u. Next it is shown that {u£}, {qe} converge to a weak

solution of (2.4)-(2.6). We start with the following fundamental result which is

important in its own right.

Theorem 2. The a-norms of the solutions {ue} are uniformly bounded in QT for

0 < a < 1, i.e., there exists K* > 0 such that

| u(x, t) - u(y,

y\a + \t-T
a/2

< K

and K* depends only on the data M0, a , and T.

Proof. A more general result with uQ(r) = 0 in a neighborhood of 0 has been

proved in [22], Here, the fact that uQ > 0 on [0, R,] will simplify the proof and

also will allow us to obtain bounded a-norm of any a e (0, 1). In the general case

treated in [22] one only gets the a-norm bounded for a < 1 /2(N - 2), N > 3 .

Let h(r, t, u) = P(u)e~atq - /i(u), u = ue. Then (2.9) is

ut = uurr + u2r + (N - 1)——+ h(r, t, u)(u - s), (2.30)
A* "j" 3

ur{0,t) = 0, u(r, 0) = u0(r) + e.

We begin with the Holder continuity with respect to r. Since u is a classical

solution in we can choose <5 small such that \u,\ , \u I < 5a~l in and
1 i foo 7 i r'oo — 1

3<r0 = R2/2.

Lemma 5. Let Ss R = {(r, s) e R2: S < s < s + S < r < R}, Bg R = Ss x (0, T)

and define for a e (0, 1) fixed

g(r,5,0=|M(r'0~"(/'01'.
(.r-s)

Then g is bounded in Bs (indendently of 8 and R).

Proof. Clearly g is continuous, so it must attain its maximum at a point Q, =

(r,, , ?j) e Bs . Either Q{ is an interior point at which g is differentiable or <2,
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is a point on the boundary of Bd R (g is not differentiate only at those points

(r, t, s) where g(r, t, s) = 0. We begin with the former possibility.

In this case we must have

*r = *, = 0, g„,g„< 0, ^>0,

and

E = vlgrr + v2gss- gt< 0 at Q,, (2.31)

where vx — v(r, t), v2 = v(s, t). Let S = \v, - v2\, a = sgn(S). The first deriva-

tives are

gr = aMSf~lvlrR-2 -2\sfR~\

gs= ~aMS\"'lv2sR-2 + 2\S\XR-\

g, = al\S\l~\vu-v2t)R~2.

Thus (2.31) implies

— \.C\ P~l

A

and

vlr = —\S\R~l=v2s (2.32)

g„ = 2\S\*R \\-a) + X\st {oR~2v.rr, (2.33)

^ 02ss

Replacing in E we obtain

g„ = 2\S\lR \l-a)-MS\* 1 oR \

2\S\*R \l-a)(vl+v2) + la\S\* lR 2[(vxvlrr - vu) - (v2v2ss - v2t)] < 0. (2.34)

Using the differential equation (2.30) in (r, t) and (s, t) in the last term we have

2(1 - a)|5|',/?_4(w1 + v2)

+ 2(7151^'/? 2 -vXr-{N- 1 )^'r+C^'r ~ h(r, t,vx)(vx -e)

< 0

(2.35)

+v2s + (N~ l)('V\^lV2s + h(s> r> v2){v2-e)

and using (2.32) with hx = h(r, t, vx), h2 = h{s, t, v2)

,,A r

(l-a)(i>,+t;2) + (W- l)(r-i)
,\sr

R2
21 ,2

(V2 ~ £) _ (Vi ~£)

5 + e r + e

+ Aa|S|/l \h2(v2 - e) - hl(vl - e)) < 0.

We drop the positive term in (v2 - e)/(s + e). Since \S\ < 2Mx we obtain,

, i A

R2
21 ,2 (1 -<*)(«, +v2) - {N-\){r-s)1-1 £

r + e

< k{2Mx )x~l(h2(v2 - e) - hx(vx - e)).

(2.36)
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Let 8 = ((1 - a)r0)/(2(N - 1)). If r - s < d the coefficient on the left of (2.36)

is bounded below by \ - a){vx-\-v2) and

.A i /<■> vt-i
ri~ i —/■: i n. \n. —r.j

(2.37)
= ]Sf A (2A/,)

<->max ^ 9 — ^
7?2 2 1 - a

(2M,

/z2(w2 - e) hl(vl - s)

v, +v2 vx + v2

,A-1

S^)(2Mo)' (238>

On the other hand if r - s > d , then directly from the definition of g

^(2Mxf~' ^4(N-1)2(2Mx)x~1
^max- S2 (1 -a)2r] '

A bound for the a-Holder quotient of u at interior points of Bg has thus been

obtained.

If Qx lies on the boundary of Bg we are led to consider four possibilities: (i) Qx

lies on the interior boundary r-s = S , (ii) Qx lies on the interior boundary s = d ,

(iii) Qx lies on the lower boundary t = 0, and (iv) Qx lies on the lateral boundary

r = R . We treat each of these cases separately.

(i) If r = 5 + 3 by the mean value theorem and the assumption that |wr|00 < Sa~x

we get

g(Q0<lUr{''213 <^~V~2=1.
O

(ii) If 5 = S by the standard regularity results for the porous medium equation

with positive data there is a constant K4 (independent of S, e) such that |Mf|oo,

\Ur\oo < ^4 on [0, Z?2]. Thus, if \r - 5| < R2/2, again by the mean value theorem

frfCi) = "
(r-5) V •

On the other hand if \r — s| > R2/2 then

„(0)<M
' ~ (R2/2)2 '

(iii) If the maximum occurs at t = 0 we use the initial data to get that

g{Qx)<Mo when |r - s| < 1

and

g{Qx) < {2M0f when |r - s| > 1.

(iv) The case r = R needs special consideration. We start by proving that the

oscillation of u tends to 0 as r tends to infinity.

Lemma 6. Let u be a solution of (2.30). Then for any r\ > 0 there exists R such

that |u(r, t) - u(s, ?)| < V for r, s > Rtj, t e [0, T].

Proof. We choose R large such that (N - \)uj{r + e) < M0 and uQ(r) = 0 for

r > R . Write (2.30) as

Ut = uurr +U2r + h(u - e) (2.39)
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where

|h(u, r,t)I = |(N- l)-5- + p{u)q - n(u)\ < 2M0 .
' I G

Without loss of generality we assume M0> \ .

Let t2 = l/(24A/0), a < 1 , and m = £ . Let g-(r) = 2t2/(2t2 - t) and consider

v(r, 0 = ag{t){r - rxf + eg" (t)

on 5, = [rx - m, rx + m]x[0, ?2] and r, is such that rx - m > R . We will use v

as an upper bound for w and obtain u(r, /) < 2CT£ on 5, .

Let Ji?[z] = zt - zzn - z2r - h(z, r, t)(z - e). Then Jzf[u] - 0 and

(r — K 2^ (t)

^[V] = CT 2^^(1 " 12<T?2 " (2?2 " t)h)

+ E {°8 21 -2a8°+\t)-hu> r> •

By the mean value theorem

g"{t) - 1 = ag"~\s)g'(s)t = ~ga+\s) for some 5 € (0, t).

Since \h\ < 2MQ , 0 < t < t2, and g(s)/g{t) = (212 - t)/{2t2 - 5) lies between j

and 1 we have

(r — r ^ at t)^

&[v]>o- ^ ' (1 - 12fft2-4t2M0)

,g(t)

h

2
a+1

+ ecr Yt—-4t2-2Moh)

> 0

by the choice of t2 and a .

Next
2

v(r, 0) = a(r - r,) +e>£ = w(r,0) on [r2 - m, r2 + m]

and
->< 2
2t1m a, , 2

v(r2 ±m, t) = cry^ 1- eg (?) > am = m .
2t2 ' t

Thus u(r, ± m, t) > u{r2 ±m,t) for m > . It follows then by the maximum

principle that u < v on [r, - m , r, + m]. In particular

u(rl ,t)<e ^ lX'mz ■ (2-4°)

Since the only restriction for rx is to be larger than R + m , Eq. (2.40) is valid for

any r > r, . We repeat the argument with r2 > rl + m on [t2, 212] with initial

datum u(r, t2) < 2i/me and obtain that u(r, t) < 22/me for r > r2> R + 2m . After

k = [T/(t2 + 1)] steps we arrive at

u(r, t) < 2k,me for r > r. > R + km, 0 < t < T.
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fk/mNow, given t] > 0, choose m so large that also 2 ' < 1 + rj/e . Then for R = rk

we have u(r, t) < e + rj for all r > , t e [0, 7"]. This proves the lemma.

We use this result in the proof of (iv). Choose R so large so as to have u(r, t) <

e + S for r > R - 1 . Then if \r — s| > 1 we have

g{Qx)<{2Mxf
and if \r — s| < 1 we have

(r - s) S

Therefore g(r, s, t) is bounded in Bg independently of S and e. Letting 8 —> 0

and R —► oo, we obtain that g(r, s, t) is bounded in Qr . Lemma 6 implies that

g(r, s, t)a^2, the Q-quotient of u , is bounded in .

The result for t follows in a similar way by considering the function

(r - 5) + A\t - t|

at a point of maximum (we omit the details). This proves Theorem 2

2.6. Convergence of {uE}. Since {ue} , {q£} satisfy (2.17)-(2.19) we also have

(leue)t = \{qs{{u£)2)r)r + \^rr7<lc((uf)r2 e e' 2 r + e

\ N-]

2 r + e+ j777«£(((Me-£)2)r-((4)) (2.41)

+ [fi(ue) - n(uc)]q£ue + eqe[n(uc) - p{uE)e "'qe].

Multiplying (2.17), (2.41) by (r + e)^-1, <p(r, t) and integrating over Qr we

obtain

1 2

,(K) )r<Pr-Ue<Pt) drdtILir+e)N

= jj (r + £f~l[P(uE)e~°"qE - nE{ue)]{ue - e)<p dr dt

roo

+ / {r + e) "l(f>{r,0){u0{r) + e)dr,
Jo

(2.42)

SL< , \n~i
(r + e)

£2t
U({u£)2)r(pr-qeue(pt drdt

= [f (r + e)N \/3(ue)-n{ue))quc<pdrdt
J J £2 j.

roc

/ (r + e) ~\u0{r) + e)q0{r)(p(r, 0)dr
Jo

g {r + e)N~lq(fi(uE) - P{uE)e~atq)<p dr dt

+ f[ V-lMuE + e)2)r-((u/)r]drdt. (2.43)
J J £iT

+

+ e
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Since |uE\a < K* by the Arzela-Ascoli theorem we can extract a subsequence {us'}

that converges to an a-Holder continuous function u(r, t) uniformly on compact

sets. The corresponding subsequence {q£'} satisfies \q£'\a < eaT. Hence it contains

a subsequence {qe'k} that converges weakly to a function q(r, t), 1#!^ < eat. We

rename both {uc'k} and {qe'k} as {uk} and {qk}, respectively. We shall prove
2 2 2

that u is differentiable in £lr and that {{uk)r} converges pointwise to (u )r. Then

all the integrals will converge in (2.42)-(2.43).

The proof of the differentiability of u is divided into two cases:

First, if u(rQ, t0) = ^ > 0 by the uniform convergence on compact sets we must

have that for k > k0, uk(r, t) < ^ in a neighborhood N of {rQ, t0). It follows

then by the standard theory of the porous medium equation that uk's are classical

solutions on N and \uk\2+a < K6, where K6 depends only on ri] and N. Thus
2 2

there exists a subsequence {uk n} such that {{uk n)r} converges uniformly to (u )r

in N. In particular u2 is differentiable at (rQ, tQ).

Second, if u{r0, i0) = 0, since u is a-Holder continuous for a > j we have

u2(r0 + h , t) - u2(r0 , t) _ u2{r0 + h , t)

h h

U{r0 + h, t)\2 1

ha

< (K*)2h2a~l.

Thus u2 is differentiable at (r0, tQ) and (u2)r{r0, t0) = 0. The proof of the
2 2

pointwise convergence of a subsequence of {(uk)r} to {u )r is the same as the one-

dimensional case given in [20] and we shall omit it here.

3. Qualitative behavior of solutions.

3.1. Populated and unpopulated regions. The existence of the interface that sepa-

rates the populated region from the unpopulated region will be investigated first.

Theorem 3. If w(r0, t0) > tj > 0 then u(rQ, t) > 0 for all t < tQ. Thus if a region

becomes populated at time t0 it remains populated for all later times. In particular

the initial region [0, 7?-,] remains populated for all times (but it might tend to 0 as

t —► oo).

Proof. Assume first tQ = 0 and r0 > 0. Using the continuity of u0(r) choose

8 > 0 small, S < r0/2, such that S2 < \ and «0(r) < \ on (r0 - 8, rQ + 3). Define

v(r, t) = e~k'(82 - (r- rQ)2) + § , over B = (r0 - 8, r0 + 8) x (0, T], k = 4N + M0.

If

&\Z) = Zt- ZZrr ~ Zl ~ + ^ (Z ~ £) + (M0 + 2N)(Z ~ £)

we have that ^?[u£] = (h + M0 + 2N)(ue - e) > 0 and since |(r - rQ)/(r + e)| < 1 ,

e~kt < 1 , thus

< (^2 - (r - rQ)2)(4N + M0-k)~ 4e k'(r - rQ)2 - (MQ + 2N)E-

< 0.
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Also

v(r,0) = d ~{r-rQ) + - < 8 + - < ^ + e < uF(r, 0)

ue{r, t0) > + e on [r0 - 8, rQ + 8].

and

v{r0 ±8, t) = -<e < ue(r0 ±8,t).

The maximum principle now implies that v(r, t) < u(r, t) on B = [r0 - 8, rQ + <5] x

[0, T], In particular
, . —kt s2 £

ue{r0, t)>e 8 + ^ •

Letting £ —► 0 we obtain u{rQ, t) > $2e~(AN+M]»)', for all t > 0.

If t0 > 0 we use the Holder continuity of u and the uniform convergence of ue

to u to find a 8 such that

1
2

Then the function ve(r, t) = ue(r, t+t0) satisfies all the requirements of the previous

argument.

If r = 0 or actually r e [0, i?2], the result follow directly from the regularity of

the porous medium equation with positive initial data.

3.2. Interfaces. We have shown in the proof of Lemma 7 that e < u£(r, t) < 2k,me

for r > Rm. As e —> 0 we obtain that u(r, t) = 0 for r > Rm. Thus the support

of u(r, t) is finite for all t. On the other hand, by Theorem 3 we know that once

u becomes positive it stays positive for all later times; hence the support of u(r, t)

increases with t. In particular, if suppw0(r) is an interval, another application of

the maximum principle will show that suppw(r, t) is also an interval. We state the

following result without proof.

Theorem 4. If u0(r) >0 on [0, /?2], u0{r) e 0 on [i?2, oo), then there exists

a continuous increasing interface curve r = £(t), with R2 = £(0), separating the

populated region {(r, t): u(r, t) > 0} from the unpopulated region {(r, t): u(r, t) =

0}, i.e., suppw(r, t) = [0, <^(?)] or all t.

3.3. Localization. We now turn to the question of localization. As t —► oo , does

suppw(r, t) increase to a limiting domain [0, L] or does suppw(r, /) increase to

R+ = [0, oo)?

A first observation is that if ft(s) < fi(s) - 8 for all 5, then

h(r, t, u) = P(u)e a'q - /i(u) < p{u) - n(u) < 8 < 0.

In this case by the usual comparison arguments u(r, t) is bounded above by the

solution v(r, t) of

2 VV
V, = vvrr + vr +{N- 1)-^ -8v,

v(r, 0) = u0(r).

In turn this equation is simplified by letting t(r) = -1 log(l - 8z) and z(r, z) -

Yz^v(r, t(z)). Then z(r, z) satisfies

zT = zzrr + z2r+(N- \)^, (3 2)

z(r, 0) = v(r, 0) = uJr).



104 G. E. HERNANDEZ

This is a porous medium equation and thus it has finite support for every t. There

exists L > 0 such that suppz(r, t) c [0, L] for 0 < t < |. Hence suppv(r, t) =

supp z(r, t) C [0, L], because u{r, t) < v(r, t), suppw(r, t) C [0, L] for all times.

Next, if h(r, t, u) = fi(u)e~alq - /u(u) > 0,the comparison principle implies that

u(r, t) > w(r, t), the solution of the porous medium equation

2 WW
wt = wwrr + wr + (N - 1)—,

w{r, 0) = uQ{r).

It is known, [23] that suppu;(r, t) —► [0, oo) as t —> oo. Therefore suppw(r, t) —>

[0, oo) in this case.

Thus, if the birth module is "clearly" less than the death module, the population

will not diffuse further than a fixed interval. On the other hand if h(r, t, u) > 0,

the population will eventually cover all [0, oo). Unfortunately the condition /?(«) <

fi(u) - S is too restrictive and the condition h > 0 cannot be checked based on the

data alone. More general conditions for localization were given in [19] for the one-

dimensional problem. Those results and examples can be obtained here with only

the obvious changes that are omitted.

Let

„ _ Pis)~a „ _ „„„ P{s)-a
1 — o t \ ' 2 — Slip ~ . .
1 0<s<Ml (](S) 2 o <s<M, P(S)

i , Ms)
b. = inf -r--, b-, = sup

1 oS \A n ( C l L0<s<Af: P{S) ' 2 i<s<Mt P(S) '

Theorem 5. (i) Assume a2 < bl and 0 < m < q0(r) < c, for some c, e {a2, bx).

Then there exists L > 0 such that the solution u{r, t) is identically 0 outside [0, L]

for all t.
(ii) Assume b2 < a, and c < q0(r) < 1 for some c e {b2, fl,). Then the support

of u(r, t) tends to [0, oo) as t —* oo .

3.4. Examples. Let = supP(s)' P* = info<s<m^(s) and A* > A. de-

fined similarly.

If /T < + a and qQ(r) < c, for some c, e ((P* - a)//J*, n*/P*), then

Theorem 5 implies that u(r, t) is localized. On the other hand if > j/.* + a

and c < q0{r) < 1 for some c e (A* ~Q)//U> then suppw(r, t) tends to

[0, oo) as t —> oo . These results were first conjectured by Gurtin [13], for ft and n

constants.
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