
QUARTERLY OF APPLIED MATHEMATICS

Volume LII September • 1994 Number 3

SEPTEMBER 1994, PAGES 401-426

EXPLANATION OF SPURT FOR A NON-NEWTONIAN FLUID

BY A DIFFUSION TERM

By

P. BRUNOVSKY and D. SEVCOVIC

Institute of Applied Mathematics, Comenius University, Czechoslovakia

1. Introduction. A surprising feature of the flow of polymers is associated with a

sudden increase in the volumetric flow rate when the pressure gradient is gradually

increased beyond a critical value. This striking phenomenon, called "spurt", was ap-

parently first observed by Vinogradov et al. [15] in rheological experiments involving

the flow through thin capillaries of highly elastic and very viscous non-Newtonian flu-

ids like some synthesized polybutadienes and polyisoprenes. The interested reader is

referred to [15, Table 1] for more detailed information about microstructure charac-

teristics of samples. The spurt phenomenon is a kind of a flow instability in pressure-

driven shear flows of viscoelastic fluids.

Much effort is being spent to explain spurt and related phenomena mathematically.

Several authors have considered mathematical models based on differential constitu-

tive equations due to Johnson, Sagelman, and Oldroyd exhibiting local extrema of

the steady shear stress as a function of steady strain rate (see [6-8, 10-13]). These

papers show that the spurt phenomenon is dynamic and, hence, cannot be explained

in a satisfactory manner by only studying the steady-state equations. Dynamical the-

ory can explain phenomena observed in experiments and in numerical simulations,

and it can also predict phenomena like latency, shape memory, and hysteresis which

should be observable in future experiments.

In this paper we modify the models of [6] and [13] by adding a diffusion term to

the constitutive equation. The resulting system of equations (in dimensionless units)

governing planar shear flow has the form

av = v +cr +/,' 2 (1.1)

O, = - o + g(vx) + V Oxx

where v(t, x) is the velocity of the planar flow, a{t, x) is the polymer contribution

to the shear stress, g: is a given smooth function, and / > 0 is the pressure

gradient driving the flow.

Unlike the models investigated in [13] and [6] and the other models in [10-12],

system (1.1) contains the spatial diffusion term v a . Spatial diffusion is usually
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neglected in non-Newtonian models because of the spatial homogeneity of the struc-

ture. In the model of [4] (also see [3]), Brownian motion prevents polymer molecules

(treated as dumb-bells) from being completely independent of each other, giving rise

to a diffusion term in constitutive equations. Typical values of v will be described

in Sec. 6. The structure of steady states of system (1.1) is determined by treating

v2 > 0 as a small parameter and by applying the singular perturbation theory of

[9]. This theory enables us to select steady states that appear to be appropriate for

capturing the spurt phenomenon.

System (1.1) with v2 = 0 exhibits the same behavior in steady shear as the more

realistic models studied in [10-12], where the differential constitutive equations also

involve normal stresses (in particular, the first normal stress difference), giving rise

to a governing system of three quasi-linear parabolic-hyperbolic PDEs in place of

the two in system (1.1). The dimensionless parameter a representing the ratio of

Reynolds number to Deborah number is very small. The analytical study in [11-13]

is based on treating the respective governing equations as singular perturbation prob-

lems with q as a singular parameter. Their approach is to determine the complete

dynamics when a — 0 and then to show that the dynamics of the full system is

similar for a > 0 sufficiently small. By contrast, our quasi-linear system (1.1) with

v2 > 0 is parabolic, and the theory of parabolic systems can be exploited to deter-

mine the global dynamics for a > 0 sufficiently small. In particular, the existence of

a global compact attractor and an inertial manifold can be established. It should be

noted that the feature of mathematical models studied in [11-13] that makes their

qualitative analysis (asymptotic behavior as t —> oo, stability properties, etc.) par-

ticularly difficult is that the governing equations possess uncountably many isolated

steady states. From this fact one can deduce that these governing systems can admit

neither a compact global attractor nor a finite-dimensional inertial manifold.

The paper is organized as follows. In Sec. 2, we use general ideas from [6] to

derive a non-Newtonian model of shearing motions incorporating spatial diffusion.

Basic properties of the model (existence and long-time behavior of solutions, qual-

itative properties of steady states) are established in Sec. 3. It is shown that in the

case of a generic g, the asymptotic behavior of solutions is very simple—each so-

lution tends to some steady state and the number of steady states is finite. We also

prove exponential stability of two particular steady states playing a crucial role in

the explanation of spurt. In Sees. 4 and 5, spurt and hysteresis phenomena in our

mathematical model are established. The phenomenon of spurt is associated with

extinction of a stable steady state when the pressure gradient increases beyond a

critical (bifurcation) value. The results of numerical simulations for small values of

a, v > 0 are presented in Sec. 6. We have performed numerical simulations of spurt

and hysteresis phenomena for sample PI-3 (see [15]). Numerical results match the

data observed experimentally by Vinogradov et al.

2. Non-Newtonian model of shearing motions including diffusion. In this section,

we derive a mathematical model for shearing motion of a fluid leading to a system

of governing equations including a diffusion term in the constitutive equation.
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We consider the planar shear flow of a viscoelastic fluid in an infinite narrow

strip: x e [—h, h} and y e (-00, 00), with the flow directed along the y-axis. We

suppose the fluid to be non-Newtonian, incompressible, and the motion to take place

under isothermal conditions. We restrict ourselves to motions that are symmetric

with respect to the centerline. Under our assumptions the flow variables will depend

only on the transversal variable jc . Hence, the velocity vector v has the form

v = (0, v(t, x)) with v(t, x) = v(t, -x). It is easy to verify that the mass balance

is then automatically satisfied. The equation governing the motion of the fluid is the

balance of linear momentum

6 + v)^) (2"1}

where q is the constant fluid density and S is the total stress which can be decom-

posed as

S = p ■ Id + e • D +1 (2.2)

Here p is the isotropic pressure of the form p — p0(t, x) + f • y where / is the

pressure gradient driving the flow, s is the Newtonian viscosity, and D is the rate

of deformation tensor, i.e., D = (V?7 + (V?7)T)/2. According to [6, Sec. 2] the extra

stress
xy •(°x\ oxy\

-\ayx, ayy)

satisfies
oxv = oyx=^Z*[At{S)],

axx-ayy = ^Z0[At(s)], (2.3)

axx + ayy = 0

where are generally nonlinear operators acting on the relative shearing his-

tory

\(s) = ~ ft VX(T' x)dr■ (2-4)

Since we assume the flow to be planar, Eq. (2.1) reduces to

QVt = evxx + ax + f (2.5)

where a := axy .

We specify the operator <9*0 in such a way that it takes into account long-range

molecular forces. According to [4], the latter provide the constitutive equations by a

diffusion term u oxx . The first normal stress difference determined by the operator

plays no role in our model.

Let A denote the selfadjoint closure in L2(0,h) of the operator defined on

Cg(0, h) by Au = ~uxx for any u € C^(0, h) := {u € C2(0, h); m(0) = ux(h) =

0} ; its domain D(A) is the Sobolev space Wg'2(0, h) — {u e W2'2(0, h)\ w(0) =

ux(h) = 0}. Let A, v > 0 be fixed. Then the operator -(A + v A) generates an

analytic semigroup exp(-(A + 12A)t), t > 0; (see [5, Chapter 1]).
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Assume that g: -♦ is an odd Lipschitz continuous function. As usual,
1 2

we identify g with the Nemitsky operator g: W ' (0, h) -+ L2(0, h) defined by

g{u)(x) = g{u{x)) for a.e. xe[0,/i]. Due to the assumptions on g the nonlinear

operator g is well defined and Lipschitz continuous.

Let / € L2(0, h) be defined as

/: x t-> / • x for any x e [0, h\. (2.6)

We define

= f exp(-(A + i>2A)s)- g(--^At(s)j+A-f ds-f
(2.7)

for any v e C(SH: Wl'2(0, h)), sup ||v(f)||,2 <00, and t > 0
resn

where At(s) is defined by Eq. (2.4), i.e., At(s) - - fj_s vx{i, x)dx.

Clearly,

r°° 2 ~
S%(A)= exp(-(A + v A)s)[g(vx{t-s,-)) + Xf]ds-f. (2.8)

Jo

In case v = 0, the definition of the functional coincides with that of [6,

formula (5)]. However, since the operator A + v A, > 0, is a diffusion operator

generating an analytic semigroup, the operator exp(-(A + u2A)s), s > 0, smooths

out solutions, i.e., exp(-(A + v A)s)w £ D(A) for any w e L2(0, h) and s > 0 (see

[5, Chapter 1]).

Differentiating Eq. (2.8) with respect to t and substituting u := o+f = S^(At)+f,

we obtain the following constitutive equation of rate type:

ut + {A + v2A)u = g(vx) + Af (2.9a)

with boundary conditions

u(t, 0) = ux(t, h) = 0 (2.9b)

or, equivalently,

at + Xa - v2axx = g(vx) (2.10a)

with boundary conditions

<7{t, 0) = 0, ax(t, h) — —f, (2.10b)

respectively.

We note that ax(t, h) - -f implies vxx{t, h) - 0 which is the boundary con-

dition appearing in the theory of multipolar fluids (see, [2, Sec. 3]). The boundary

condition u(t, 0) = 0 (a(t, 0) = 0) implies that the function u(t, •) (a(t, •)) can

be extended as an odd function to the interval [-h, h] for all t. It ensures the

symmetry of the flow about the centerline.

Summarizing, our model leads to the initial-boundary value problem

Qvt = evxx + ax + f-

at = v2axx + S{vx)-ka-, (2n)

v(0, x) = v0(x) and er(0, x) = cr0{x) for a.e. x e [0, h];

v (t, 0) -v(t, h) - 0, a(r,0) = 0, and a (t,h) = -f for t > 0.
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-1
To facilitate the discussion, we scale the space variable x by h, times t by X

v by hX, a by eX, /
The resulting system is

v by hX, a by eX, f by eX/h, and v2 by h2X, and replace g{Q by g{X^)/EX2 .

avt = vxx + ax+f,

at = v2axx + g{vx) - a (2.12)

for (t, x) e [0, oo] x [0, 1]

with boundary conditions

v(t, 0) -v(t, 1) = 0,*v ' (2.13)

a{t, 0) = 0, ox{t, 1) = -/

and initial data

v(0, x) = vQ(x) and cr(0, x) - &0(x) for a.e. x e [0, 1]. (2.14)

There are two dimensionless parameters:

gh2X
a =    and v > 0.

e

According to [15] and [4], the typical values of a and v are

a = 0(1O~9) and v2 = 0(10~4).

Hence, we may treat a and v as small parameters.

3. Existence of solutions, asymptotic behavior, steady-state solutions and their sta-

bility. In this section, we study the problem of existence of solutions, their long-time

behavior, and some qualitative properties of steady states of the system (2.12). Using

the abstract theory developed in [5] we establish local and global solvability. For g

real analytic we furthermore prove that the asymptotic behavior of the solutions is

simple—each trajectory approaches some steady state and the number of steady state

solutions is finite. To single out the appropriate stationary solutions, we apply the

results of the theory of singularly perturbed boundary value problems of [9].

3.1. Existence of solutions. In terms of the variables v and u the initial bound-

ary value problem (2.12) takes the form

av( = Vxx + Ux ..

Ut = ~U + s(vx) + A ,
(3.1)

vx{t, 0) - v(t, 1) = 0 and u(t, 0) = ux(t, 1) = 0 for t > 0,

v(0, x) = t>0(x) and w(0, x) = w0(x) for x e [0, 1].

To facilitate the discussion, let

S = vx + u = vx + a + f. (3.2)

Obviously,

aSt = Sxx + aur
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In terms of 5 and u, the system (3.1) takes the form

2
aSt = Sxx + av uxx + a(g{S - u) + fx - u),

2
Ut = V Uxx - u + g(S - u) + fx

(3.4)

with boundary conditions

u(t,0) = ux(t, 1) = 0, S(t,0) = Sx(t, 1) — 0

and initial data

S(0, x) = S0(x) = v0x(x) + u0(x), and u(0, x) = u0(x) for xe [0,1]. (3.5)

Throughout this paper we will assume that a and v are small parameters. The

pressure gradient / is assumed to be positive. The function h{u) := u + g(u) is

assumed to be C with a single loop as shown in Fig. 1.

More precisely, we make the following hypotheses:

(i) g: is an odd C function with bounded first and second derivatives

satisfying g{u)u > 0 for any u e 9* ;

(ii) there exist constants 0 < cx < c2 such that

h\u) = 1 + g (u) > 0, h" < 0 on [0, c,),

h\u) = 1 + g\u) < 0 on (<:,, c2), (W)

h\u) = 1 + g\u) > 0, /z" > 0 on (c2 , oo).

Under assumptions (W), there exists a y0 > 0 such that

f-max/>"'(}>„)

(fi(u) - y0)du = 0.LminA '(j-o)

Fig. 1. van der Walls type curve
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The last integral condition is commonly known as Maxwell's equal area rule (the

area A equals B). In Fig. 1 the line u = y0 is called Maxwell's line. We also note

that the function h(u) = u + g(u) satisfying (W) is sometimes called van der Walls

type curve.

In what follows, we let X denote the real Hilbert space L2(0, 1) with norm || • ||

and inner product (•,•)• Recall that the operator A defined in the previous section
2 2

is sectorial and positive in X with domain D(A) — {w e W ' (0, 1); w(0) =

iw (1) = 0} . Hence, fractional powers of A can be defined. Let Xy, y > 0, be the

Hilbert space consisting of the domain D(Ay) endowed with the graph norm

IMIy — IM^II for any w e Xy = D(Ay). (3.6)

The operator A has a compact resolvent A~l: X —> X.

Now one can treat the governing equations (3.4), (3.5) as abstract differential

equations in the Hilbert space

se = X X X. (3.7)

To do so, we let <I> = ]. The system (3.4) then becomes

d cD + L<D = F(4>), 0(0) = %= S'
dt

where the linear operator L is defined by

A{x-S + v2u)

v2Au

(iA v2*\

V 0 v~Aj

on its domain D(L) = D(A) x D(A). The nonlinearity F is given by

'S'

u

g(S -u)-u + fx
g{S -u)-u + fx

(3.8)

(3-9)

(3.10)

It is routine to verify that L : D(L) c 3? -+ 3? is a sectorial operator generating

an analytic semigroup exp(-Lt), t > 0. Since A'1 is compact, it is easy to show

that L has a compact resolvent L-1: 3? —► 8?. The fractional power L^2 is then

easily computed as
2

^ 0 ^"2 J

and D(L1/2) = D(A1^2) x D(A^2). Hence there is an equivalent norm in such

that
y/2sii/2xii/2, (3.ii)

and it can easily be verified that

I1/2 = {we[f1,J(0,l); w(0) = 0}. (3.12)

Since we have assumed that the first and second derivative of g are bounded, the

nonlinearity F is a C1 mapping from 3fx>2 into 3?.
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Now we can apply the general theory of abstract parabolic equations [5], According

to [5, Theorems 3.3.3, 3.3.4, 3.4.1, and 3.5.2], for any initial condition O0 €

the abstract equation (3.8) has a unique solution <P(t) defined on [0, oo) by the

property

O e Cloc([0, oo), JT1/2) n C,^((0, oo), JT"2),

O(t) e D(L) for t > 0 and <I>(0) = O0.

Hence, Eq. (3.8) defines a c'-semidynamical system (T(t), t> 0) in 8?1'2 defined

by

r(r)O0 = 0(/, O0) for any t > 0

where Q>(t, O0) is the solution of Eq. (3.8) with 0(0) = O0 £ .

3.2. Asymptotic behavior of solutions. We now turn our attention to the asymp-

totic behavior of solutions of Eq. (3.8). First, we will study the set of steady states,

i.e., stationary solutions of Eq. (3.8) which we denote by & . Clearly,

f = | ^ ; u € D(A) is a solution of v1 Au = -w + g{-u) + /xj . (3.13)

In fact, [5] e f iff

«eC4(0,l), v2uxx+ u + g(u) - fx, u(0) = ux(l) = 0. (3.14)

Here we have used the assumption that g is an odd C function.

The system (3.8) admits a global Lyapunov function V: JT1^2 —> 9* defined by

v ([«])= 5 {i11511'/2 +1/2,15 ~ M|l>/2 + l|S " "l|2 + J{s ~w)}

where
r 1 /•«>(*)

J(w) = 2 / (g(s) + fx)dsdx. (3.15)
J 0 J 0

Indeed, a simple calculation shows that for any solution ] the following formula

holds:

d /rnMn , . , , ...2

dtV ([ffo]) + ̂ 11^^)11^/2 + ̂ <01? = 0 for any / > 0. (3.16)

Due to the assumption g(u)u > 0 for any u e 91 it follows that the functional

V is bounded from below. From Eqs. (3.14), (3.16) it follows that the real-valued

function t K([^jjj]), t > 0, is strictly decreasing unless [] = [2] e J? is a

steady-state solution of Eq. (3.8). Then a standard argument (see, e.g., [16, Theorem

4.1]) enables us to conclude that the omega-limit set

f2(O0) := {O e 1/2, there exists tn —> oo such that T(tn)<£>0 —> O}

satisfies

n(o0)cr, (3.17)
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for any <J>0 G . Since the operator L has a compact resolvent L 1 , it follows

from [5, Theorems 3.3.6 and 4.3.3] and Eq. (3.17) that

lim dist(r(0<Dn, %) -0, (3.18)
t—> oo u

where dist(<I>, <? ) = inf(||<I> - *P||^i/2, 0 € %). In the following simple proposition,

we obtain bounds on steady states, and we show for g real analytic that the number

of possible steady states is finite.

Proposition 3.1. Let u0 > c2 be such that h(u0) > f. Then 0 < u(x) < u0 for any

solution u(x) of Eq. (3.14). Moreover, there exists a constant M = M(g, /) > 0

such that

v sup |m (x)| + sup |m(x)| < M.
jce[0, i]

If g is real analytic, then the number of solutions of Eq. (3.14) is finite.

Proof. Let u be an arbitrary solution of Eq. (3.14). Since h{u) := u + g(u)

is nondecreasing on [mq, oo) and h(u0) > f, it follows that u(x) > u0 implies

v uxx(x) = h(u(x))-fx > h{u0)-fx > /(I-x). Thus the function u(x) is strictly

convex whenever w(x) > u0. Since u(0) = 0, if u(x0) > u0 for some x0 G (0, 1],

then there exists x{ e (0, 1) such that u(x{) = u0, u(x) > u0, and ux(x) > 0

on (x,, 1). This means that u cannot satisfy ux( 1) = 0. Hence, u(x) < u0 for

every x G [0, 1] and u > 0. The inequality 0 < u(x) can be obtained in a similar

way. The estimates for u(x) and uux(x) follow from the well-known interpolation

inequality

v sup \u (x)| < 2 sup \u(x)\ + u2 sup \u <x)\ 1

*€[0,1] \*€[0,1] *€[0,1] J

for any u e C2([0, 1]) and v > 0.

Now we assume that g is real analytic. We fix a v > 0 and define the map

H h-+ (f>{n) as <f>(n) = ux( 1) where w/i(x) is the solution of the initial-value problem

v2uxx = u + g(u) - fx, uM(0) = 0, ux(0) = ju. Since g is Lipschitz continuous

and analytic, the function <p(fi) is well defined and analytic on . Furthermore,

4>(fi) = 0 if and only if w'i(x) is a solution of the BVP (3.14). Suppose to the

contrary, the existence of infinitely many solutions of the BVP (3.14). Then the

set {ft e [—M/v, M/u]; (f>(ju) = 0} must have an accumulation point. Because of

analyticity of <j>, we have </> = 0 on fH. Hence, there is a solution uM(x) of the

BVP (3.14) for ft > M/v which is inconsistent with ux{0) — ft. □

The omega-limit set £2(O0) is connected [5, Theorem 4.3.3], Thus, by Eq. (3.17),

£2(<I>0) is a singleton whenever I? is finite. We have thus established the following.

Theorem 3.2. Assume the hypotheses (W). Then, for any initial condition O0 G

, the evolution problem (3.8) has the unique solution O = <P(t, O0), t > 0,

its omega-limit set ft(O0) being contained in the set of steady-state solutions I?. If,

in addition, g is real analytic, then each trajectory tends to a single steady state.

3.3. Steady-state solutions. We now examine steady-state solutions of Eq. (3.8).

Recall that [£] is a steady state if and only if S = 0 and u G C4(0, 1) is a solution
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of the BYP

v2uxx = u + g(u)-fx,

m(0) = ux(l) = 0.

The steady-state velocity profile v is then calculated as v(x) = fx u(£) d£ . Since v

is assumed to be small, the problem (3.19) can be viewed as a singular perturbation

of the reduced problem

0 = u + g(u) - fx. (3.20)

From now on, we assume

f ^ ' -^maxl'

where 0 < /min < ym and yM < /max < oo. From Fig. 1 it is clear that the problem

(3.20) has a unique C1 solution u = (j>{{x), x e [0, 1], whenever / e [/min, ym).

When / e [ym, /max] there exist C1 functions </>,(x) defined on two overlapping

intervals /. contained in [0,1], where 0 e /, , 1 6 I2, i = 1,2, and such that

M^C*)) - fx = 0, x e 7;, and (f>2(x) > 0,(x) on /, n I2. Hence, there also exist

discontinuous solutions of (3.20). Indeed, any function u = u(x) where u = <f>l{x)

on [0, l]\/2, u(x) e {(f>x (x), <t>2{x)} on /, n/2 and u = <f>2{x) on [0, 1 ]\/j is

the solution of (3.20); the number of discontinuities of u is unlimited. Inevitably,

each solution of (3.20) is discontinuous whenever / e (yM, /max]. In the case / e

(y0, fmax] and v small we expect the existence of a solution of (3.19) having an

abrupt transition at some interior point x0 e (0, 1). When 4>x is defined on the

whole interval [0, 1] we also expect that (3.19) has a solution that is close to </>, on

[0, 1] for v small.

To make the above discussion precise, we employ general results of singularly per-

turbed equations due to Lin [9]. To this end, let us consider (3.19) as the equivalent

2x2 system

vux = w,

vwx = u + g{u) - fx, (3.21)

m(0) = tw(l) = 0.

In case / e [/min, yM) the piecewise continuous function

(0,0), xe[0 ,ul/2),

{<t>\{x), 0), xe[vx/2, l-ul/2), (3.22)

(0,(1), 0), x e [1 - vi/2, 1]

is a formal approximation of the system (3.21) in the sense of [9, Theorem 2.1].

When / e (y0, /max] (y0 is determined by Maxwell's equal area rule), there is

another formal approximation of system (3.21) given by

(0,0), xe[0V/2);

(</>,(x),0), x e [vl/2, x0 - I/1/2];

(2{xZ'(*z&))t xe(x0-isl/2,x0 + 1sl/2)-, (3.23)

(02(x), 0), x e[x0 + isl/2, I - vl/2);

(02(l), 0), x e [l - ulf2, l].

u[ =

V2



SPURT FOR A NON-NEWTONIAN FLUID 411

Here x0 € (0, 1) is determined by fx0 = yQ and z = z(t) is the heteroclinic

solution of the second-order autonomous ODE

z" = z + g{z) - y0 (3.24)

such that limT^_oo z(t) = , lim^^ z(t) = (j>2(x0), z > 0, and z > 0. The

existence of such a solution follows (by phase-plane analysis) from the fact that (due

to the hypothesis (W)) ^(Xg) and <j>2(x0) lie on the same level curve of an integral

for the system (3.21). We note that ^(Xq) = min/j_1(y0), <t>2{x0) = max/z_1(y0)

for any f € [y0, /max], and hence the solution z does not depend on /.

It is now easy to verify that the formal approximations t/1' and t/2) satisfy

the hypotheses (H1)-(H3) of [9]. We omit this detail. Then the main result of [9]

adapted to the BVP (3.19) reads

Theorem 3.3 [9, Theorem 2.2], Let Uv be a formal approximation of (3.19) given

by (3.22) or (3.23). Then there exists v0 > 0 and SQ > 0 such that for 0 <

v < vo there exists a unique true solution u — uu(x) of system (3.19) with r :=

suP*e[0 i] \UM) ~ ^C*)l ^ <50 > where Uv(x) = (w(x), vux(x)). The remainder r is

of order 0(vx*2) when u —► 0+ .

Remark 3.4. Theorem 2.2 of [9], however, does not specify the explicit depen-

dence of the remainder r on the coefficients of Eq. (3.19). The decay of the remain-

der r may depend on the parameter /. Nevertheless, for any fixed rj > 0 small

enough, using the implicit function theorem and following the lines of the proof

of [9, Theorems 2.2, 4.3, and 4.4], one can show that the remainder r = r(i>, /)

for the formal approximation (t/2i) is 0(u]/2) uniformly with respect to

f e \-fmm' Vm - v] and / e [y0 + 1, /max], respectively, when v -► 0+ .

For / e [/min, yM), Theorem 3.3 asserts the existence of a true solution u^ of

Eq. (3.19) approximating the given formal approximation U . We have

c ̂
u^\x) umf) <t>x{x) and v^'^x) umf > / (j>1 (£)cH; for any x e [0, 1] as v —> 0+.

J X

(3.25)
Again, by Theorem 3.3, for any / e (y0, /max], there exists a solution u^] of Eq.

(3.19) such that

(2)
lim uv (x) — <j)\{x) for any x € [0, x0),

i/—»o+

lim u^\x) = 4>2{x) for any x e (x0, 1], (3.26)
v—>0+

Hence, for small v > 0 the solution i/2) has a graph as in Fig. 2 (see p. 412).

By the Lebesgue dominated convergence theorem we have the uniform convergence

(2) unif (2) />2(M, xe[x0>l];

/;o ttf) d£ + £ <t>2(£) d£, x € [0, x0\
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Fig. 3

when v —► 0+ . Hence, the family (^2))„>0 converges uniformly to the velocity

profile Vg2> with a kink located at xQ as shown in Fig. 3.

It is now clear that given a pressure gradient f € (y0, yM), for any v sufficiently

small there exist at least two solutions w^1', u^ of Eq. (3.19) satisfying Eqs. (3.25)

and (3.26), respectively.

Integrating the velocity v with respect to x yields the steady-state flow rate per

cross section

Q = 2 fv(x)dx. (3.27)
Jo

Denote by Q'u the volumetric flow rate corresponding to the velocity v^ given by

Eqs. (3.25) and (3.26), respectively. Clearly, for any rj > 0 there is d = d(g, rj) > 0

such that

Q^ > d for any / e [y0 + rj, yM) and v > 0 sufficiently small. (3.28)
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We conclude this section by discussing the stability of steady states. We first show

that linearized stability of a solution u of system (3.19) extends to that of the steady-

state solution [2] ofEq. (3.8).

Lemma 3.5. Let 0 < a < 1/supwe9l |g'(w)|. A steady-state solution [£] of Eq. (3.8)

is exponentially asymptotically stable with respect to small perturbations of initial

data in the phase space — X^1 x X^1, provided the principal eigenvalue [i()

of the linearized Sturm-Liouville problem 5,[w] = v2uxx - u - g\-u{x))u = /iu,

u{0) = ux{ 1) = 0 is negative.

Using Lemma 3.5 we are able to prove the theorem below establishing stability of

the solutions [ ̂  ], i = 1, 2, as well as their uniqueness for certain parameter values.

The details of the proofs of Lemma 3.5 and Theorem 3.6 are given in the appendix.

Theorem 3.6. Assume that 0<a< l/supu£!H |^'(w)| and g satisfies the hypotheses

(W).
(a) If / € [fmm, yM) and v > 0 is sufficiently small, then the principal eigen-

value n0 of the linearized Sturm-Liouville problem [w] = fiu at u'2' is negative.

Consequently, the steady-state solution [ ?i>] of Eq. (3.8) is exponentially asymp-
Ui/

totically stable with respect to small perturbations of initial data in the phase space
^1/2 _ ^1/2 x jj^l/2

(b) If / e (70'/max] and v > 0 is sufficiently small, then the principal eigen-

value fj.Q of the linearized Sturm-Liouville problem B{[u] = jiu at u'^ is negative.

Consequently, the steady-state solution [ m] of Eq. (3.8) is exponentially asymp-
Uv

totically stable with respect to small perturbations of initial data in the phase space
^1/2 = x\/2 x jj-1/2

(c) There exists a unique steady-state solution of Eq. (3.8) whenever / 6 7m)

or fe (yM, /max] and v > 0 is sufficiently small.

4. Spurt. Having developed the mathematical background we are in position to

explain the occurrence of spurt for a fluid governed by the system of equations (3.8).

Suppose that we are loading the pressure gradient quasi-statically from /min to

-/max avowing the system to settle down to its equilibrium state at each step.

Since —v^\f) depends continuously on f, the volumetric flow rate =

Q{J\f) of the steady-state velocity v(J} = v^\f) for f < yM forms a continuous

curve. At each step of the "loading-stabilization" procedure, the volumetric flow

rate corresponding to the velocity v(T) is close to = Q^\f) when T is large

enough.

The situation changes dramatically when the pressure gradient / passes yM . For

/ > yM the solution has no other possibility than to settle down to the unique steady-

state solution

0
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of system (3.8) which is globally asymptotically stable by Theorem 3.6. Hence, by

Eq. (3.28), this small change of the pressure gradient causes a jump of size d > 0 in

the volumetric flow rate as shown in Fig. 4. This jump is equal to the area between

the two equilibrium solutions and r/2) (see Fig. 4).

For / varying in the interval (yM, /max], the "loading-stabilization" can be re-

peated. The corresponding volumetric flow rates are close to the continuous curve

/ h-> Q^\f) of the steady-state volumetric flow rates in Fig. 5.

Let us note that earlier models that did not include the diffusion terms in their

constitutive relations also captured the spurt phenomenon [10-12]. For f > yM the

principal difference between our explanation of spurt and that of papers mentioned

is: the change in volumetric flow rate as / passes through the critical value yM on

loading is much more drastic in our model than the earlier ones; here the "kink"

develops at the point 0 < y0/yM < 1 very suddenly and then moves slowly with a

definite speed toward the centerline. In [10, 11], the kink develops at the wall; for

/ > yM, the layer position is x* = yM/f. The phenomenon of latency that occurs

on loading described in [10, 11] is not discussed here.

Ot
<D

£
O

G
o

B

"o
>

Pressure gradient 7m f

Fig. 5. Spurt
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5. Hysteresis. We now consider the loading-unloading cyclic process. The be-

havior of the volumetric flow rate during the loading period has been described in

the previous section. Recall that the volumetric flow rate increased rapidly when the

pressure gradient passed the value yM . Now let us unload the pressure gradient start-

ing from / = /max . By convention, as long as / stays larger than y0, the solution

still settles down on

/ )'

U2)(-,/)J-

On the other hand, for any f <ym there exists the unique solution

.> /).'

Therefore, the solution

K2)(-,/)i
U2)(-,/)J

ceases to exist at some critical value near y0. Figure 6 shows two branches of the

bifurcation diagram corresponding to the stable steady states

i= 1,2.

By Eq. (3.28), Q^\f) - Q(J\f) > d(rj) > 0 for any / c [y0 + rj, yM) where
rj > 0 is fixed. Hence, there is a hysteresis loop as shown in Fig. 7 (see p. 416).

U2e(f)

U1(f) __

I I L

Yo /

Fig. 6
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Fig. 7. Hysteresis

6. Numerical simulations. In this section we present some numerical results ex-

hibiting spurt and hysteresis. Recall that our model leads to the system of governing

equations

evt = evxx + °x + f->

ot = v2axx + g(vx) -ka (6.1)

for (t, x) € [0, oo] x [0, rcap]

with boundary conditions

vx(t' 0) = v(t, rcap) = 0, a(t, 0) = 0, ax(t, rcap) = -f

and initial data

v(0, x) = v0(x) and cr(0, x) = crQ(x) for a.e. x e [0, r ]. (6.2)

We will consider an analytic function g of a particular form

S(u) = n-— U 2 2 2 (6.3)
1 + (1 - a )u /k

where n > 0 is the elastic modulus, a is the dimensionless slip parameter, and k is

the relaxation time of the polymer. The particular choice of the function g is taken

from [11, Sec. 3],

First, we determine the magnitude of the coefficient v > 0 in Eqs. (6.1). Following

[4]
2 k ■ d

v x. —- (6.4)

where 6 is the absolute temperature, k is the Boltzmann constant, and £ is the

hydrodynamic resistance of one dumb-bell bead (assumed to be constant). If we take

typical values of 6 « 102K, £ a 10_9kg s_1 and recall that k « 10~23J KT1, we
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2 —12 2—1
obtain u « 10 m s .In our numerical simulations we have chosen the fixed

value

v2 — 4 x 10~12m2 s_1. (6.5)

We next turn to the Vinogradov et al. rheological data. In all experiments, the

radius of the capillary was

rcaP = °-48 x 10"3m-

The elastic modulus n and the density g have been taken constant for all samples

and equal to

Ju = 6xl04Pa, f> = 103kgm~3, (6.6)

respectively.

Numerical experiments were performed for the polyisoprene PI-3 which was the

first sample for which spurt was observed [15, Fig. 3b], According to [15] and [8,

p. 323] we have

X = 0.1s-1, e = 0.01484y = 8.9 x 103Pa s_1 a = 0.98. (6.7)
A

We see that the constants a = grills = 2.58 x 10~9 and v2 jr2 1 = 10~4 intro-
^ cap ' / cap

duced in Sec. 2 can be treated as small parameters. It is easy to verify that the real

analytic function

i / \ 1 H u
h(u) = A.u H x—x ^r

£ l +(1 -a2)u2/(e2A2)

is of van der Walls type (see the hypothesis (W)).

As our first numerical experiment, we simulated spurt. In S. I. units, we choose

fmin = 9"3 X lC)7kg m_2 S~2> /max = 512 X 10?kg m~2 S~2 '

A/ = 1.8 x 107kg m 2 s 2.

The startup initial condition (for / = /min) was chosen to be (vQ, uQ) = (0,0). At

each loading step, the solutions were followed for a sufficiently long time Tj^ =

150 sec to allow them to settle down. Since a > 0 was very small, we could use

the Crank-Nicholson implicit time-space discretization scheme. The spatial mesh

contained a total of 40 nodes. The time step was chosen as At = 0.005 sec.

Figure 8 (see p. 418) shows the results obtained (Fig. 8(a)) and compares them with

Vinogradov et al.'s experimental data (Fig. 8(b), the flow curve for PI-3 is labeled

by 3). Following [15] c-g-s units are employed and axes are in the logarithmic scale.

The nominal shear stress r is defined by x — rcap/ (see [8, Eq. (48)]). Since we have

considered a planar flow instead of a capillary flow the corresponding definition of a

volumetric flow rate is

cap

(see [8, Eq. (47)]).

3 r-

rL Jo
v(x) dx
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Fig. 8(a). The spurt phenomenon for the sample PI-3.
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Finally, we have performed numerical simulations of a loading-unloading cycle.

The hysteresis loop under the cyclic load is displayed in Fig. 9.

Figure 10 shows the steady, kinked velocity profile for the spurt value of the nom-

inal shear stress r = 1.61 x 106dyne cmT2 (logr = 6.21).

1.50 i

1.00

0.50

Ol

£
O
€3

1-0.50
£
3

O

■"-l.oo i
v°

-1.50   

5.60 5.80 6.00 6.20 6.40

Nominal shear stress

Fig. 9. The hysteresis loop under cyclic load
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Fig. 10. The velocity profile at the critical value of pressure
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7. Discussion. We have proposed a modification of the mathematical model of

shearing motions leading to a system of governing equations including a diffusion

term v axx in the constitutive equation. In addition, we have described the asymp-

totic behavior of solutions which is simple in typical situations—each solution tends

to some steady state and the number of steady states is finite.

The diffusion term makes the system of governing equations parabolic. As a con-

sequence of the resulting parabolic smoothing effect the system will admit a finite-

dimensional inertial manifold as well as a compact global attractor. In a subsequent

paper we will study singular limits when a = Qrcap2./s tends to zero.

Acknowledgments. The authors are thankful to J. A. Nohel and A. Tzavaras for

introducing them to the subject and helpful discussions.

Appendix.

Proof of Lemma 3.5. Let [5] be an arbitrary steady state solution of Eq. (3.8).

The linearization of Eq. (3.8) at [£] has the form

d_
dt

= B

where the linear operator B is given by

1 C , 2

B aSxx + V Uxx~U + S'(~U{X)){S - U)

I'2UXX — u + g\-u(x))(S - u)
(A.l)

its domain being D{B) = {[^], S, u E W ' (0,1); S(0) = 5^(1) = «(0) = ux(l) =

0} C L2(0, 1) x L2(0, 1). Denote by B{ the Sturm-Liouville operator

Bx[u] = v2uxx - u - g'(-u(x))u (A.2)

on its domain D(B{) = {w e W2'2(0, 1); w(0) = wx(l) = 0} c L2(0, 1).

Assume that the principal eigenvalue of the linear problem B{[u] — , we

D(BX) is negative. Since 5, is a selfadjoint Sturm-Liouville operator, we have

{B [u\, u)
—VH— - o < 0 (AJ)

||m||

for any u e D(B{), u / 0. Moreover, 5, is invertible and B~x: L2 —> L2 is

compact. Hence, the operator B is also invertible and

B 1
a A 1 {y/ — <f>)

B\X(V ~ ag (-u{-))A~X (y/ - <f>)) \

where the linear operator A was defined in Sec. 2. Since, by Eq. (3.6), A 1: L2 —> L2

is compact, B~x \ 3? —>8? is compact as well. Therefore, the spectrum a(B) consists

of eigenvalues.
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We will show that Re A < 0 for any X e o(B) = op{B). Suppose to the contrary

that there exists an eigenvalue X e a(B) such that Re/. > 0. Let [£] denote the

eigenvector of the linear problem

B (A.4)= X

Subtracting the equations for S and u we obtain ^Sxx = X(S - u). Thus,

Sx(x) = -aX f\s-u)({)di. (A.5)
J X

Taking the inner product of (A.5) with - fx (S - u){£) d£ we obtain

[\s-umdz
J X

-115 - w||2 - (u, S - u) - aX

Since Re A > 0, we have ||S - u\\2 < -Re(«, S - u) < ||u|| ||5 - u\\ and hence,

IIS-m|| < ||u| (A.6)

From (A.5) we have S(x) = -aX /0X // (S-«)(£) d£ dr. Thus S-aXJ(S-u) where

J: L2 —► L2 is a linear bounded operator with ||7|| < 1 Therefore, u satisfies the

equation

Bl [u] + aXg'(-u(-))J(S — u) = Xu. (A.7)

Take the inner product of (A.7) with u to obtain

(B{[u], u) = X(\\u\\2 - a(g\-u(-))J(S - u), «)).

Since is selfadjoint, we have Im(/l - aX(g'(-u(-))J(S - u), u)/\\u\\ ) = 0 and

, = J,-yi-mws'y
Ml2 V IMI /

According to (A.6) we have

a
(g'(-u(-))J(S-u),u)

lull2

because ||/|| < 1 . Therefore,

/ 11^(5 - M) || ||»|| I '/ M 1
< asup|£ (5)|" ' < a sup \g (s)| < 1

sen u sen

—rf—J-0,
a contradiction. Hence, ReA < 0 for any X e o{B). By [5, Theorem 5.1.1], the

steady-state solution [5] of Eq. (3.8) is exponentially asymptotically stable with re-

spect to small perturbations of initial data in the phase space = I1/2xl''2. □

Proof of Theorem 3.6. (a) For any u e D(BX), u / 0, we have

(B.[u],u) 1 ( 2 fl i, w fl ,i, (1), u 2, .
- / u (x)dx- h (u (x))u (x) i

Jo JO\u\\2 \\u\\2

-V I dx

< -~~2 [ h'(u[l\x))u{x)dx.
u\\ Jo

(A.8)
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Wehave h'ty^x)) > 0 for x e [0, 1], Therefore, h'(u^\x)) > 0 for any x € [0, 1]

and v small. Hence, the principal eigenvalue /iQ of B{ satisfies

HQ = sup ^ < °- (A-9)
ueD(B,), u4o ||u||

(b) Let us now consider the solution u(2) of Eq. (3.19) having an abrupt transition

at the point x0 = yjf e (0, 1).

First we prove that wj,2' is increasing on [0, 1). The curve h(u) — fx = 0 splits

the first quadrant into two parts (Fig. A.l).

The function u^ is convex or concave at x depending on whether the point

(x, u(2\x)) belongs to the left-hand or to the right-hand component labeled by +, - ,

respectively. According to Theorem 3.3 we have

sup{|"i,2)(x) - 0,(x)|, x G [0, X0 - V1'2]} = 0{vx'2),

suP{lMi,2)(x) - 02(x)|, X e [X0 + I/I/2, 1]} = 0{V1'2)

as v -* 0+ . Since ui2) is a solution of Eq. (3.19) and 0 < (by Proposition 3.1),

we have j^u(2\0) > 0. Indeed, j^u(2\0) < 0 would imply

^3 «l2)(0) = ± (h'(u?(0))£-u{?(0) - /) < 0.

Since w[,2)(0) = = 0, we have u^\x) < 0 for some x > 0, a con-

tradiction. By an obvious indirect argument, one can show that j^u^2\x) cannot
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become negative in [0, x0-i//2]U[.x0 + i//2, 1], To prove that is positive in

(xQ - vx'\ x0 + vx'2) suppose the contrary. Since is convex in + and concave

in -, this is possible only if there exists an x e (x0 - vl/2, x0 + vl/2) such that

< 0 and u^\x) — </>3(x), </>3 being the middle branch solution of h{u) -

fx - 0 is shown in Fig. A. 2.

Let us introduce the "fast-time" variable x = (x - xQ)/v for x 6 (x0 -u]/2, xQ +

vl/2) and put w(r) = u^2\x0 4- vt). Then ^w(t) = v-^u(2\x0 + vr). According to

Theorem 3.3 we have

sup
TG(-^-1/2,1'-'/2)

- z(t)) = 0(u1^2) as v -* 0+.

z being the heteroclinic solution of the problem (3.24). Since x-x0- 0(ul/2), we

have |03(3c)-03(xo)| = 0(v1/2) as v -► 0+ . Therefore, j^u(2\x) = i'-jhu((x-xQ)/i>)

must have the same sign as £z((x - x0)/v) for any v small. Hence j^u^2\x) > 0,

a contradiction.

Knowing that for any / e (y0, /max], u(2) is increasing in [0, 1) for u small

we return to the linearized eigenvalue problem Bx[u] = nu where Bx[u\ — v2uxx -

ti (u(2\x))u, u(0) — ux( 1) = 0. First we prove the following useful lemma.

Lemma A. Assume / e [/min, /max]. Let u be any nondecreasing solution of (3.19)

such that |/?(w(l)) — f\ < (1 -a)f and h'(u(x)) > 0 on [a, 1] for some a e (0, 1).

Then the principal eigenvalue fi0 of the linear operator Bx[w] = v2wxx-h'(u(x))w ,

w e D(Bl), is negative.

Proof. Denote 0(x) = j^u(x). Then cj> satisfies

u2<t>xx-h\u{x))(P = -f, cf> (0) = 0(1) = 0, (A. 10)
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and cf) > 0 on [0, 1). Let w be a solution of

Bx[w] = v1 wxx - h'(u(x))w = HqW , (0) = wx(l) = 0 (A. 11)

corresponding to the principal eigenvalue n0 of Bx . Since (A. 11) is a Sturm-

Liouville problem, there exists w satisfying (A. 11) such that w > 0 on (0, 1) and

f0' w(x)dx = 1 . If we multiply (A.l 1) by <f> and integrate over [0, 1], we obtain

H0 J w(x)<f>{x) dx = v2(wx4> - wt>x)\o ~ f J w(x)dx [because wx(0)0(0) > 0]

< -w(l)(h(u(\)-f)-f<w(l)\h(u(l))-f\-f.
(A. 12)

Now suppose to the contrary that fiQ> 0. Since w > 0 on (0, 1), 10^.(1) = 0, we

have v2wxx = h\u(x))w + fi0w >0 on [a, 1]. Hence, w(x) > w( 1) on [a, 1]

and, consequently,

1= [ w(x)dx> f w(x)dx > (1 - a)w(l).
Jo Ja

From (A. 12) we obtain

N / w(x)<f>(x) dx < 0.
Jo

Since w > 0, <f> > 0, we have n0 < 0, a contradiction. □

Now it is easy to complete the proof of part (b). We fix an a > xQ. Then, by

Theorem 3.3, sup{|w^2)(x) - <j>2(x)\, x G [a, 1]} = 0(ul/2) as v —> 0+ . Therefore,

|h(u^\l)) - f\ < (1 - a)f and h\u^\x)) > 0 on [a, 1] for any v > 0 sufficiently

small. Lemma A completes the proof.

Note that, for certain singularly perturbed problems, an asymptotic estimate of

the form = 0(v) as u —> 0+ is proved in [1],

(c) Our next goal is to prove uniqueness of solutions of (3.19) for / € [/mjn , ym) U

(:yM, /max] and i> small. Let us consider the case / e (yM , /max]. First, we show

linearized stability of an arbitrary nondecreasing solution u of (3.19). By Lemma A

it is sufficient to prove that |/z(u(l)) - f\ < (1 - a)f and h'{u(x))> 0 on [a, 1] for

some a e (0, 1). To this end, we recall first that according to Proposition 3.1 there

exists an M > 0 such that

v sup \u (jc)| + sup \u{x)\<M (A.13)
*€[0,1] ' *€[0,1]

for any solution u of (3.19) and v > 0.

Let u be a nondecreasing solution for (3.19). Let 1 > a > yM/f ■ Then for any

x G [a, 1] we have fx > yM ; so u is concave on [a, 1]. Thus, by (A.13)

fx 1 4 M
0<ux(x)< ux(Z)di. — <— (A.14)

for any x £ [a, 1] where a = (a 4- l)/2. Therefore, there exists a constant > 0

such that

0 < fx- h(u(x)) <f£- h(u(£)) + M^Z-x) (A. 15)
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for any ^jce[a, 1], x < £ . Thus, by (A. 14) and (A. 15)

0 < uX/2{fx - h(u(x)))

rX+v1'2

< {fe-hmv+Mtf-xvdz
J X

= -V1 J Uxx(£)d£ + < (lM + f =: M2v.

Hence |fx - h(u(x))\ < M2ul/2 for any x e [a, 1], u > 0, and any nondecreasing

solution u of (3.19).

For v < {{fa - yM)/M2) we have

h{u{x)) > fx- | fx - h(u(x))\ > fa- \ fa - yM\ = yM for any x e [a, 1],

Since h{u) < yM for u < c2 (see Fig. 1), we have u{x) > c2 on [a, 1], hence

h'{u{x)) > 0 for x e [a, 1]. By Lemma A, the principal eigenvalue fi0 of the

problem B{[w] = v wxx - h'(u{x))w = nw , w e D{BX), is negative.

Now, consider the parabolic equation

Ur = ^Uxx ~ Ku)+ fx,

u{ X , 0) = ux{z, 1) = 0, X > 0, u(0, x) = w0(x), X € [0, 1].

This equation generates a gradient-like semidynamical system S^{x), r > 0, in the

Hilbert space X1^ = {u e Wl'2{0, 1), m(0) = 0} defined by S"(r)uQ = u{x, •),

where w(0, •) = u0(-) (see [5, Chapter 4]). The set J = {h€ X1^ , ux{x) > 0, a.e.

on [0,1]} is a closed convex cone in X1^2. Moreover, 3? is invariant under 5?,

i.e.,

u{x ,-)eJ whenever u{0, •) e 3? for any r > 0.

Indeed, the function

-ux{x, x), x e [0, 1], x > 0;

-ux(t,-x), x€[-1,0], t>0,

is the solution of the scalar parabolic equation

wx = 1/2WXX ~ h'{u{x))w - f,

w{x, -1) = w{ T, 1) = 0.

Therefore, w{x, x) < 0 whenever iu(0,x) < 0 by the Maximum Principle (see

[14]). Hence, J?7 is a semidynamical system on the complete metric space 3? with

the topology induced by X1^2.

To complete the proof we argue similarly as in [1, Theorem 4]. Since 3? is invari-

ant, it is the union of (disjoint) attraction domains of the nondecreasing stationary

solutions of (A. 14). Because those solutions are asymptotically stable, these attrac-

tion domains are open in X. Since the set JP is connected, it cannot be a union

of two nonempty disjoint open sets; hence, is the unique stationary solution in

jr.

w{X, x' ■{
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Now, let u be an arbitrary solution of (3.19) (not necessarily nondecreasing). By

Proposition 3.1, u is bounded and u > 0 . Then there exist u~ ,u+ € 3?nD(A) such

that u~(x) < w(x) <u+(x), x e [0, 1]. With regard to the Maximum Principle [14,

Chapter 3, Theorem 3] we obtain 5*(r)u~(x) < )u(x) < «5^(r)u+(x) for any

t > 0 and x e [0, 1]. Since J/"(r)u± e 3?, for any r > 0, we have ^£7(r)I7± —> u^
(2)

(2)
V

proof of uniqueness of solutions of (3.19) for / e |X,in, ym) is similar. □

as t —> oo . Thus, u = uv

Hence, the solution uv is unique, provided v is small and / G (yM , /max]. The
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