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Introduction. The conservation laws satisfied by the solutions of a previously given

system of differential equations play a basic role in various problems of continuum

physics: conservation laws such as the conservation laws of energy, momentum and

others that one uses for the analysis of theoretical properties of differential equation

solutions (a priori estimates, theorems for existence and uniqueness, stability, etc.), as

well as the numerical discretizations—the method of integral relations, conservative

difference schemes and finite elements.

In elasticity, in addition to the general applications mentioned above, the conser-

vation laws (or, rather their path-independent integral forms) are of key importance

in the study of cracks and dislocations [1, 2], Instructive review of the conservation

laws in elasticity and their numerous applications is presented by Olver in [3],

The results of Knowles, Sternberg [4], and Fletcher [5] obtained by variational

principles being invariant at infinitesimal transformations are generalized for vis-

coelasticity in the paper [6],

The traditional method for obtaining conservation laws is based on Noether's the-

orem and its generalizations [7, 8]. For its application it is necessary to analyze in

advance the group properties of the initial differential system of equations and to

obtain the functional for which Euler's equations appear as equations to be analysed.

Moreover, if the functional is degenerate (this is possible in elasticity [9]) one loses

the one-to-one map between the groups which admit the initial equations and the

conservation laws [7, 8]. Thus the investigation of conservation laws by previous

determination of the groups of corresponding functionals sometimes leads to tedious

computations.

In the present work we seek the conservation laws without using group analysis and

a variational principle. In the case of an adiabatic, an elastic solid for the density,

and the flux of an arbitrary conservation law, an overdetermined partial differential

equations system of the first order is obtained, and the presence of the entropy permits

one to perform a direct analysis for compatibility. Briefly, the main result that we

obtain is the following. If the internal energy function does not satisfy a system

of two partial differential equations of the second order with constant coefficients
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(the condition (iii) of Theorems 2.1, 3.1) then all linearly independent conservation

laws in elasticity, which are explicitly independent of time and space are the classical

conservation laws of momentum, energy, entropy, and mass. The two- and three-

dimensional problems require a more delicate analysis.

Let us mention that with similar methods the conservation laws of other important

differential equation systems of continuum physics are obtained [9, 10].

This paper is divided into three parts. In Sec. 1 are discussed the basic equations

of one-dimensional elasticity in the case of compressible and incompressible solids.

In Sec. 2 are obtained the conservation laws of compressible nonlinear elasticity and

in Sec. 3 the conservation laws of incompressible elasticity. Also, two examples for

applications of the basic theorems are considered, and the role of entropy for deter-

mining conservation laws is discussed for the equations of isothermic incompressible

elasticity. The conclusion is that, like in the case of the shock waves theory [11,

12, 13], the presence of entropy does not allow conservation laws without physical

meaning and vice versa.

1. Basic equations. Without loss of generality we can consider a motion of a solid
2 3

in the form of waves parallel to the (x , x )-plane in the Lagrange coordinate system

X1 = x, X2, X3,

Xj = X1 + d:(x, t), i= 1,2,3,

where the xi are Euler's coordinates and the di are displacements. This motion

generates a velocity field vt = ddjdt, i = 1,2,3, and a deformation gradient field

pt = ddjdx, i — 1,2,3.
An adiabatic process in a compressible elastic solid without body forces is governed

by the conservation laws of momentum and energy, [12, 15],

dv. dT.
^¥-¥ = 0' (L1)

dpi_dv1 = 0

dt dx

= 0 <U>
1 = 1

and the second law of thermodynamics

3

de = Qdr] + Y,TidPi- (L3)
/= i

Here, r , / = 1, 2, 3, are stresses, p0 is constant density in the reference configu-

ration, 0 is temperature, t] is entropy,

2 2 2
V. + Vrs +

E = e + p0— j 1

is the total energy, and e = e(pl, p2, P$, f]) is the internal energy. The conservation

law of the mass can be expressed by the continuity equation

Pi1 +Pi\ = P0, (!-4)

where p0 is the density in the actual configuration.
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Hence and henceforth we consider smooth solutions of the nonlinear elasticity

equations and shall not specify explicitly the domain of the variables if it is not

explicitly shown in adding.

Let us multiply the first equation of (1.1) by , the second by v2, the third by

v3 and subtract them from (1.2):

^_yT.^i = o.
dt ^ 'dx

i= 1

Using 4-6 of the equations of (1.1) we can write the last equation in the form

<=0 (15)
dt ^ 1 dt K ' '

1=1

which by analogy with gas dynamics can be called the "entropy" equation of the

energy. If we multiply the first equation of (1.1) by ql = the second by

q2 = -v2/&, the third by q3 = -v3/&, the fourth by q4 = -TJQ, the fifth by

q5 = -T2/Q, the sixth by q6 = -T3/Q and (1.2) by q() - 1/0 and summarize the

results, we get

dt] de ^ dpt
T'~m ~a

1= 1

From here and (1.5) the conservation law of entropy follows:

U-0. (1.6)
It is not too hard to prove that in the dependent variables qi, i = 0, , 6, the

elasticity equations can be written as a symmetric quasilinear system, [13].

If the solid is incompressible, then p = p0 and from (1.4) it follows that pl = 0.

With additional physical motivation, see [15], one can show that the equations of

elasticity are reduced to

(1.7)

where

8v- dT. n

dP1_9vi = o i = 2 3
dt dx ' ' '

-r de 0 1 J7 , v2 + Vl
• = di' l= E = e + p0-^-^.

Let us consider the equations of a compressible elastic solid. If we choose the

velocities, deformations and entropy as basic unknown functions, the equations of

one-dimensional nonlinear elasticity can be written by the quasilinear system
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where

V

«=(?), A(U) = grad ̂ -/?0 '0,-V, 0^ , V = (vl, v2, v3).

Definition 1.1. The equation, [11],

8D(t,x, U) dF(t,x, U) _

dt dx ^ '

in which the functions D, F are second-order smooth functions of their arguments

is called a first-order conservation law of the system (1.8) if it is satisfied for every

smooth solution of the system (1.8). The functions D, F are called density and flux

of the conservation law (1.9). The conservation laws of the system (1.8) are linearly

independent if and only if their corresponding functions Z(t, x, U) = (Dj, Fj) are

linearly independent.

In the same manner the conservation laws for incompressible elasticity can be

defined.

2. Conservation laws in compressible nonlinear elasticity.

Theorem 2.1. Let the function, e = e(P, rj), P = (px, p2, p3), have continuous

partial derivatives up to third order in a region Q = Q x (a, b). Let us denote

e = = +T T = (T T T) e = ^ e e = ® e
' dPi + l " 2,J3'' eil dp,drj' 'J dpidp} '

A = detail, i,j= 1,2,3,

and by A(. (i = 1, 2, 3) the determinant, which is obtained from A by substituting

its zth column with (el, e2, e3) . Let us suppose that the following conditions are

fulfilled:
(i) A#0 if (P,ti) efi;
(ii) e (a, b), such that for almost every P e Q

3

Y,eksA ~ AekS,J(e) = det

where

r= 1

7^0,

de, de.
Sksr ~ ~dp^ ' €ks" = ' k>s>r= 1,2,3.

Then, all conservation laws of the system (1.9) corresponding to its solutions U =

(V, P, tj), for which (P, rj) € Q are the following:

£> = - cu£> - f (c12r2 + ci3T3)dPl - J2(PoMix + Li)pi
J i=i

3 3

- 2^0 E + ?(*'?)
/,7=1 (=1

+ J if/(x, t)dt + n(x),
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3 3 3 „

F = 2 cijviTj + Mix + L,)vi + 51W + Ndei ~ w(x,t)dx +1/(0,
1 i=l (=1

where (p , i//, n, v are arbitrary functions, Mj, Ni, L; are arbitrary constants and

the constants ci} satisfy the conditions: cf. = and

(Cn — ̂ 22)^12 + C12^22 ~ ei0 + C13C32 — C23^31 =

(iii)

(cn — ci3)e3l + cl3(eu — e33) + ci2e23 - cs2e2\ =

Proof. In the equation (1.10) D and F are the required functions of the variables

t,x,vi,pi, i = 1,2,3, rj, and each of the variables vi,pi, i = 1, 2, 3, >/ in

their turn depend on t, x . We differentiate in (1.11) P, F as compound functions

and using the system (1.1), (1.2) we eliminate the derivatives with respect to t. We

get a linear relation with respect to space partial derivatives, which must be zero for

arbitrary values of the solution derivatives. As a result the following system of eight

equations for two functions arises:

dF -i dD . , . - .

1 = 1,2,3

dF _ dP _

dvk ~ dpk ' k-1,2,3, (2.1 M)

k = 1, 2, 3

dF _ -i ^ dP /-> , \
~drf~ Po ( ?)

— + — = 0 (21)
dt + dx [*>

At the first stage of the proof we will investigate for compatibility the equations

(2.1,)—(2.17). For this purpose we compute dP/dVj , j = 1,2,3, from the equa-

tions (2.1 j)—(2.13):

_dP_ = Poy,_ly+jA dF_
dvj & lJdpt ' J

where Ais the subdeterminant of A corresponding to its (z, j)-th element. After

substituting these expressions in the right side of (2.1?) and suitable rearrangement

we get the equation

4?"^-a (2.2)

The general solution of (2.2) is

F = F{el ,e2,e3,vl,v2,v3,t,x). (2.3)
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For example, we shall check that e is a first integral of (2.2), i.e., de/dp = const.

Indeed, in view of the characteristic system of Eq. (2.2),

dt] _ dpl _ dp2 _ dp3 _

A ~ A, ~ A2 ~ A3 '

we get

dei = k

But, using the notations for A, A •, j — 1, 2, 3, it is easy to verify that the right

side of this expression is zero.

Using the representation (2.3) for the function F we can rewrite (2.1.) in the

form

( 8F dD\ ( OF dD\ ( OF dD\ n , „ „
+ wj€ii+{p°d^2 + w2)e^+[p°dF3 + wje* = 0' 1 = 1'2'3-

Taking into account that A ^ 0, then from this homogeneous linear system of alge-

braic equations for the unknowns p0|f~ + §F > ' = 1,2,3, the equalities follow:

+ = , = 1'2-3- (2-4)

Let us differentiate each of the equalities (2.4) with respect to pk, k = 1,2,3.

Taking into account (2.13 fc) we obtain

tr> \ 8F 8D 8F ■ » i -> ,, n

' ^dejdes ~ ~dvidpk ~ dvtdvk ' «, A: — 1, 2, 3. (2.5)— J IS IK IK

Since A^O and

dc
ei = ^ = gi(Pi' P2> P}> 1)> i= 1.2,3, (2.6)

from the implicit functions theorem the (local) representation follows:

pi=pi{el,e2,ei,t]), i= 1,2,3. (2.7)

Now we can rewrite (2.5) in the form

3 Jr,T x „2,
V-~ , <.8 r(T, v) dAF{T,v)

'oL'bl'i • 1) 3„a,, =
a/)

(2.8)
4=1 deides dvidvk dvidPk

where

iks = eks(Pi(ei>e2>e3> n),P2{ex,e2,e^, r]),p3(el,e2,ei, tj)). (2.9)

Let us put ei, / = 1,2,3, from (2.6) in (2.7) and differentiate the two sides of

the equalities thus obtained with respect to t]. As a result of this a system of linear

algebraic equations arises for the unknowns dpjdrj. Solving it we find

dp -A
— = 1 i = 1 2 3
di\ A '
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Now, from (2.9) it follows

tXXA-<W (2-10)
' 3

d* A,=i

Let us differentiate the two sides of (2.5) with respect to t]. We get a homogeneous

linear algebraic system of equations the determinant of which according to (2.10)

and (ii) at rj = rf is nonzero. Hence

d2F
0, i,k= 1,2, 3. (2.11)

deidek

Now from (2.5), it follows that

a2 f

= 0, /, fc = 1, 2, 3, (2.12)
dVjdvk

and 2

0. i,k= 1,2,3. (2.13)
dvidpk

Thus, the representation for F follows from (2.11), (2.12):

3 3 3

f= cij(t,x)viej + j2ci(t'x)vi+Y,Ki(t>x)ei+l(t>x)> (2-14)
1,7=1 i=l i=l

and from (2.13) for D :

D = D{{p, t], t,x) + D2(v, t], t, x). (2.15)

In (2.14), (2.15) ciJ, ct, Kt, Dx, D2, I are arbitrary functions of their arguments.

In view of (2.14), from (2, l3+k) and (2.4) we get for D :

w-w-i,=l'2'3' <2-l6)
yl ' j=1

= I' '=1.2.3. (2.17)
J=l

After a differentiation of the two sides of (2.16) with respect to pt (i = 1,2,3) and

equalizing the mixed derivatives, we find that the functions ci -, i, j = 1,2,3 must

satisfy the conditions (iii).

From the first of the equations (2.16), after an integration with respect to , we

find that

D\ = ~cue\ ~ J(ci2e2 + cl3e})dpj -cIpI +D3(p2,p3, ij, t, x) (2.18)

where D3 is an arbitrary function. Let us differentiate the two sides of (2.18) with

respect to p2 and replace the expression under the integral by its value from (iii).

After some easy calculations we obtain

D3 = ~c2p2 +D4{p3, , f, X). (2.19)
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Taking D3 from (2.19) we put D{ from (2.18) in the third of the equations (2.16).

After calculations similar to the above we get

D4 = -c3pi + D5(ri,t,x), (2.20)

where D5 is an arbitrary function of its arguments. Finally, from (2.14)—(2.21) we

get the formulas

D= -cn(t,x)el - J(cl2(t,x)e2 + cl3(t,x)e3)dpl

3 3 3

- E ct{t, x)pt - \pQ Cij(t' x)vivj - Po E ,x) + D5(rj,t,x),
1=1 1,7=1 1=1

3 3 3

F= E ciA{ - x>iej + E cM' *)«,- + E Ki (.t, x)ei + l(t, x).
i,j= 1 i=l i=l

(2.21)
We put these expressions for D and F into Eq. (2.1g) and equalize to zero the

coefficients at the degrees of vl,v2,v3\

dc:ij
dt

0, /, 7 = 1,2,3, (2.22)

dK ' dcu dc.
-"o^+E^, + ̂  = 0. ' = >.2,3, (2.23)

j= 1

Aac, od5 *dKi dl n
^ dtPi + dt + ^ dx e'+ dx ~ ' ( ^
i=i 1=1

We differentiate (2.23) successively with respect to px, p2, p3 and get a linear

homogeneous algebraic system of equations for the unknowns ^^ , with

determinant A ^ 0 (see (i)). Thus, (2.23) reduces to the equations

dcu dK. dc.
■a=°- +^=o' (2-25»

In the same way, using the condition (ii) we can show that (2.24) reduces to the

equations
dK. n dc. dD, dl

aF = 0' lf= -W + e~x'°- <2'26>
An elementary analysis of (2.22), (2.25), (2.26) gives

<p2 = - J v{x, t)dt + fi(x), I = - J y/(x ,t)dx + v{x),

where <p, y/, p., v are arbitrary functions. This completes the proof of the theorem.

Corollary 1. For an arbitrary function e = e(px ,p2,p3, tj) having continuous

partial derivatives up to the third order there exist constants ct] — cj: satisfying the

conditions (iii), but if the function of the internal energy is such that these constants

must satisfy the equalities

c'i = cjj> cij = 0' 1,7 = 1,2,3, (2.27)
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which do not depend explicitly on the time and the space, then we get the classical

conservation laws: the conservation laws of mass (1.4), momentum (1.1), energy

(1.2), and entropy (1.6).

Proof. Now, in view of (2.27) the formulas (2.21) take the form

3 3 3

D = ce + J2(PoMix + LM -5/vEv) ~ + Ni)vi + <P(x,ri),
i=i i=i i=i

F = cj2vtTi + X> oMix + Li)vi + + NiK
i= 1 i=1 i=l

Setting successively in these formulas all constants except one to zero we get the

classical conservation laws except the conservation law of mass.

The only trivial conservation laws (which give no information about the solutions)

are the pairs

D = I y/(x, t)dt + fi(x), F — —J y/(x, t) dx + v{t),

where y/, fi, v are arbitrary functions.

3. Conservation laws in incompressible nonlinear elastodynamics. An analogous

theorem is valid for the equations (1.8).

Theorem 3.1. Let the function e = e(P, if), P = (p2, p3), have continuous partial

derivatives up to third order in a region Q = Q x (a, b) c R . Let us denote

_de_ _ d2e _ d2e . . _ ^

€' ~ dPi ~ i' Cii ~ dPidr\' e'J ~ dPidP] ' < > ~ z^

A = det||^||, and let A. (/ = 2, 3) be the determinant that is obtained from A

by substituting its zth column with (e2, eitJ). Let us suppose that the following

conditions are fulfilled:

(i) A * 0 if P € Q;
(ii) 3rj & (a, b) such that for almost every P € Q

3

eksr^r ~ ^eksrjdet

where

r=2

7^0,

* r — 2 3 e
ksr dPr ' ' ' ks" dt] "

Then, all conservation laws of the system (1.8) corresponding to its solution U —

(v, P, rj) for which (P, r\) e Q are the following:

3 3

D = ~ C22e ' C23 / T3 dPl ~ H(PoMkX + Lk)Pk ~ jPo E CijViVj
J i=2 1,7=2

- J2(PoMil + Ni)vi + <P(x,ri)+ f V(x, t)dt + n{x),
i=2 J
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3 3 3 -

F = E c„v.Ti+EWi*+L>.++ jV)<?( + / ^(x, t)dt + v(t),
i ,j=2 i=2 i=2 ^

where (p, y/, n, v are arbitrary functions, M-, JV(. , L; are arbitrary constants, and

the constants ci} satisfy the conditions: cij = cji and

(iii) (c22 — c33)e23 + c23(^22 — ̂ 33) — 0-

This theorem is not a corollary of the previous one, but the proof is similar.

We shall discuss the conditions (i) and (iii) of Theorems 2.1, 3.1 in the following

example. We consider a transversally-isotropic elastic material with energy function

[15]

e = eQ + jC2P2 2^3^3 + 3^22^2 /-5 . \
2 2 4 2 2 2 V /

+ ^23p2p3 + 3^33^3 + Pi + H2P2I + it&i-

At the restriction of the material constants

C2 = C3 = C > ^22 ~ t133 = ^ ' *>2 = £3 = ^ '

the formula (3.4) describes the state of isotropic material. In this case the determinant

A in Theorem 3.1 is

A = C2 + 2 + £ V + 4/i(C + 3f/)(p2 + P3) + 3/z2(p2 + p2)2.

2 2
For fixed value of the entropy t], A may be zero on as many as two circles p2+P^ —

const, in the plane (p2, p3). Thus the condition (i) may be invalidated on those

points of Q that lie on two cylindrical surfaces of the space (p2, p3, tj). Therefore,

the region Q can be divided into a few subregions in each of which the condition (i)

is fulfilled and formulas for D, F are valid with proper coefficients ctj , Mi, Lt, Nt

and function <p(x, rj). The conservation laws thus obtained can be continued on

the boundaries, i.e., everywhere in Q . But now the coefficients c; ■, , Li, N( and

function (p according to Definition 1.1 must be the same everywhere in Q. For an

isotropic material the condition (iii) of Theorem 3.1 takes the form

(C22 — C33)P2P3 + C23{p3 — P3) — 0 ,

which is fulfilled if and only if c22 = 0, c22 = c33 = c (c an arbitrary constant).

When the material is only transversally isotropic, (iii) has the form

2/^23(C22 — C33^2^3 + C23^2 ~ £3) + 22 - ^23^2

+ 23 — 3//33)/?3 + (C2 ~ C3)^3 = 0-

Now let /^23 ̂  0, £2 — £3, n23 — 3/^22 — 3/<33, ^2 — £3. Then c22 c33 c^, c23

c2, Cj, c2 are arbitrary constants.

The assumption (i) in Theorem 2 (and the similar assumption in Theorem 3.1)

arises by studying the system (2.5). If one considers shear deformation, i.e., dx =

d., = 0, d3 = d(x, t), the governing equations of the process take the form of the

gas dynamics equations in Lagrange variables, the conservation laws for which are
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studied by Rozdestevenski [13], p. 39. The analogue of the system (2.5) now is the

equation

,d2F d2F{p,v) dd dd

The condition (ii) takes the form

p e —op +n
pp ppi pi ppp ' '

which excludes the nonphysical relation e = g(p + f{rj)) where g, f are arbitrary

smooth functions. The internal energy functions which do not satisfy (ii) in Theorems

2.1, 3.1 are also solutions of a third-order partial differential equation, namely Y(e) =

0, but are much more complicated.

It is easy to verify that the examples above satisfy the assumption in Theorems

2.1, 3.1.

Let us discuss the role of entropy for the variety of conservation laws in elasticity

in the equations of an incompressible elastic solid (1.8). Let us consider the system

(1.8) at t] = const. Multiplying the first equation of (1.8) by p2, the second by p3,

the third by v2 , the fourth by ?;3, and summing the results, we get

9, . 9 ( »2 + t>,2 de de \ . ....
Po-g-^Pi + ~ ^ +PiWi = °- <3"2'

Such a conservation law does not exist in adiabatic incompressible elasticity according

to Theorem 3.1. Now for determination of the density D and flow F we have to

solve the system

(3.3)

dF___ d-D_
dp2 622 dv2 e2idv2' dp3 e^2dp2 ^339j93'

9F___dD^ dF _ dD

dp2 dp2 dv3 dp3

From the system (3.3) one gets the following equation:

q1d\ / ^ q2d n /-3
d^)+(en-e^d^d^-°- (3"4)

It can be solved explicitly for D and by substituting it in (3.3) we find F . But for

our purpose it is sufficient to obtain those partial solutions of (3.4) for which

a>D a2D=0_ _^D =a (3.5)
dv2 dv3 dv2dv2

After tedious, but routine analysis one can prove the following proposition.

Proposition. Let the energy function e = e(p2, p3) have continuous partial deriva-

tives up to third order in a region Q € R , and almost everywhere in Q the condition

(1) is fulfilled. Then all conservation laws in incompressible isothermic elasticity,

which do not depend explicitly on time and space, satisfying the condition (3.5)
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and corresponding to those solutions of the system (1.8) at rj = const., for which

(P2' Pi) € Q > are

D = c + P0(up2 + 0p3 + y)v2

+ (y?/>2 + 5^3 + e)v3 + HP2 + up3,

22 ( \

F = - i/>0(av2 + <5u3) - c af2V2 + q^V3)

dc dc
- nv2 - vp3 + Se- (ap2 + pp3 + y)-Q^{PP2 + SP} + e)g^ (3-6)

de

where the constants a, 5, /? satisfy the condition

(a - (5)^ + fi(e33 - e22) = 0

and c,a,f3,y,e,n, v are arbitrary constants.

The difference between the conservation laws in Theorem 3.1 and those in the

Proposition is obvious. The conservation law (3.2) is obtained from (3.6) by putting

c = 0, a — S — 1, /? = £ = 0, p. = v = 0.
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