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Abstract. We seek special principal stress contours, for a nonlinear elastic plane

deformation, on which both the principal stresses are constant and the principal axes

do not change directions. It is found that they must be straight lines and that the

lines must be parallel to one another or intersect at one point. It is also shown that

the principal stress contours in the deformation for the straightening of a circular arc

are such straight lines.

1. Introduction. The principal stress and strain trajectories for a nonlinear elastic

plane deformation have been discussed by Ogden [1], He obtained a system of four

first-order partial differential equations governing the principal stretches of the plane

deformation and the two angles that define the orientation of the Lagrangean and

Eulerian principal axes of the deformation.

Assume in a nonlinear plane deformation of isotropic elastic material, the two

in-plane principal stresses (or strains) and the angle representing the direction of the

Eulerian principal axes can be expressed as functions of a single parameter, which

in turn is a function of the position coordinates of the points. Letting the parameter

be equal to some constant, we can obtain a curve in the plane of the deformation,

and then along the curve the two principal stresses (and strains) are constant and the

Eulerian principal axes do not change direction. Thus the curve is a special principal

stress contour. Different values of the parameter produce different contours. In this

paper we will discuss the properties of the contours.

To do so, we first in Sec. 2 express the deformation gradient in terms of principal

stretches and the angles that define the orientations of the Lagrangean and Eulerian

principal axes of the deformation. Then we write the constitutive equations for

compressible isotropic elastic materials, the equilibrium equations, and compatibility

equations. In Sec. 3 we will search for the special principal stress contours, in the

deformed configuration, on which the principal stresses (and strains) are constant and

the Eulerian axes do not change direction. We find that the contours must be straight

lines and that the lines must be parallel to one another or intersect at one point. At

the same time, we establish the governing equations in terms of the parameter for the
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deformation that has this property. Finally in Sec. 4 we show that the straightening

of a circular arc is an inhomogeneous deformation that has these principal stress

contours. The principal stress contours lie along the straight lines deformed from

the circumferential curves. This result is true for any isotropic material, although the

precise expression for the deformation depends on the material properties.

2. Governing equations for nonlinear elastic deformations. We consider a cylinder

of homogeneous, isotropically elastic material and establish a Cartesian coordinate

system (Xx , X2, X3) such that the X3-axis is parallel to the generators of the cylinder

and the Xx, X2-axes lie in the plane perpendicular to the generators. We assume that

the applied forces are such that the cylinder undergoes a deformation

xx = xx(Xx, X2), x2 = x2(Xx, X2), x3 = XX3, (2.1)

where Xj and xt (i = 1,2,3) are the initial and final coordinates of the same

point respectively and X is constant. Then the >¥3-axis is one of the principal axes

of the deformation, and the corresponding principal stretch is X. The remaining

two principal axes lie in the (AT,, X2)-plane. These latter axes and the correspond-

ing principal stretches can be completely determined from the in-plane deformation

gradient tensor [2]

A =

f dxx dxx ^

dx~x dY2
dx2 dx2

Vaxj" dT2 J

(2.2)

It can be shown [1, 3, 4] that this tensor can be expressed as

^ _ (X\ cos^ cos y/ + X2 sin <p sin y/ Xx sin (p cos y/ - X2 cos^ sin y/ \

\A, cos(p sin y/ - X2 sin cp cos y/ A, sin y> sin y/ + X2 cos <p cos y/ )

Here Xx and X2 are the principal stretches in the {Xx, X2)-plane, and <p and y/

describe the orientations of the Lagrangean and Eulerian principal axes in the plane.

Then the inverse of A has the form

A-1 _ cos9'cos yf + X2 1 sin <p sin y/ A"1 cos <p sin y/ - X2 1 sin cp cos y/ \

\ 1 sin <p cos y/ - X21 cos (p sin y/ 1 sin (p sin y/ + X2 1 cos <p cos ys )

Since the material is isotropic, the principal axes of the stress coincide with those

of the strain. The Piola-Kirchhoff (or nominal) stress tensor in the plane has the

form

§ _ ( i ^12 A _ (5icos vcos v + si s'n v s*n v 5i s'n vcos v ~~ sicos f s^n v
\ 52i S22) \ 5, cos y> sin y/ - s2 sin <p cos y/ 5, sin (p sin y/ + s2 cos (p cos y/

(2.5)
where 5, and s2 are the Piola-Kirchhoff (or nominal) principal stresses in the plane

of the deformation. From the relation between the Cauchy stress tensor T and the

Piola-Kirchholf stress tensor S, i.e.,

T = (det A)-1 AS
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(see Spencer [5]), the Cauchy stress tensor has the form

T=(t 11 '12) = /'icosV + <2sinV (?i ~ h)cos V sin V \ (2 6)

V21 hi) \ (f, - t2) cos yf sin y t{ sin2 ^ + t2 cos2 ^ /'

in which t{ and t2 are the Cauchy principal stresses in the plane of the deformation.

The stress-strain relations for an isotropically elastic compressible material with

the plane deformation are (see Spencer [5])

{afi ~ a0^afi + a\+ a2^ay^yP '

>3« = 'a3 = ° («, /? = 1 , 2), (2.7)

where

2 4
133 = Qq + + Cl2X ,

dx dxR

B'>'WYyaY/ (2'8)
a0 = 2lll2dW/dI3,

ax = 21~{l2{dWldI{+IxdW/dI2), (2.9)

a2 = -21~l/1dW/dI2,

1 ,F^aa
/, = B + A2,

72 = UBac + - (5U + *22 + 25n + ^)1/2' (2-10)

/3 = A2(JB11522-JBf2),

and W = W{IX, I2 , /3) is the strain-energy function for the material.

If body forces are absent, then the equilibrium equations in the deformed config-

uration are

°hl + *hl = 0, pl + pl = 0. (2.11)
dxx dx2 <9jc, dx2

For the continuity of the deformation field xl, x2, the stress and strain must satisfy

certain compatibility conditions. These conditions are obtained by substituting (2.3)

into

d2*i = d2x, d2x2 ^ d2x2

dXxdX2 dX2dX{ ' dXxdX2 dX2dXl ' y ' '

or (2A) into

d2X{ _ d2X{ d2X2 _ d2X2

dxxdx2 dx2dxx ' dxldx2 dx2dxl
(2.13)

3. Special principal stress contours and governing equations for associated deforma-

tions. If we assume that in a plane deformation, tx, t2, and y can be expressed as

continuous functions:

*, = *,(<*), t2 = t2(a), v = v(a) (3.1)

of a parameter a , which in turn is a continuous function of x{ and x2:

a = a(xl,x2), (3.2)
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then along the curve a(x], x2) — constant, in the deformed configuration, the prin-

cipal stresses tx and t2 are constant and the Eulerian principal axes do not change

direction. The question is whether or not there exists such a deformation and what

is the shape of the curve. It is well known that, in the case of a pure homogeneous

deformation, the principal stresses are constant and the principal axes do not change

direction throughout the plane of the deformation; therefore the expressions (3.1)

and (3.2) are valid for any a. In the following we will show that if there is such an

inhomogeneous deformation, then the curve must be a straight line. Giving different

values to a will yield different straight lines, so we have a family of straight lines.

It will further be shown that the lines must be parallel or all intersect at a single

point. Then in the next section, we will give an example of such an inhomogeneous

deformation.

Substituting (2.7) with (3.1) into the equilibrium equations (2.11), we have

d r 2 ■ 2 , da d r, , , da
^[r,cos ^ + /2sin + ^[(^ - ^cos^sin^]^- = 0,

1 " 2 (3.3)

d .. _ . . da d . . 2 2 da
_[((|-,2)cosrsm»,]—+ 5-[(,s,n „ + <2cos rt^=0.

If there is a nonconstant continuous function a = a(Xj, x2), i.e., da/dxx / 0

and/or da/dx2 ^ 0, then the determinant of the coefficients of da/dxx and da/dx2

must vanish; i.e.,

d_
da

2 . 2 .. d r . 2 2 , i d r, . .,1
[?, cos V + t2 sin ^]-^-[/,sin v/ + J2cos y/] - < ̂ [(^ - t2) cos tj/ sin y/] ̂  =0,

which yields, after some manipulation,

t\t'2 - (f, - t2)y/' = 0. (3.4)

Here the prime denotes the derivatives with respect to a. This is one governing

equation for the state of stress in the inhomogeneous deformation in terms of a.

When (3.4) is satisfied, we can solve from (3.3) for da/dxx and da/dx2. The

solutions are

- h{xl, x2)f{(a),

B ' (3-5)
~ = -h{xx,x2)f2{a),

where h(xx,x2) is an arbitrary function of x, and x2, and /,(a) and f2(a) are

defined as

f,(a) = -J-[(*, - t2) cos y sin ,

d 2 2 (3'6)
f2(a) =cos if + t2 sin y/].

If a value for a is specified, say C, then a(x{, x2) = C represents a curve in the

(x,, x2)-plane, and the slope of its tangent is given by

dx 2 = da/dx{

dxx da/dx2 '
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From (3.5) we can see that the slope of the curve we want is

dx2 f\{C) _ ,ti o\
^ = gcj=M(C)- (3-8)

Along the curve, C is a constant, and hence the slope M(C) at any point of the

curve is constant too. This implies that the curve must be a straight line. The straight

line may be expressed as

x2 = xl M{C) + D(C), (3.9)

where D(C) is a constant, representing the position of the intersecting point of the

straight line and the x2-axis. Different constants C correspond to different lines;

different lines may have different slopes and different intersecting points with the

coordinate axis.

The constant C is the value chosen for a; thus Eq. (3.9) can be written in terms

of a:

x2 — xxM(a) + D(a). (3.10)

We can see from (3.6) and (3.8) that the slope M(a) of the straight line is related

to the state of stress by

d d 22
M cos ^ sin y] = cos y +17 sin (3.11)

da 1 z da 1

but D(a) is arbitrary. Actually, arbitrariness of D{a) is equivalent to that of

h(x,, x2). To see this, differentiating both sides of (3.10) with respect to x, and

x2 respectively, we find

da M{a)

d7l~~D\a)+xlM'{a)'

da 1

dx~2 = D'(a) + xlM'(a) '

Then comparing these with (3.5), we have

h(xl, x2) = -[(£>' + xlM')f2]~l .

It can also be shown that

a2° °2a (3.13)

dx{dx2 dx2dxl

for any D(a).

We have, from the equilibrium consideration, two equations that relate five param-

eters tx, t2, y, M, and D. More equations can be obtained from the compatibility

conditions. It follows, from the isotropy of the material, that the principal stretches

can also be expressed as functions of a:

Aj=A[(a), X2 = X2(a). (3.14)

Substituting (2.4) with (3.14) into (2.13), we have two equations from which we

can solve for dcp/dxx and d(p/dx2 in terms of A,, A2 , ^, a, and their derivatives.
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These solutions are

HOL — -XX
dx, ~ 12

--XX
dx2 ~ 12

+

cos y/ d ( sin y/ \ i sin y/ d (cos y/ \"

v A. ) + ~T^~d^ V X2 )_da ^ / <x2

9a

dx,

+
d / cos2 y/ \ d I sin2 y/

da ^ 2X\ )+ da \ 2X\

da

Ox-,

d ( sin2 y/ \ d ( cos2 y/

da 2X\ ) ^ \ 2X\

da

dx,

sin y/ d (cos y/ \ cos y/ d (sin y/

At da \ Aj / X2 da

It follows from (3.12) that

( sin y/ Y

l^T).

Introducing (3.16) into (3.15), we have

where

gl(a)=XlX2
cos y/ d (sin y/ \ sin y/ d (cos y/

^ 5 ~JZ. 1 xX{ da \ X{ ) X2 da \ X
M{a)

/ 2 \ / 2 >
d (cos y/\^d ( sin y

§2^C*) ^1^2

da 2X] ) day 2X]

M(a)
d (sin2 y/ \ d f cos2 y/

da ^ 2X\ J 2X\

sin y/ d (cos y/ \ cos y/ d (siny/

Aj da \ A| / X2 da \ X2

(3.15a)

• <3-15b)

da da
_ = _M(a)—. (3.16)

d<p da d(p da

dxx ~ 8l{a)dx2' dx2 ~ g^a)dx2' ( }

(3.18a)

0]}(3.18b)

are functions of a . A continuous function <p(xl , x2) can be obtained by integrating

(3.17) when the following condition is satisfied:

d_

dx.>2 (*■<■>£) - 4 • (3J9)
The condition (3.19) places a further restriction on the stresses. Expanding (3.19),

we have

, ,d2a / (da\2 . d2a / da da

and then making use of (3.13) and (3.16) yields

[gl (a) + M(a)g2(a)]j^ + [g[ (a) + M{a)g'2{a) + M\a)g2{a)} = 0,
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which can be rewritten as

g[ + (Mg2)' _ d2a/dxl

gx + Mg2 (da/dx2)2 '

Introducing the second equation of (3.12) into this, we obtain

g[ + (MgJ = D"(a) + XlM"(ca)

gl+Mg2 D\a) + xxM'{a) ' 1 ' '

Since the left-hand side is the function of a alone, so too is the right-hand side.

Thus one of the following three must hold:

(1) M'(a) = 0 while D\a) ^0,

(2) M'(a)/0 while D' = 0, (321)

(3) M\a) ± 0, D\a) / 0 while .
V ' V ' V ' D (a) M (a)

The first one implies that the straight lines are parallel. The second one means that

the straight lines intersect at a point on the x,-axis. From the third condition, we

have

D(a) = C0M(a) + Cx.

Here C0 and C, are constants. Introducing this into (3.10) we obtain

x2 — M(ot){xj + C0) + Cj.

This implies that the lines intersect at one point (-C0, C,) too, but not on the x2-

axis. So the straight lines must be parallel or intersect at one point. Accordingly the

condition (3.20) becomes

gx+jMpl ^ D_[o) if M'(a) = o (322)
gl+Mg2 D (a) V

g; + (y' = MV) if M\o) ^ 0 • (3.23)
gx+Mg2 M (a) K K '

Integrating both sides with respect to a , we have

gi(a) + M(a)g2(a) = C2D\a) ifM'(a) = 0, (3.24)

gl(a) + M(a)g2{a) = CiM'{a) ifA/'(a)^0. (3.25)

Here C2 and C3 are arbitrary constants.

We note here that when M'(a) = Z)'(a) = 0, all the straight lines collapse onto a

single line since this is the only possibility if the lines are to be parallel (Ml '(a) = 0)

and intersect at one point (D1 (a) = 0). This singular case, which we will not discuss

further, indicates the material would collapse onto a plane.

With the aid of the constitutive relations, Eqs. (3.24) and (3.25) can be transformed

into the equations for the principal stresses and y/, and Eqs. (3.4) and (3.11) can

be transformed into the equations for the principal stretches. The five quantities

t{, t2, y/, M(a), and D{a) satisfy one of (3.24) or (3.25) and Eqs. (3.4) and (3.11);
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these were derived from the equations of equilibrium and the compatibility condi-

tions. At the same time cp may be found by integrating (3.15) or (3.17). Thus we

can choose two of the five variables independently and then determine the others

from the equations.

Before concluding this section, we note the following special cases.

(1) First suppose y/'{a) = 0, so that t// = constant; then the principal axes do not

change directions. For, without loss of generality, we may assume y/ = 0. Then Eq.

(3.4) requires t'2 — 0 but t\ ± 0 (for inhomogeneous deformation) or t\ = 0 but

t'2 ̂  0. Assume the former holds; then (3.11) yields

M(a) = 0. (3.26)

Therefore the lines are parallel, and further they are parallel to the x,-axis. Intro-

ducing (3.26) into (3.24) we obtain

g,(a) = C2D\a),

with gx (a) being given by

= (3.27)

If we further specify D'(a) ± 0 and the response relation t2 = f2(A,, A2), then A,, X2

may be determined from

t2(Xl,X2) = t20, ^1= C2D\a), (3.28)
'n

with t20 being a constant.

(2) The second case is that M(a) = 0, i.e., Af'(a) = 0. Then Eqs. (3.11) and

(3.24) yield

(?. - t2) cos ^sin i// = C., (3.29)

d_

da

2 -2
cos if/ sin i//

^r+^r
2 C2D'{a)n. 

A j A2
(3.30)

with C4 being a constant. The principal stresses tx, t2, and the angle y/ should be

determined from (3.4), (3.29), and (3.30) when D' (a) and the response relations are

given.

For these first two cases where M(a) = 0, we have from (3.10) that x2 = D(a),

so that a = a(x2); i.e., a does not depend on xi .

(3) In the third case take M(a) = tana and D(a) = D0 = constant; then Eq.

(3.10) gives

/ - Dn \
a = arctan —   .

V *i /
Thus the straight lines intersect at a point on the x2-axis, and Eqs. (3.11) and (3.25)
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become

t\ cos y/sm(y/ - a) - t'2 sin ^cos(^ - a) + (?, - t2)y/' cos(2y/ - a) - 0,

7^ cos2{y/ - a) + sin2(y/-a)+(l-l]/cos(^ - a) sin(^ - a) = -ff-.
A[ A2 y/l, A2) 12

(3.31)
The principal stresses and the angle may be determined from (3.4) and (3.31) when

the response relations are given.

4. Example—straightening of a circular arc. In this section we will show, by exam-

ple, that there is an inhomogeneous deformation in which the principal stresses (or

strains) are constant and the Eulerian principal axes do not change direction along a

straight line. The example considers the straightening of a circular arc. Introducing

the cylindrical polar coordinate system (R, 8, X}) in the undeformed configuration

with

R = (X2 + X\)xt2, 0 = arctan , (4.1)

we can describe the deformation as

= /(©) = / (arctan >

x2 = g{R) = g{{x\+X22)xl2), (4'2)

x.

Therefore the in-plane deformation gradient tensor and the left Cauchy-Green

deformation tensor are

A =

' —f'(9) , /'(0) /' , ^
x2 + x22 xf + x2

s (*),„, g'(R) Xl
(4.3)

(X,2 + x\)1/2 (X2 4- X2)1/2 J

x_(u^£ o %

o [g'm
B = AA = [ _ , . (4.4)

It follows that the Cauchy principal axes coincide with the coordinate axes; so y = 0

everywhere, and the in-plane principal stretches are

, /'(B) , ,,m ,,
^■\ — ~jo =  -i ^2 = SW = g(g (X2))- (4-5)

8 \x2'

Here we have assumed that the inverses of the functions /(©) and g(R) exist.

The stretch X2 is a function of x2 alone; therefore the parameter function a

must depend on x2 only, i.e., a — a(x2), in order to express X2 in terms of a.

Furthermore /'(8) must be constant so that A, can be expressed in terms of a

too. Thus we have

*i = /(©) = C40 + *10. x2 = g(R), (4.6)
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and

kx = CJR = CJg-\x1) = Xl{a), X2 = g\g-\x2)) = X2{a), (4.7)

with C4 and x10 being constants. The angle ^ is zero everywhere, and along the

straight lines x2 = a constant, A, and A2 do not change value. Thus the class of

deformations (4.6), which is not homogeneous, satisfies the assumptions embodied in

(3.1) and (3.2); and the straight lines x2 = a constant are the special principal stress

contours we are seeking. Note that this conclusion holds for any general isotropic

material.

Since in this class of deformations ^ = 0, we have the special case (1) discussed

at the end of the last section. Therefore the principal stretches A, and A2 are to be

determined from (3.28) when the response relations are given. We have

•>' — _ dX, dx2 _ r\'r„ \ / dx2 _ D (a) 12/, .

1 ~ da ~ dx2 da ~ (' dR / dR~ C4 >7 2'

thus the second equation of (3.28) becomes C2C4 = -1, which just relates two

constants and determines the constant C4 for the principal stretch A( . The principal

stretch A2 or the function g(R) may then be determined from the first equation of

(3.28).

5. Conclusion. In this paper it has been shown that in nonlinear plane deformation

the straight line is the only possible principal stress contour on which the principal

stretches (stresses) are of constant value and the principal axes do not change direc-

tion. It has also been shown that the principal stress contours in the deformation for

the straightening of a circular arc are such straight lines.
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