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Abstract. The steady-state problem is considered for periodic normal loading by

a smooth, rigid indentor on a half-space exhibiting general viscoelastic behaviour.

A technique is developed for summing the infinite series that arise. The method is

applicable to the case in which the viscoelastic behaviour is described by a discrete

spectrum model, in other words, by a finite sum of decaying exponentials. Numerical

results are presented for two decay times. The extension to any number of decay times

is straightforward.

1. Introduction. Recently, Golden and Graham [1] gave the steady-state solution

to the problem of a rigid indentor, subject to normal periodic loading, on a vis-

coelastic half-space. Detailed results were given for the case where the half-space

was assumed to respond as a standard linear solid. In that paper, only the plane

strain problem was considered. The corresponding three-dimensional problem was

discussed subsequently in [2, 3]. In these papers, it was shown that the contact pres-

sure and indentation obey integral equations where the kernels are infinite sums of

terms involving integrals of the viscoelastic functions. For a standard linear solid,

the summations can be carried out without difficulty to give closed formulas. In

this case, considerable analytical progress can be made before resorting to numerical

calculation.

For more general materials, the infinite summations cannot be carried out in an

elementary manner. However, in [4], this question was addressed in the context of

a different problem, namely that of a fixed length crack in an infinite body under

sinusoidal loading. In that paper, the authors showed that the kernels obey certain

integral equations, whose solutions can be determined in closed form, at least for

discrete spectrum models. The solution of these equations amounts to summing the

infinite series. In the present paper, this method is extended to the contact problem.
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2. General formulation. We consider the following Hertz problem: a rigid indentor

with axisymmetric form S(r), is pressed into a lubricated viscoelastic half-space,

occupying the region z > 0, by a time-dependent load W(t). Here r and z are the

usual cylindrical coordinates. Because of the axisymmetry of the problem, we can

assume that the contact area C(t) is a circle. Let a(t) be the radius of this circle

and u(r, t) the normal surface displacement at position r and time t, and p(r, t)

the normal pressure on the surface at r and t. Then we have (see [5], for example)

v(r> t) = j-[ dsly ' , r<a(t), (2.1)
2n JC(t) \r - r\

v{r,t)= f dtl(t - t')u(r, t). (2.2)
J — OO

The inverse of (2.2) is

u(r, t) = f dtk(t - t')v(r, t). (2.3)
J — OO

Here ds is the surface element at r and l(t) and k(t) are singular functions closely

related to the relaxation function and creep function of the medium, respectively.

They are inverse functions in the sense that

f'2 dt'l(t2 - t')k(t' - *,) = f'2 dt'k(t2 - t)l{t -tx) = S(t2 - /,). (2.4)
Jt, Jt,

where

In this paper, we will only consider discrete spectrum models [5]

N

l(t) = l0d(t) + J2^~ait' (2-5)
i=i

N

k(t) = VW + EM (2-6)
(=i

In order to satisfy (2.4), the coefficients /;, kt, i = 1, 2, ... , TV must be related by

l0k0 = 1; (2.7)

N .

/o + E^«- = 0' j = 1,2, , N) (2.8)

N k
k0-H V=0> j= 1.2,...,7V; (2.9)

p-")
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Let D(t) be the indentation at the tip of the indentor into the half-space. Then the

surface displacement u(r, t) takes the form

u(r, t) = D(t) - S(r), r < a(t). (2.12)

We are interested in the case in which the applied load is oscillating in magnitude,

so that the contact area radius a(t) will pass through a series of maxima and minima

before the current time t. Let SG(t) be the set of all these times t' < t such

that C(t') 2 C(t), while SL(t) is its complement in (-00, £] and let 0,(0 > i =

1,2,3,..., denote the times such that t>6l(t) > 02(t) > d3(t) > • ■ • and

a{Oi{t)) = a{t). (2.13)

First we consider the case in which the contact area is shrinking at current time t.

The hereditary integral v(r, t) can be decomposed, as described in [1, 5], to give

v(r,t)= [ dt'UJt, t')u(r, t')+ [ dt'UL(t, t')v(r, t'), (2.14)
JsG(t) JsL(t)

where

n G{t, t) = T0(t, t')R{t' ■ 0,(0 , t) + T2(t, t')R(t'; d3(t), 62(t)) + ■■■ , (2.15)

nL(t, t) = Tx(t, t)R(t; d2(t), ex(0) + T3(t, ■ d4(t), e3(0) + • • • •

(2.16)

The functions T^t, t') are defined as follows:

T0(t, t') = l(t-t'), (2.17)

, r rf'(t)dt"ri x{t,t")k{t"-t'), iodd,

T*{t't) = IrWr ^ /w • (2-18)I jtr'dt )l(t - t), 1 even,

while function R(t\ t2, tx) is given by

R(t;t2,t.)= { l' (2.19)
V 2 lJ I 0, ti[t2,tx],

for all t2, tx, t. According to the definition of SG(t), we know that r is in the

contact area for any time t' € SG(t) if it is there at time t. Therefore u(r, t') is

known to be D(t') - S(r) for any time t' e SG(t) and the first term in equation

(2.14) is given by

f dt'llG(t,t')u(r,t')= [ dt'nG(t,t')(D(t')-S(r))
Js0(t) Jsa(t) (2.20)

= z)c(r)-S(r)nG(o

for r belonging to the contact area at time t, where

Dc(t) = f dt'YlG(t, t')D(t'), (2.21)
JsG(t)

n G(t)= f dt'UG{t,t). (2.22)
JSM)
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Furthermore, for time t' e SL(t), the contact region C(t') is always contained in

C{t). Hence we can interchange the time and space integration to put the second

integral of equation (2.14) in the form

[ dt'TlL(t, t')v(r, t') = -L f ds'y , r < a(t), (2.23)
JsL(t) Zn Jc(t) \r - r\

where

qc{r,t)=f dtUL(t,t)p{r,t). (2.24)
JsL(t)

Therefore equation (2.14) implies that

v(r,t) = v (r,t) + ~f ds'9^ ', r<a(t), (2.25)
zn Jc(t) V - r\

where

vc(r,t) = Dc(t)-S(r)UG(t). (2.26)

Substituting (2.1) into (2.25) gives us

/ If ,,p(r',t)-q(r,t)
= ds -7— , r<a(t). (2.27)

Jc(t) V - A

If we define a quantity De(t) such that

Dc(t) = [ dt'nG(t, t')D(t') = nG(t)De(t), (2.28)
JsG(i)

then we have

vc(r,t) = UG(t)(De(t)-S(r)), (2.29)

and equation (2.27) takes the form

UG(t)(De(t) - S(r)) = i- [ dsP{r ' qir ' - , r<a(t). (2.30)
Jc(t) V - A

This is a standard elastic form. Recalling the elastic solution [5], we get

P{r, t) = qc(r, t) + keUG{t)pe{r, t) (2.31)

where pe{r, t) is the pressure distribution on an elastic medium characterized by

Lame constants X, n where ke = • F°r the viscoelastic problem, kg can be

freely chosen but the quantities kgpe(r, t) and k£We(t) are determined. Here ke is

chosen to be the long time modulus

1 f°° . k { ^ I 1
■ <2-32)

This choice of ke allows us to make connections with the results of [6] in Sees. 3

and 4.
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For the second case in which C(t) is expanding, we begin with the decomposition

of (2.3). After similar manipulations, we obtain

f dt'rL{t,t')p(r,t') = ke(l-rG(t))p(r,t), (2.33)
JsL(t)

D(t) = [ dt'rG(t, t')D(t') + De(t)( 1 - rG(t)), (2.34)
Jsa(t)

where

r L(t, t') = N0(t, t')R(t'; dx (t) ,t) + N2(t, t')R(t'; d3(t), 02(t)) + ■■■ , (2.35)

rG(*, t) — Nl(t, t)R(t; e2(t), 0,(0) + N3(t, t')R(t ■ e4(t), e3(t)) + • • • ,

(2.36)

and

r G(t)=f dt'rG(t,t). (2.37)

Here the functions Nt(t, t') are given by

N0(t,t') = k(t-t'), (2.38)

, fp(l)dt"Ni_l{t, -t'), /odd,
N.(t,t')={ ' 1 (2.39)

dt"Ni_l(t, t")k{t" - /'), /even.

Integrating (2.31) and (2.33) gives us integral equations for the total load

Is

W(t)= f ds qc(r , t) + keIlG{t)We{t), for C(t) contracting, (2.40)
Jc(t)

dtTL(t, t)W{t) = ke{\-TG{t))We{t), for C(t) expanding. (2.41)
ISL(t)

Now let us consider the periodic solution of this problem. We choose one period

[Aj, A2] such that A2 - Aj = A, which is the period, and where at times A,, A2 the

contact region C{t) is maximum. Also, we assume that there is only one time, say

t0, in this period, when C(t) is minimum.

For the contracting phase / e [Aj, /0], let /, (t) be the solution to equation

fl(*i(0) = fl(0 in Then we can express 0(. in terms of t and t^t) as

follows:

6l(t) = tl(t)- A; 02(t) — t — A) d3(t) = tl{t)-2A (2.42)

and so on. It follows that p{r, t), W{t), and D(t) in the decreasing phase [A,, ?0],

satisfy the following integral equations:

p(r, t) = dt'n^it, t')p(r, t') + ken<£\t)pe(r, t), (2.43)

W(t) = j''{t) dt'U^it, t)W{t) + keU^{t)We{t), (2.44)

[' dt'rfg(t, t')D(t') = YlG\t)D (t), (2.45)
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where
OO

T(p)nf{t, t) = £ T2k-x(l> t ~ kA)> (2.46)
k= 1

OO

(p),
I, I ) =

k=0

n %\t,t') = YlT2k(t>t'-kA)> (2-47)
Jt=0

n f{t)=f dt'uf{t,t'). (2.48)

For the expanding phase, i.e. £ € [/0, A2], we get from (2.33), (2.34), and (2.41) that

t')p(r, t) = fc(l - Y("\t))p(r, t), (2.49)

where

/' ■At')

[' dt'rfit, t')w(t') = ke(i-r%\t))we(t), (2.50)

Z)(0= / ^'(/.Wj + fl-lj'w^w, (2.51)
Jt-A

OO

(2-52)
k=0
oo

rJV.',) = E^.('-''-w), (2.53)
/c=0

T?(0= jh(t) (2.54)

Jt-A

In this case the 0.(f) are given by

el(t) = t[(t), e2(t) = t- a, 03(o = ?,(O-a, (2.55)

and so on where f((f) is the solution of a^t^t)) = a(t) in [A, , ?0]. The steady-state

contact problem is thus expressed in terms of the six integral equations (2.43)-(2.45)

and (2.49)-(2.51), four of them independent. These equations involve solutions to

the corresponding elastic problem indicated by the subscript " e ". For a spherical

indentor of large radius R,

S(r) = ^, (2.56)

and the elastic solutions satisfy

Pe(r,t) = ^F(a2(t)-r2)l/2, (2.57)

(2.58)

De(t) = (2.59)
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3. Theoretical results. In the last section, the contact problem was reduced to

the solution of six integral equations. In the case of a standard linear material,

evaluation of the kernels of these integral equations can be reduced to summation

of geometric series. Then these six integral equations can be changed into three

ordinary differential equations and three algebraic equations. Details of this work

may be found in [1,2]. For more general material behaviour that method breaks

down. However, a technique, previously used for a crack problem [4], is applicable.

Let us first consider the kernel t') given by (2.46). According to the defi-

nition of Tn(t, t'), we have

r„(i, S) = j''mdr£"'mdt"T,_2(t, W - <>(<"' -<') (3.1)

for odd numbers n > 3 . The integral over t" can be extended at the lower limit to

t' since l(t" - t"') vanishes over this interval. This allows the order of integrations

to be interchanged without difficulty and one has (omitting explicit mention of the t

dependence of 6n)

T»{t't>] = 'dt"T»-*{t> '')• <3-2)

where

Gn{t", /') = j'" - t). (3.3)

Using the inverse relationship (2.4) between k(t) and l(t), one deduces that

Gn(t",t') = S(t" -t), t" <0n. (3.4)

Therefore

Tn(t,t') = Tn_2(t,t')+ fe""dt"Tn_2(t,t")Gn(t",t'), t'<6n. (3.5)
Jt>n

Making the subscript explicitly odd, we can write

rt-(i- 1)A

T2i-\(t, t'-iA) = T2i_3(t, t'-iA)+ / dt"T2i_3(t, t")G2i_l{t", t'-iA), (3.6)
J tt —/A

by using 02n_l —t^-nA and 02n_2 = t - (n - 1)A, where

ft, — /A
/ " ' AN I J"\l / J" J • a \

G2i_{(t ,t-iA)= dt l(t -t )k(t -t + lA)
J t'—iA

= [ dul(t" - u + (i - l)A)k(u - t + A) ^
it' - A

= G{t" + {i- 1)A, t - A).

Here the transformation of variables u = t"' + (i - 1)A is employed. The function

/*#[
G{t",t) = J dul(t" - u)k(u - t) (3.8)
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has the same functional form as Tx(t, t') with t" replacing t but 0x{t) left un-

touched. Using (3.6) and (3.7), we have

Tu-\(t, t - zA) = T2j_i(t, t - /A) + [' duT2l_,(t,u-(i-l)A)G(u,t'-A). (3.9)
A

Therefore Yl^\t, t'), given by (2.46), obeys the equation

nf(t, t) = Tx(t, t' -A) + n{[\t,t' -A)+ f duU^it, u)G(u, t' -A). (3.10)
Jt,- A

Thus

U^\t, t'—A) = T{(t, tl-2A)+Yl<f\t, t-2A)+ [' duYl([\t, u)G{u, t-2A) (3.11)
J —A

and so on. Repeated substitution of (3.11) and its successors into (3.10) together

with the assumption, which will be justified later, that

limnf(/,/'-«A) = 0, (3.12)
n—>oo L

finally gives an integral equation for Yl^\t, t') of the form

U(f\t,t') = K(t,t')+ [' duY\([\t,u)K{u,t'), (3.13)
Jo,

where
OO

K(u,t') = ^G(u,t - nA). (3.14)
n= I

We recall that G(t, t' — nA) = Tx (t, t' — nA). Now we can solve this integral equation

for kernel Yl^\t, t'). For discrete spectrum models (2.5) and (2.6), we obtain from

(3.8) that

G(m,/)= V u>6At). (3.15)
ij=1 a< - fiJ

Then, equation (3.14) takes the form

K(u, t) = J2 Kije-ai(u-ei)-l>i(e-,'), (3.16)

• J= i

where
Ik, e~^A

To solve (3.13), we make the ansatz for t') of the form

n{[\t,t')= J2 (3.18)
',7=1
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which clearly obeys (3.12). Substitution into (3.13) gives

^2 P =^2K..e~ai{t~dl)~Pidl + V] PimKnj [cPmt-an(t-0

1=1 1 1=1 ' i,m,n=l^m~a"

(3.19)
This algebraic equation will certainly be satisfied if a stronger condition is imposed

that cancellation takes place term by term in the variable i. This gives us the matrix

equation

P = Kl+PAK2, (3.20)

where P is a square matrix formed by Pl} while

= (3.21)

= Kf'"'' • (3-22)
-ajt-ej+fij _ B0,

Amn =   -   . (3.23)mn B -a
n

The formal solution of (3.20) is

Similarly, we get

P = KAI-AK2) '. (3.24)

N

Yl%\t, t') = l0S(t - f') + £ Qu(t)eajt , (3.25)
',;=i

where G,;(0 are the components of a square matrix given by

Q = Ll(I-BL2fl, (3.26)

with

d.;Le'a''

(L>^ = rr^' (3-27)
k,Le~a>dl e~ajA

= ("8>

(ai-PJ)6i +fij02 _ a,02

=   « • (3-29)
'J a, - pj

By comparing the definition of n^\t, t') and T^\t, t'), we find that r^(t, t')

may be obtained from n^(f, t') by interchanging the roles of l(t) and k(t). Fur-

thermore we see that T^\t, t' — A) is the same as U^\t, t') if the roles of l(t) and

k(t) are interchanged. Therefore, for time t £[t0, A2], we have

r fat, t') = k0d(t-t')+ Qij(t)ePit', (3.30)
'J=l
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and

rG)(t't')= E ^(0^(',+A), (3.3i)
'J= 1

where P, Q are obtained from (3.24) and (3.26), respectively, by interchanging the

roles of l(t) and k(t).

Putting expression (3.25) into (2.48) and (3.31) into (2.54), we get

nS(3.32)
1,7=1 J

and

^ x ^ _£<»,(«,+*) _^a;(«2+A)

C(0 = E ^ • (3.33)
i, 7=1 j

Substituting all the kernels into the periodic solution equations (2.43)-(2.45) and

(2.49)-(2.51), we have

JL /•'.(') ')
^(r> 0 = E PijW / ' dt e^1' p{r, ?')

i,j=\ Jt

+ ke\l0+ E Qy(0- ^  fpe(r' 0 for ' e [A, , y ,(3.34)
',7=1 1

N r'
k0p(r, t) + E fiy(0 / dt'e '' P(r' *')

i ,7=1 AO

^ eQj(A+',) _ ea,'

K 1 1 - E PijW   \ Pe(r> 0 for te[t0, A2], (3.35)
',7=1 ^

/ 8 t'
ww = E Pu(0 / dt e > wc);j=i ,/'

^ ea/' _ ea/('i"A)

+ *,{/o+ E Gy(0- ^ j^(0for;e[Aj,y, (3.36)}

/c0
N ft

w(t) + £ 0,7(0 / dt'e jt W(t')
1,7=1 Aw

= 1 " E P'7 W —  | W f0r ' € I'o > A2]> (3-37)
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N

l0D(t)+ jr Qu(t) f dt'e"'*'D{t')
ij=\ Jti~A

N eaj' _ £a;('i~A)

= \'o + E <2.7 W    \ DeM for ' € IA. ' ^ > (3-38)
»,7=1 J

N

£
*>(') = E f' dt'eajt'D(t')

i i Jt—A

N e°Cj(tx+ A) _

+ |1 - E W1 — 1 J>«(0 for ;e[(0, a2], (3.39)

We will now show that p(r, t), W{t), D(t) satisfying the above equations are

continuous at time t0, and equal at A, and A2 .

Putting t = tQ in (3.36), we have

f * eai'o _ <a('o-a) ]
we.) - K | 'o + £ 2,7e„>—ij— j wm- <3-40>

From (3.29) we know that ^ -(f0) = 0, since 0, = d2 = tQ - A for t = t0. Therefore

it follows from (3.26) that

1 -

so that

Q/A)={^«o)>v= (3-41)

«-('„) -K U,+ £/,/«,) = >W <3-42>

after using equation (2.32). This agrees with the results given in [6], Equation (3.37)

at / = ?0 gives us the same result by noting the fact that

k.L e-aj(A+<o>

P,,(fn) = 'J   - (3.43)
'JK°' Pt - a j i _ e-ajA

and using relation (2.9). Therefore W(t) is continuous at time t0 . Equation (3.36)

at / = A, and equation (3.37) at t — A2 take the form

" /-A,

W(A,)= £ Pu(A,) [ 2dt'e^W(t') + keI0We(A,), (3.44)
1,7=1 •/Ai

^(A2) = tE ^/A2) [*2 dt'eV W(/') + kelQWg(A2). (3.45)
i ,j=i J\

From equation (2.42), we know

*,(*) = A2, 0,(0 = a, (3.46)
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for time t = A, . Therefore, from (3.23), one deduces

Ajj( A,) = 0. (3.47)

Thus we can write (3.24) as

Lkj e'"^
(3.48)

Similarly, we obtain

Sijkje
(3-49)

using the fact that 0,(/) = 02(/) = tx(t) = A, and = 0 for t = A2. Therefore

El/M = -r-EC/A>. (3.50)
(=1 0 (=1

by virtue of equation (2.8). Noting We(Ax) = We(A2), we have, from equations

(3.44) and (3.45), that W(AX) = W(A2). This completes the verification of the

periodicity of W(t).

Now we consider D{t). It is clear that D(A,) = D(A2) because (3.38) at t = A{

gives

D(Al) = De(Al), (3.51)

equation (3.39) at t = A2 yields

D(A2) = De(A2), (3.52)

and we know that De(At) = De(A2). Equations (3.51), (3.52) are in agreement with

results given in [6] in a more general context. When t = t0, we have, from equations

(3.38) and (3.39)

D(t0)= -*o£e,A)) T dt e"'1' D(t')
i=l J'o~A

{N a,t„ a,('n-A) ^

l« + £ e«C o) -—-—} DM,

(3.53)

Wo) = E f° dt'e"'1 D(t')
i,j=l V*

i JL ^ APaj'o _ eaMo~A) ,

+ { 1 - E PijWj  "  \ DeCo)-

(3.54)

i,j= 1 J

To prove D(t) is continuous at t = t0, it is sufficient to show that

-'.EW-EW"'1- <3 55'
1=1 i=i
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This is an immediate consequence of (3.41) and (3.43) with the aid of equation (2.9).

The verification of the continuity and periodicity of p(r, t) is the same as that of

W{t).

Also, one can show that kernels for the case N = 1 are the same as the ones

obtained in [1,2] by a direct summation.

4. Numerical results. In this section, numerical solutions to integral equations

(3.34)-(3.39) by the quadrature method are given for the following three cases:

(i) stress-controlled mode (where the total normal load is specified);

(ii) strain-controlled mode (where the indentation is specified);

(iii) area-controlled mode (where the area of contact is specified).

Here we consider the spherical indentor of large radius R, for which the elastic

solutions are given by (2.57)-(2.59). All the numerical calculations are carried out

for the case N = 2. The dimensionless quantities ca(t), cD(t), c kQW(t), k^p^r, t)

and the dimensionless parameters t' = cot, /?■ = /?,/&>, k[ — kj/(cok0), ai = ai/co,

l'i = ' = 1)2, and k = ke/k0 are used, where c = 1/(2R). This method

can be applied to the cases when N > 2 without any difficulty.

(i) Stress-controlled mode. The applied load is assumed to have the simple sinu-

soidal form

fV(t) — K(d - cos(cot)), d> 1,A=—. (4.1)
CO

To solve for a{t), p{r, t), D(t), we need to know t0 and Aj, A2. According to

[6], /0 = 0 anc* ^2 ' given ^ (4.30) in [6], now becomes

<«>

in terms of our parameters here.

Once t0 and A,, A2 are known, Newton's iteration method is employed to solve

the functional equation, obtained by eliminating We(t) — We(tx(t)) from (3.36)

and (3.37), for tx(t). Then We(t) can be obtained from one of these equations.

If W (t) is known, the contact radius a(t), elastic indentation De(t) and elastic

pressure pe{r, t) can be found by using the relations (2.57) to (2.59). Therefore we

can get D(t) and p(r, t). For example, the indentation D(t) is obtained by solving

equation (3.38) starting at t - Aj and equation (3.39) beginning with t = A2, using

the marching method. Considering that all the kernels are smooth functions, we use

the trapezoidal rule for the numerical computations. Results for the stress-controlled

mode are presented in Figures 1-3 (see pp. 462-464). From Figures 1 and 2, we can

see that ca(t) and cD(t) increase with the value of k and there is very little variation

with and kt if k is close to 1. Note that, from Figure 1, the minimum contact

area occurs at / = 0 and is only dependent on the value of k and independent of

the individual values of aj and l\ or /?' and k't . The latter observation follows

from (3.42). Figure 2 also shows that the indentation achieves a minimum a little

later than the load does for the stress-controlled mode. Contact area and indentation

reach their maximum simultaneously and after the load [6].
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~r

\0ca(t)

0
cor

Fig. 1. Contact area radius for the stress-controlled mode. This

gives the dimensionless contact area radius ca(t) over a complete

cycle under stress-controlled condition for cases (a): k[ = 0.0096,

k'2 = 0.003, = 0.2, fi'2 = 1.5, k = 1.05; (b): k[ = 0.09,

k'2 = 0.03 , = 2 , @2 = 6, k = 1.05 ; (c): k[ = 1.26 , k'2 = 0.12 ,

p[ = 0.9, fl2 — 1.2, k = 2.5; and (d): k[ = 0.52, k2 = 0.12,

p[ = 0.4 , fi'2 = 0.6 , k = 2.5 . Also c2Kk0 = 0.0008 , d = 3 .

(ii) Strain-controlled mode. For this case, the indentation is given by

D(t) = N(b — cos(cot)), A-—. (4.3)
CO

We know that the load cannot be negative for the contact problem. To satisfy this

condition, the constant b has to be greater or equal to another constant, say g,

which is given by (4.23) in [6], For the discrete spectrum model (2.5)

g = K
\

N / ,> "1 2 ( N t
l-CJ , l-Ct;

E^rr-i + Vo + E-tt^ • (4-4),I=1w+a,J { (=1 (O +a( }

According to [6], the maximum values of De(t) and of a(t) occur at the same time

as that of D(t). Therefore

A2 = -A, = (4.5)

By virtue of (4.25) of [6], the quantity tQ satisfies

tan(wg = /{'o + E-TtS} ' (4-6)
L=i °> +«/ J / I ,=i +ai J

in terms of our present notation. To get /,(/), we eliminate De(t) = De{tx(t)) from

equations (3.38) and (3.39) to give a functional equation for tx(t). Then one can
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Fig. 2. Indentation for the stress-controlled mode. This gives the

dimensionless indentation cD(t) over a complete cycle under stress-

controlled condition for the same cases as those in Fig. 1 (a): k[ =

0.0096, k'2 = 0.003, p[ = 0.2, ^ = 1.5, k = 1.05; (b): k[ =

0.09, k'2 = 0.03, p[ = 2, $ = 6, k = 1.05; (c): = 1.26,

*2 = 0.12, ^ = 0.9, p'2 = 1.2, k = 2.5; and (d): fcj = 0.52,

*2 = 0.12, p[= 0.4 , p'2 = 0.6 , A: = 2.5 . Also c2Kk0 = 0.0008 ,
rf = 3.

find f,(r) by solving this functional equation using an iteration method. If t{{t) is

known, Dg(t) can be determined by either (3.38) or (3.39). Then a{t), W{t), and

p(r, t) can be obtained by the same procedure as before. Numerical results for this

case are presented in Figures 4-6 (see pp. 465, 466).

Figures 4 and 5 indicate that there is very little variation with k't and /?(' when k is

close to 1 and ca(t) and c k0W(t) decrease with increasing values of k . From Fig.

4 we can see that the maximum value of the contact area is achieved at t = A,, A2

and is independent of parameters. This latter point is an immediate consequence

of equation (3.51) and confirms results given in [6]. Also we note, from these two

graphs, that ca(t) and c k0W(t) achieve their minimum values a little earlier than

cD(t) does. This follows from equation (4.6), noting that ai, , k:, and -/(,

i — 1, 2, 3, ... , are positive and the denominator of that equation is greater than

le, which is positive. Finally the load achieves its maximum a little earlier than

contact area and indentation.

(iii) Area-controlled mode. In this case we have

a(t) = M{an - cos {cot)), an> 1, A = — (4.7)
u " fo)

and

f0 = 0, A2 = -A, = £, *,(*) = -*. (4.8)
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Fig. 3. Pressure distribution for the stress-controlled mode. This pic-

ture gives the dimensionless pressure distribution p(r, t) at various

times during the cycles for the stress-controlled mode with k[ = 0.52 ,

k'2 = 0.12, p[ = 0.4 , fi'2 = 0.6 , k = 2.5 , and c2KkQ = 0.0008 .
The lines on the top and bottom are for the times when the contact

area is maximum and minimum, respectively. The pairs of lines that

meet on the horizontal axis are for times when the contact area radii

are the same.

Therefore D(t), W(t), and p(r, t) are easier to determine than in the other two

cases. From equations (2.57)-(2.59), we can find Dg(t), kgpg{r, t), and kgWg(t).

Then equations (3.34)-(3.39) are solved numerically using the trapezoidal rule to

give D(t), p(r, t), and W(t). Results are presented in Figures 7-9 (see pp. 466,

467). It is clear, from Figure 7, that the maximum indentation is achieved at Al, A2

and is independent of k'{, , and k for the area-controlled case. The latter point

follows from (3.51). Also we notice, from Figure 8, that total load decreases with

increasing k and the minimum value of the total load is achieved at t = 0 and is

dependent only on k , the latter observation following from (3.42).

The results on times of maxima and minima of the various quantities in all these

modes reflect the general result [6] that load and contact area are simultaneously min-

imum while indentation and contact area are simultaneously maximum. Also there

is the general phenomenon whereby indentation (strain) lags behind load (stress).

From Figures 3, 6, and 9, the pressure distributions for the three modes, we can

see the effects of viscoelasticity: the pressures are different even for the same contact

area. Note that the tendency of the pressure to develop a hump followed by a sharp

decline, that was remarked in [1, 3] for positive time t, is also demonstrated.

All these results are quite similar to those given by Golden and Graham [3] for the

standard linear material, but now we have five parameters kx, k2, /?, , /?2, and kg (or
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Fig. 4. Contact area radius for strain-controlled mode. This shows

the dimensionless contact area radius ca(t) over a complete cycle in

the strain-controlled mode for cases (a): k[ = 0.0096 , k'2 = 0.003 ,

p[ = 0.2 , fi'2 = l.S, k= 1.05 ; (b): k[ = 0.09 , k'2 = 0.03 , = 2 ,

P'2 = 6, k= 1.05 ; (c): k[ = 1.26, ^ = 0.12, p\ =0.9, p'2 = 1.2,

k = 2.5; and (d): k[ = 0.52, k2 = 0.12, fi[ = 0.4, fi'2 = 0.6,
k = 2.5 . Also cN = 0.005 and b = 3 .

100c-2/t0VV(0 0.3

Fig. 5. Total load for strain-controlled mode. It proves the di-

mensionless total load c kQW(t) over a complete cycle in the strain-

controlled mode for the same four cases as Fig. 4. (a): k[ = 0.0096 ,

k2 = 0.003, p[ = 0.2, /?2 = 1.5, k = 1.05; (b): k[ = 0.09,

k2 = 0.03 , p[ = 2 , P'2 = 6 , k = 1.05 ; (c): k[ = 1.26 , k'2 = 0.12 ,

P[ = 0.9, p'2 = L2, A: = 2.5; and (d): = 0.52, fcj = 0.12,

= 0.4 , P'2=0.6, k = 2.5 . Also cN = 0.005 and b = 3 .
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1.2

1

0.8

10 k0p(r,t) 0.6

0.4 -

0.2 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
lOcr

Fig. 6. Pressure distribution for the strain-controlled mode. This

gives the dimensionless pressure distribution at different times in a

cycle of strain-controlled mode with parameters k[ =0.52, k2 =

0.12 , = 0.4 , 02 = 0.6, k = 2.5 , cN = 0.005 , and b = 3. The
lines on the top and bottom are for the times when the contact area is

maximum and minimum, respectively. The pairs of lines which meet

on the horizontal axis are for times when the contact area radii are

equal.

Fig. 7. Indentation for the area-controlled mode. It shows the dimen-

sionless indentation over a complete cycle under the area-controlled

condition with parameters (a): k[ = 0.0096 , k'2 = 0.003 , fi[ = 0.2 ,

f$2 = 1*5, k = 1.05 ; (b): k[ = 0.09 , k'2 = 0.03 , fi[ = 2 , p'2 = 6 ,

k = 1.05; (c): k[ = 1.26, k'2 = 0.12, = 0.9, 02 = 1.2,

k = 2.5; and (d): k[ = 0.52, k'2 = 0.12, p[ = 0.4, p'2 = 0.6,
k = 2.5 . Also cM = 0.025 and aQ = 3 .
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100c2£nW(r)
0.25

0.15 -

0.05 -

Fig. 8. Total load for the area-controlled mode. This provides the

total load over a complete cycle under the area-controlled condition

with the same parameters as those for Fig. 7. (a): k[ = 0.0096 ,

k'2 = 0.003, p[ = 0.2, fi'2 = 1.5, k = 1.05; (b): k[ = 0.09,

k'2 = 0.03 , p[ = 2 , p'2 = 6 , k = 1.05 ; (c): k\ = 1.26 , k'2 = 0.12 ,

P[ = 0.9, p'2 = 1.2, k = 2.5; and (d): k[ = 0.52, k2 = 0.12,

P[ = 0.4 , p2 = 0.6 , k = 2.5 . Also cM = 0.025 and a0 = 3 .

1.2

0.S

10^Qp(r,/) 0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
lOcr

Fig. 9. Pressure distribution of the area-controlled mode. This gives

the dimensionless pressure at several times during a period under the

area-controlled condition for the case in that k[ = 0.52 , k'2 = 0.12 ,

f}[ = 0.4, p'2 = 0.6, k = 2.5, a0 = 3, and cM = 0.025 . The
lines on the top and bottom are for the times when the contact area

is maximum and minimum, respectively. The pairs of lines that meet

on the horizontal axis are for times when the contact area radii are

the same.
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/,, /2 , a j, a2 , and le), four of them are independent, instead of three parameters

a, P , and f (two of them are independent) in [3].

Actually, the method used in this paper is applicable to any periodic loading. As

we have seen from the above results for the three different loadings, we need to

find the initial conditions (e.g., W(t0) = We{tQ) for loading; D(At) = £>e(A,) for

indentation) to begin the numerical calculation. In the general case, formulas for

t0, A,, and A2 can be obtained by using the so-called generalized correspondence

principle given in [6],
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