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OSCILLATION AND STABILITY

IN A SIMPLE GENOTYPE SELECTION MODEL

By
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Abstract. We study the oscillation, the stability, and the global attractivity of the

simple genotype selection model

y /(i-2ym.k)

^n+1 = ~J ~~ £(1-2 y T) ' 1 = 0,1,...,
l-yn+yne

where /? e (0, oo) and k e {0, 1,2,...}.

1. Introduction. Our aim in this paper is to study the oscillation, the stability, and

the global attractivity of the simple genotype selection model

y ePd-2yn-k)

1 -yn+yneP

where

/? e (0, oo) and /c e {0, 1,2,...}. (1.2)

When k — 0, Eq. (1.1) was introduced by May [9] as an example of a map

generated by a simple model for frequency-dependent natural selection. Equation

(1.1) gives the change in gene frequency between the «th generation and the next

when the fitness function is exp(/?(l - 2y)).

When k = 0, one possible derivation of May's model is as follows.

Consider the differential equation

y = y(l-y)P(l-2y) (1.3)

for simple natural selection at a single locus with two alleles and without dominance.

Observe that Eq. (1.3) may be written in the form

^ =/*(1-2j0

y»+1 . ,0(1—2yn_k) ' n O'1'---* d.l)

y(i-y)
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and that formal integration from n to n + 1 yields

r=n+l rn-(-1

0(1-2 y(t))dt. (1.4)in M
l-y(t) t=n fJ n

By setting y(n) = yn and by approximating the integral on the right by /?( 1 - 2yn),

Eq. (1.4) yields

"»+1 _ yn yn)

i-yn+l 1 -yn

from which Eq. (1.1) follows in the case k = 0.

InEq. (1.1), yn is the frequency of gene A in a population, 1 —yn is the frequency

of its allele a, and /?(1 - 2yn_k) is the selection coefficient on A that depends

upon the gene frequency at some previous time. The use of a differential equation in

population genetics is justified when there are overlapping generations and continuous

reproduction. But when there are discrete generations, as in the case for species with

one generation per year, then the use of difference equations is more appropriate.

The appearance of yn_k in the selection coefficient reflects the fact that the en-

vironment at the present time depends upon the activity of the population at some

time in the past and that this in turn depends upon the gene frequency at that time.

Since different genotypes act differently on the environment, the past genetic makeup

can affect possible nesting sites, soil fertility, food supply, predators, and so on.

The symmetry of the model about y = ^ and the absence of dominance are

restrictive and were chosen to emphasize the role of the delay in determining the

dynamics.

2. Preliminaries. In this section we gather some results which will be useful in

the sequel. Let /? be a positive real number, let k be a nonnegative integer, and

consider the difference equation
,P(\-2y„_k)

v . =    n = 0 \s n+\ - mi—i 5 1 v' ' * *• »
m:

i -yn+yneP{x~2y"-k)' ' ' ' (2-1)

y-k,y-k+l, ■■■ ,y0e[0, i].

Clearly 0, |, and 1 are the only equilibrium solutions of Eq. (2.1). One can easily

see by induction that yn e [0, 1 ] for all n = 0,1,.... Also if yn = 0 for some

N e N, then yn = 0 for all n > 0; and if yN — 1 for some TV G N, then yn — 1 for

all n > 0. For this reason we often restrict our attention to the difference equation

v J(^yn-k)

v =   n = 0 1r"< (22)

y_k, y-k+l,... ,y0e(°' *)•

Then clearly, yn e (0, 1) for all n > —k . By introducing the substitution

Jt = = T(y) for 0 < y < 1
1 —y

Eq. (2.2) becomes

x„, i - x„ exp ( B   j n = 0,1,...;
"+1 " V l+Xn-kJ (2.3)

X_k, x_k+l, , X0€ (0, oo).
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Note that 7X0) = 0, T{\) = 1, r(l-) = oo,and T'(y)= 1/(1 -y)2 > 0, and so

the dynamics of Eq. (2.2) are the same as those of Eq. (2.3) with 5 replaced by 1 and

1 replaced by 00. Clearly, xn > 0 for all n > 0. The unique positive equilibrium

solution of Eq. (2.3) is x = 1 , which corresponds to the equilibrium solution y = 5

of Eq. (2.2). After the substitution x — e2 , Eq. (2.3) becomes

rz„+1-z„ + ^tanh(W2) = 0, « = 0, 1,...; (24)

I Z-k> Z-k+l> ' z0 e (-00' 0°)-

Oui substitution here is z = lnx = S(x) for x € (0, 00). So as 5(0+) = -00,

S( 1) = 0, S(00) = 00, and S'(x) - l/x > 0, we see that the dynamics of Eq. (2.2)

are also the same as those of Eq. (2.4) with 0 replaced by -00, \ replaced by 0,

and with 1 replaced by 00.

For convenience we record some results from the literature which will be used

in the sequel. The first result which is adapted from [6] gives sufficient conditions

for the global asymptotic stability of a second-order difference equation. The sec-

ond theorem, which is extracted from [7], gives sufficient conditions for the global

attractivity of a nonlinear difference equation.

Theorem A [6], Assume that / 6 C[(0, 00), (0, 00)] is decreasing and that uf(u)

is increasing in u. Suppose that the difference equation

xn+\ = xnf(xn_l), n = 0,1,..., (2.5)

has a unique positive equilibrium x. Then x is globally asymptotically stable.

Theorem B [7], Consider the difference equation

Xn+i = Xnf{xn_k), n = 0,1,..., (2.6)

where A: is a positive integer and / satisfies the following conditions:

(i) /€C[[0, 00), (0, 00)], f(x) is nonincreasing in x;

(ii) Equation (2.6) has a unique positive equilibrium x;

(iii) (xf(x) - x)(x - x) > 0 for x ^x .

(iv) Set F(x) - x{f{x))k . Then x = x is the only solution of F(F(x)) = x in

the interval 0 < x < F(0).

Then x is a global attractor of all positive solutions of Eq. (2.6).

The next theorem is adapted from Cull [1], See also [2, 5, 10]. While it only treats

the case k = 0, it is very powerful in this case.

Theorem C [1]. Let A e (0, 00], and let g: [0, A) -* [0, A) be a continuous

function. Suppose g(0) = 0, g(x) > 0 for 0 < x < A, and g has a unique positive

equilibrium x. Suppose also that g(x) > x for 0 < x < x and g(x) < x for

x < x < A . Consider the difference equation

jxn+l = g(xn), n = 0,1,...,

I x0 e (0, A).

Then the following statements are true.

(i) If g has no maximum in (0, x), then x is a global attractor of all solutions

ofEq. (2.7). Moreover, {xn} converges eventually monotonically to x.
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(ii) Suppose g has a maximum at a point xm e (0, x) for which g is strictly

monotone decreasing for x > xm . Then x is a global attractor of all solu-

tions of Eq. (2.7) if and only if x < g(g(x)) for all x e [xm , x).

The next result is adapted from Fisher, Goh, and Vincent [3], While it is also only

valid for the case k = 0, it is nevertheless a powerful tool in this case and, as we

will see later, sometimes plays a role which is complementary to that of Theorem C.

The function V in Theorem D plays the role of a "discrete Lyapunov function".

Theorem D [3]. Let A e (0, oo], and let h e C[(0, A), (0, A)]. Assume that

h has a unique fixed point x e (0,^4) and that there exists a function V e

C[(0, A), [0, oo)] such that the following conditions are satisfied:

(i) V is nonincreasing in a neighborhood of 0;

(ii) V is nondecreasing in a neighborhood of A ;

(iii) AV(x) = V(h{x)) - h(x) < 0 for all x e (0, A) with x / x.

Then x is a global attractor of all solutions of the equation

p»+i =*(*„). " = 0,1,...,
U0 e (0, A).

The local stability analysis for biological models which are described by scalar

nonlinear delay difference equations was presented by Levin and May [8].

Theorem E [8], Assume that q e R and k e {0, 1,2,...}. Then the delay differ-

ence equation

x„+i-xH + qxn_k = 0, « = 0, 1, ,

is asymptotically stable if and only if 0 < q < 2 cos jffy ■
Theorems A-E have dealt with questions about global attractivity. The following

theorems deal with questions about oscillation.

A sequence {xn} is said to oscillate if the terms xn are neither eventually all

positive nor eventually all negative. Otherwise the sequence is called nonoscillatory.

A sequence {xn} is said to oscillate about x if the sequence {xn -x} oscillates.

The following basic linearized oscillation result is extracted from Gyori and Ladas

[4].

Theorem F [4]. Assume that p e (0, oo) and k e {0, 1, ...} with p + k ^ 1 . Let

/ e C[R, R] be such that

uf(u) > 0 for u / 0, lim ^ = 1,
u—o u

and there exists a 5 > 0 such that

either /(«) < u for 0 < u < S or /(«) > u for - 8 < u < 0.

Then every solution of the nonlinear difference equation

*«+i ~xn+pf(xn_k) = 0, n = 0,1,...,

oscillates if and only if every solution of the linearized equation

y„+i-yn+pyn-k = 0> « = o,i,...,

oscillates.
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The following result is an immediate consequence of the fact that every solution

of an autonomous, linear, homogeneous difference equation oscillates if and only if

its characteristic equation has no positive roots.

Theorem G [4]. Assume that p e (0, oo) and k e {0, 1, 2, ...}. Then every

solution of the delay difference equation

yH+i-yn+pyn-k = °> n = 0,1,...,

oscillates if and only if p > 1 if k = 0 and p > kk/(k + 1)^+1 if k > 1 .

3. Oscillation. In this section we determine explicit necessary and sufficient con-

ditions to ensure that every solution of the difference equation (2.2) oscillates about
1
2 *

Theorem 3.1. Assume p is a positive real number and k is a nonnegative integer.

Then the following statements are true:

(i) if k = 0, then every solution of Eq. (2.2) oscillates about y = \ ii and only

if/? >2;
tV>on rnran; cnliitiAn nf Cn (1 ACOillltAC oKaiit i> — _(ii) if k > 1, then every solution of Eq. (2.2) oscillates about y — A if and only

if fi>2kk/(k+l)k+l.

Proof. In Sec. 2 we determined that the dynamics of Eq. (2.2) are equivalent to

those of (2.4) with j replaced by 0. It is Eq. (2.4) that we shall utilize in the proof.

First consider the case when k + fi/2 £ 1. Since the function /(«) = 2tanh(«/2) is

continuous from R into R and such that

uf(u)> 0 foru/0, lim —— = 1,
V ' u—>0 U

and

f(u) < u for u > 0,

by Theorem F, all solutions of Eq. (2.4) oscillate if and only if all solutions of the

associated linearized equation (5.2) oscillate. By Theorem G, Eq. (5.2) oscillates if

and only if

either k = 0 and /? > 2

or k > 1 and /? > 2-
kk

(k+ l)k+r

Finally when k + fi/2 = 1 , which is equivalent to k = 0 and fi — 2, the result

follows from Theorem C(i).

4. Stability when k = 0. In this section we study the stability behavior of the

difference equation (2.1) when k = 0. For 0 < x < 1 , set

J( 1-2*)

J(T-2*)"g(*)= ** ,„-arv (4-D
1 - x + xep

Since g'(0) = g'(l) = ep > 1, it follows by linearized stability analysis that 0 and 1

are unstable equilibrium solutions of Eq. (2.1) with k = 0.
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Theorem 4.1. Let p > 0 and consider the difference equation

V =  —  H = 0 1
1 -y. + y.e"'-*-''   (4.2)

1).

Then the following statements are true:

(i) if 0 < /? < 4, then the equilibrium solution yn — j is globally asymptotically

stable;

(ii) if P > 4, then the equilibrium solution yn — \ is unstable.

Proof. The proof will be established in a series of three lemmas. Lemma 4.1 was

given in [9].

Lemma 4.1. If 0 < p < 4, then yn = \ is an asymptotically stable solution of Eq.

(4.2); while if P > 4, then yn = j is an unstable solution of Eq. (4.2).

Proof. g\j) - 1 - /?/2 and so the result follows by linearized stability.

Lemma 4.2. Let 0 < P < 2 . Then yn = \ is a global attractor of Eq. (4.2).

Proof. We wish to apply Theorem C. Consider g: [0, 1) —> [0, 1) where g is

defined by (4.1). Then g is continuous, g(0) = 0» g(x) > 0 if 0 < x < 1, and g

has exactly one positive fixed point x = \ . Note that g(\) > | and so g(x) > x if

0 < x < j . Similarly, g{ ixi from which it follows that g(x) < x if j < x < 1.

Finally, g'{xm) = 0 if and only if xm = ^(1 ± (1 - |)1/2). But 1 - | > 0 is

equivalent to P > 2 and we have assumed that 0 < p < 2. The result follows by

Theorem C(i).

Lemma 4.3. Let 2 < p <4. Then yn = \ is a globally asymptotically stable solution

of Eq. (4.2).
Proof. We shall use Theorem D. Consider g: (0, 1) —> (0, 1) where g is defined

by Eq. (4.1), and let V: (0, 1) —» [0, oo) be given by V(x) = (x - j)2. Clearly V

is continuous, decreasing on (0, 5) and increasing on (5, 1). If 0 < x < 1 ,

( xefiil-2x) lV ( 1\2
AK(x) - K(,W) - VM . - j j - (x- 5)

j(i-K) e"-"' , ,(•-*)
= -xe  , - 1  . r +

x + xeM-W ep{l-2x)

Observe that

l-x + xeK{-2x) l-X + XeM-2x)

>0 if0<x<j,

= 0 if x = 5 ,

<0 if \ < x < 1.

Also

-X + (1 - x) _ X{1 - x)(l + - efi{l/2~x))

x + xe^~2x) ep(x-2x) (l-x + xe^-2x))e^~2x)
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Since 0 < x < 1, we need only to determine the sign of G(x) = - e^x^2~x).

We shall first show that G(x) >0 if 0 < x < 5 . Note that G(^) = 0, and so it

suffices to show that G'(x) < 0 for 0 < x < \ . Now

G\x) = -\e~px{efix -x2pe~"12).
x

Set H{x) = epx - x2 fieN2. Then H(0) = 1 and H{\) = ep/2{\ - f) > 0. It

suffices to show that if 0 < x < \ and H'{x) - 0, then H(x) > 0. Note that

H'(x) = fiepx - Ixfie^2. Suppose H\x) = 0, where 0 < x < 5 . Then

0 = H\x) = pePx - Ixpe"'2 = p{ePx - 2xep'2)

and so ePx = 2xe^2. Hence H{x) — xe^2{2 - xfi) > 0 since 0 < x < \ and

/?<4.
We shall next show that G{x) < 0 if 5 < x < 1. Because G{\) = 0, it suffices

to show that G'(x) < 0 for j < x < 1. But G'(x) = -H(x)/x2, and so we need

only show that H(x) > 0, for j < x < 1 . Now H{\) = e^2(l — |) > 0, and so it

suffices to show H'(x) > 0 for j < x < 1 . But H\x) — (ie^x - 2xfie^2 and in

particular, H'(\) = 0. This means that the claim will be established if we can show

that

H'\x) >0 for \ < x < 1.

Note that since fi > 2, H"{x) = p2e^x - 2fie^2 > 0, and so G(x) is negative for

5 < x < 1 .

Hence AV(x) < 0 for all x e (0, 1) with x ^ 5, and so we see by Theorem

D that yn = \ is a global attractor of Eq. (4.2). Thus by Lemma 4.1 we see that

if 0 < p < 4, then yn = { is a globally asymptotically stable equilibrium solution

of Eq. (4.2). Finally if /? = 4 and x0 e (0, 1) with xQ / j, then the fact that

AV(x) < 0 for x e (0, 1) with x \ implies

1*0 — 21 ̂  l*i ~~ 21 ̂

and so yn = ^ is a globally asymptotically stable equilibrium solution in the case

/3 - 4 also.

Remark 4.1. It is interesting to note that Theorem C applies only in the case

0 < p < 2 while Theorem D applies only in the case 2 < ft < 4.

5. Stability when k > 1. Consider the delay difference equation (2.1) where fi is

a positive real number and A: is a positive integer. We shall first consider the local

stability of Eq. (2.1). There are three linearized equations associated with Eq. (2.1);

these equations deal with the equilibrium solutions 0, 5, and 1. The linearized

equation associated with the equilibrium solution 0 is

Wn+\ ~e^Wn = " = 0,1,.... (5.1)

The linearized equation associated with the equilibrium solution 5 is

Wn + 2 wn-k = 0' " = 0,1, — (5.2)

The linearized equation associated with the equilibrium solution 1 is again Eq. (5.1).

n+i
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Lemma 5.1.

(i) The equilibrium solution y - 0 of Eq. (2.1) is unstable.

(ii) The equilibrium solution y = j of Eq. (2.1) is locally asymptotically stable

if 0 < P < 4 cos jxft and is unstable if J3 > 4 cos ■
(iii) The equilibrium solution y = 1 of Eq. (2.1) is unstable.

Proof. Statements (i) and (iii) follow immediately from linearized stability while

statement (ii) follows from linearized stability and Theorem E.

Theorem 5.1. Consider the delay difference equation (2.2) where p is a positive

real number and k is a positive integer. Then the following statements are true.

(i) Suppose k = 1 . Then the equilibrium solution y = \ is globally asymptoti-

cally stable if 0 < /? < 2 and is unstable if p > 2.

(ii) Suppose k >2. Then the equilibrium solution y = 5 is globally asymptoti-

cally stable if 0 < p <\.

Proof. We wish to use Theorems A and B. It is more convenient to study the

stability nature of the positive equilibrium solution 3c = 1 of the equivalent difference

equation (2.3). For x > 0, define f(x) by the formula

f(x) = exp

Clearly, when k = 1 and 0 < P < 2, f satisfies all the hypotheses of Theorem A and

so x = 1 is a globally asymptotically stable equilibrium of Eq. (2.3). Also linearized

stability shows that when k — 1 and P > 2, x - 1 is an unstable equilibrium of

Eq. (2.3). The proof of (i) is complete.

Now suppose k > 2. The hypotheses (i), (ii), and (iii) of Theorem B are clearly

satisfied. Set

F{x) = (f(x))k = exp •

It suffices to verify that the equation F(F(x)) — x has the unique nonnegative

solution x = 1 . To this end, consider the difference equation

fVi =F(vn), n = 0,1,...,

I i>0 e [0, 00).

We shall show that if 0 < p < |, then 1 is a global attractor of Eq. (5.3) and so

the proof that y = 5 is a global attractor will be complete. So assume 0 < P < |.

Since F(x) is a decreasing function on [0, 00), it follows that v = 1 is the unique

equilibrium solution of Eq. (5.3). Clearly, any solution of Eq. (5.3) has the property

that vn > 0 for n > 1 . After the substitution vn = eu", Eq. (5.3) is transformed

into the equivalent equation

1 - eu"
un+i=k^YT^' " = °. (5.4)

M0€ R.
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What we shall actually prove is that the equilibrium solution u — 0 is a global

attractor of Eq. (5.4). Consider the function

1 u
1 — £ * f. . u

Observe that (7(0) = 0,

and that

G{u) = kp- 57 = -/cyStanh -.
I + e 2

|G(«)| = |G(N

|(7(m)| < ~^-\u\ < |m| for u ± 0.

Hence from (5.4)

\un+i\ = \G(un)\ < Kl> n — 0, 1,,

from which the result follows.

Finally, in order to apply Lemma 5.1 to complete the proof of statement (ii), we

must show
2 . kn
k <4cos2FTT

for every integer k >2. With this in mind, consider the inequality

— < 4 cos XK , for .x >1. (5.5)
x 2x + 1

The change of variables t = n/(2x + 1) transforms Eq. (5.5) into the equivalent

inequality

—^--<sin?, 0<t<n/6. (5.6)
71 — 2t

Now 2t/(n- 21) is a strictly concave-up function on (0, 7r/6) and sin? is a strictly

concave-down function on (0, rc/6). The proof of inequality (5.6) (and hence of

Theorem 5.1) follows from the observation that

21

71 - 2t
— sinf for t = n/6.

Remark 5.1. In view of Theorem 5.1, the condition 0 < /? < 2 for global asymp-

totic stability when k = 1 is "sharp". Our condition for global asymptotic stability

(or even global attractivity) is probably far from sharp when k >2. In this case we

conjecture the condition should be

kn
0 < P < 4 cos

2k + 1"

Remark 5.2. According to May [9, p. 540] "for frequency-dependent selective

forces so strong that /? > 4, the equilibrium point y = | of Eq. (1.3) when k = 0

gives way to a stable 2-point cycle, ... and the 2-cycle never becomes unstable".

The analytical justification of the above remark is the starting point of a forth-

coming paper by the authors.
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