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ON THE SOLUTION OF THE EQUATION w, + u"ux + H{x, t, u) = 0

By
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Abstract. We consider the equation ut + u"ux + H(x, t, u) = 0 and derive a

transformation relating it to ut + unux - 0. Special cases of the equation appearing

in applications are discussed. Initial value problems and asymptotic behaviour of

the solution are studied.

1. Introduction. The scalar conservation law

Ut + U"Ux = 0 (1-1)

has been treated extensively. The basic work of Hopf [6] and Lax [7] for n = 1 led

to considerable work for the system of conservation laws. Eq. (1.1) with n = 1 is

the inviscid limit of the Burgers equation,

ut + uux=2Uxx> (1.2)

as S —► 0. Equation (1.2) can be linearised to the heat equation via a Hopf-Cole

transformation (see Hopf [6]). The generalised Burgers equation

« S
u, + u ux + H(x, t, u) = -uxx, (1.3)

whose special cases describe a large number of physical models (see Sachdev [12]),

does not, in general, admit a Hopf-Cole transformation. The only exception is the

inhomogeneous Burgers equation

ut + uux + f{x, t) = -Uxx (1.4)

(see Nimmo and Crighton [11]), for which a Hopf-Cole transformation exists chang-

ing it to a linear parabolic equation.

The inviscid form of (1.3), namely

ut +u"ux + H(x, t, u) - 0, (1.5)

is of importance in the sense that (1.1) is. The inhomogeneous term in (1.5) rep-

resents the effects of damping and/or geometrical spreading. Equation (1.5) also
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plays an important role in the analysis of (1.3). The singular perturbation analysis

of Crighton and Scott [3] and generalised similarity analysis of Sachdev et al. [13,

14] show that the inviscid solution is of primary importance for N-wave initial con-

ditions. In the former it is the outer solution correct to all orders, while in the latter

it gives precise information near the node of the wave and helps build a uniformly

valid solution for all time after a finite initial time.

The purpose of this paper is to study (1.5) in some detail. Section 2 derives a

transformation relating Eq. (1.1) to Eq. (1.5); special cases of (1.5) appearing in

applications are also discussed. Section 3 deals with the initial value problem for

(1.5) over the real line for / > 0, while Sec. 4 gives its asymptotic behaviour. An

interesting special case of (1.5) is considered in detail in Sec. 5 and related to the

work of Murray [9].

2. The transformation. In this section we seek the most general equation of the

type

ut + u"ux + H(x, t, u) = 0, (2.1)

which can be reduced to the homogeneous conservation form

vr + v\ = 0, (2.2)

via the transformation

t = t(x , t), (2.3)

y = y(x,t), (2.4)

v(y, T) = f(x, t)u(x, t). (2.5)

A more general form v = F(x, t, u) is not considered, so that the Rankine-Hugoniot

conditions for (2.1) and (2.2) are the same. Here we assume that f(x, t) > 0 and

J = det(^< ^)#0. (2.6)

Differentiating (2.5) with respect to x and t, we get

+ =/"* + />'

v« + v, = fut + ftu.

Solving for vr and vv from (2.7) we obtain

(2.7)

VT = -7ICvxf, - ytfx)u + yxfut - ytfux],

Vy = ~ XxfM + hfUX ~ "

(2.8)

y J1

Substituting (2.8) in (2.2) we have

(yxf)ut + CVxft - ytfx)u - ytfux + fnu"[(Ttfx- t xft)u + (ztfux - r Jut)] = 0. (2.9)

For (2.9) to be of the form (2.1), we must have

fn

^( = 0' Tx = 0' and —~ = 1 • (2-!0)
y x
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Using (2.10) we get from (2.9)

U. + u"ur + ^rUn+1 + = 0. (2.11)
J J

From (2.10) we find that y is a function of x and x is a function of t alone so

that

/(X'?)=(§) * (2"12)

Eq. (2.11) becomes

where

and

ut + u"ux + G(t)u + F(x)u"+] = 0, (2.13)

d ( dx\ '/n

<*>—Wa?) ■ <2-14)

■ (2'15)

Conversely for given G(t) and F(x), the differential equations (2.14) and (2.15)

determine the transformation functions

T = T (0 = /'( exp ^ (/($,) (2.16)

y = y(x) = J F(si)ds^ ds, (2.17)

and

f{x, t) = exp G(s)dsSj • exp F{y) dy^j . (2.18)

Now if y, x, and / are given by (2.16)—(2.18), then (2.13) transforms to (2.2) via

(2.3)-(2.5). Thus we arrive at the following result: the most general equation of the

form (2.1) that can be reduced to (2.2) by the transformation (2.3)-(2.5) is (2.13);

the transformation is given by (2.16)—(2.18).

Equations of the type (2.13) appear quite naturally in many physical applications

and have been considered by several authors. Nimmo and Crighton [11] considered

the case n = 1 with F(x) = 0 and G(t) = (j-t +a), 7 = 0, 1,2. In this case (2.13)

becomes

ut + uux + (j~t + Q) u = 0- (2.19)

Using the transformation

y = x, x = J s~J,2e~asds, v(y, x) = f{x, t)u, (2.20)

where f(x, t) = ea't^2, in (2.19), we get vz + vv = 0. Nimmo and Crighton

analysed the periodic solution for (2.19) with sinusoidal initial conditions.



522 K. T. JOSEPH and P. L. SACHDEV

Lefloch [8] considered (2.13) when n = 1 , G(t) = 0, and F(x) = |, that is, the

equation

ut + uux + ^u2 = 0. (2.21)

The transformation

y = xP+l, r = t, V = {P + l)x"u (2.22)

2 kt
e

was used to change (2.21) to vx+vv = 0. Using the formulation of Bardos, Leroux,

and Nedelec [1] for the initial boundary value problem for (2.2) with n = 1 , Lefloch

formulated an initial boundary value problem for (2.21) in the quadrant x > 0,

t> 0.
When n— 1, F(x) = j , G(t) = 2k , k > 0, Eq. (2.13) assumes the form

2

ut + uux + + w = 0. (2.23)

Wedemeyer [16] considered (2.23) with boundary condition w(0, t) = 0 and ob-

tained the solution

( -kx, if kx < e~kt

»(*■')- , ifkx>e--' (124)
^ (kx)(e2k,-l) Kl' KX > 6 '

Recently, Eq. (2.23) was also considered by Dolzhanskii et al. [5], and an implicit

relation was obtained for a special class of solutions, namely

+ T(kx(u + kx)) = 0, (2.25)

where T is an arbitrary function to be determined by initial or boundary data.

Murray [9] considered the equation

w, + S{u)ux + kua - 0, (2.26)

where g\u) > 0, for u > 0 and k is a positive constant. He analysed the asymptotic

behaviour of solutions of (2.26) that satisfy some initial conditions that are compactly

supported. We recover his results exactly for the special case g(u) — u and a — 2

in Sec. 5, using the transformation (2.3)-(2.5).

The equation

ut + uux + u2 - u — 0 (2.27)

is the inviscid limit of the Burgers-Fisher equation

/ 5
ut + UUX + «("-!)= 2Uxx '

which was proposed by Murray [10]. When we take F(x) = 1 and G(t) — -1 in

Eq. (2.13) we get Eq. (2.27). The transformation

y — ex, x = e, v(y, r) = ex~'u(x, t)

can be used to change (2.27) to vx + vv = 0.
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3. Initial value problem. In this section we study the initial value problem for

(2.13) with the initial condition

u(x, 0) = u0(x), —oo < x < oo. (3.1)

We take n — 1. Under the transformation (2.16)—(2.18), (2.13) and (3.1) become

vT + vvy = 0, v(y, 0) = v0(y). (3.2)

Here v0(y) is obtained from u0(x) through v0(j>) = f(x, 0)uQ(x), where y =

fx(exp fx' F(y) dy) dxl and f(x, 0) = exp(fx F(y) dy). We assume y(±oo) = ±oo.

Hopf [6] obtained an explicit formula for the solution of (3.2), namely

, , y-z0(y,t)
v{y, t) = ^ , (3.3)

where z0(y, t) is a minimiser for the problem

Min if v0(z1)dzl + (y Z)
00<Z<00 \ JQ 2.1

(3.4)

From (3.3) and (3.4), we have the following explicit formula for the solution

u(x, t) of (2.13) and (3.1):

y - zo(y > T)
exp (^J G{s) ds^j exp (^j F(y) dy^j u(x, t) =

where y and r are given by (2.16) and (2.17) and z0(y, r) is as given above.

Initial boundary value problems are well studied for the equation vr + vvy — 0

(see Bardos, Leroux, and Nedelec [1]). One can through the transformation (2.16)-

(2.18) formulate an initial boundary value problem for (2.13) and hence analyse the

solution.

4. Asymptotic behaviour. In this section we study the asymptotic behaviour of

solutions of (2.13). First we recall the decay results for (2.2) obtained by Lax [7] and

Dafermos [4], Let v(y, r) be the solution of

vz + v"vy = 0, -oo < y < oo,

, ,, \ f{y) if —oo<a<y<b<oo (4.1)

"fr.O) = »»W=(o othenvise.

Then

|wCv, r)| < (4.2)

From this result we deduce the decay results for (2.13). Let the function u0(x)

have compact support; that is,

[ S(x) if - oc<a<x<b<oo,

"°{x) = { 0 otherwise. (4'3)

Let us assume that the functions G(t) and F(x) are such that

r = r(t) = f (exp(^f Gisjds^ ds
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and

y — y{x) = J (expf^J 1 F(y)dy^ dx{ (4.4)

satisfy the conditions

t(+oo) = +oo, y(±oo) = ±oo. (4.5)

Let u(x, t) be the solution of (2.13) with initial condition

u(x,0)-uQ(x) (4.6)

with u0(x) given by (4.3); then

C
I exP (/' F{y)dySj u(x, t)| <

(exp(/' G(s) ds))(f'(exp(fs G(sl) ds{)) " ds)l/(n+l]

(4.7)
For the special case when n = 1 , G(t) = {-,+&, F(x) = | + X, /? > 0, A > 0,

a < 0, we obtain the following asymptotic law:

Cx~p e~Xx

l»(*'OI< -pjijz • (4.8)

This choice includes all the equations (2.19), (2.21), (2.23), and (2.27) as special

cases. Lax [7] has shown that for n = 1 , the solution of (3.2) goes to jV-wave as

t —> oo in the L'-norm. More precisely, let

/y r°ov0(z)dz, = 2 max/ v0(z)dz, (4.9)
-oo y Jv

and let

v(y,T) = \l lf ^l,2<y<^l/2' (4.10)
[ 0 otherwise.

Let v(y, t) be the solution of (3.2); then v(y, r) « v(y, r) in the L'-norm w.r.t.

X.

This result can be generalised to the case of Eq. (2.13) when t and y satisfy (4.5):

\ if - (/?t)' < y < (gr)l/2,

0 otherwise
exp F{y) dy^j exp G{s) ds^j u{x, t)

in the L'-norm, where y = y(x) and r = t(t) are given by (4.4) with n = 1 . For

the case G(t) = ^ + a, F(x) — | + X we have

\ if - (/>t)1/2 <y < {qt)x/1 ,
x eXiX-l)tjl2ea{"l)U(x, t)

0 otherwise,

where y = 11 ds , t = ff s }l2ea(s X) ds , p and q are defined by (4.9), and

v0(y) is obtained from uQ(x) through the transformation

/ \ P 1) Ol / \
v0(y) = x eK u0(x).
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5. An example. In connection with propagation of waves in tubes, Shih [15] pro-

posed the equations

(r,+iu±a)§i)

in which a term proportional to u2 with Chezy friction coefficient / is used to

model wall losses; D is another constant. For right running waves alone we get the

equation

u, + (ao + l~rLu) ux + = 0 (5-°)

(see Crighton [2]). By simple scaling, Eq. (5.0) can be written as

ut + (a + u)ux + u =0. (5.1)

Set x* = x - at \ then (5.1) becomes

2
ut + uux. + u =0. (5.2)

We consider the initial value problem for (5.1) with

u(x, 0) = u0(x), —oo < x < oo. (5.3)

Let
y{x*) = ex , V(y, t) = ex u{x*, t) = yu(\o%y, t). (5.4)

In terms of the variable V(y, t) = yu(\ogy, t), we write the problem (5.1) and (5.3)

as
Vt + VVy — 0, y>0, t > 0,

V(0, t) = 0, V(y, 0) = v0(y) = ^(logy).

Following Hopf [6] we solve (5.5) by the vanishing viscosity method. Let Vs(y, t)

be the solution of

v;+v£v; = lv;y, y>o,t>o, (56)

V\0,t) = 0, V(y,0) = V0(y).

Using the Hopf-Cole transformation

z\y,t) = -e(\o%Ve) (5.7)'y

we get

A = ^zyy y>0> f>0'

zJ(0,/) = 0, (5.8)yy
ry

ze(y ,0) = e (1/W), W0(y) = f V0(y) dy
Jo

We can explicitly write the solution of (5.8) as

^[/>Hze(y,t) =

(2nte)
(y Z)2+W0(z)

fJo
+ 1 exp —

21
dz

dz

(5.9)
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and hence from (5.7) and (5.9)

f) /o°0(jT£)-exp(-i[^L + ^0(z)]& +J0"(^)exp(-+ W0(z)]dz (fu())

/o°°exp(-i[^ + iv0(z)]dz + f°°exp(-i[^ + W0(z)])dz

Assume y > 0. It is clear that

^ + w < - (y - z)1

~2t~ + W

It then follows from the analysis of Hopf [6] and the use of the method of stationary

phase that, as e -+ 0,

V.,v ■>. + iwyjm
exp(-l["-V>-'"' + WQ(z0(y, <))])

where zJy, t) is a minimizer for the problem

^4r~+ ̂ »(z)

From (5.11) we have the following explicit formula:

mm
z> 0

(5.12)

V(y,t) = (5.13)

where z0(y, t) is as defined earlier.

Writing (5.13) in terms of w, we have

u(x, t) = y_1

where y = ex = ex at. That is,

y - zo(y> 0
(5.14)

1 z (ex~al t)

u(x,t) =  '-±, (5.15)

where zQ(y, t) has been defined earlier.

We can read off the decay result from (5.15). For this purpose consider the min-

imisation problem (5.12). Let

( f(x) for - oo<c<x<d<oo\
Un(x) - {

I 0 otherwise;

then V0(y) = yuQ{\o%y), and W0{z) = yiu0{logyl)dyl . Let

(*-y)2

(5.16)

H(z,y,t)="—^- + WJz). (5.17)2t ' ' °v

At the point of minimum zQ = zQ(y, t) of Minz>0 H(z, y, t),

dH,

dz
-(z0,y, 0 = 0.
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This gives

vzo) = -v^' ^5'18^
c d

If zQ is outside the interval [e , e ], then v0(z0) = 0. It follows from (5.18)

that zQ = y in this case. If z0 is inside the interval \ec, e ], clearly \z0\ < e .

Combining the two cases we get the estimate for zQ(y, t):

\z0(y,t)\<ed+y. (5.19)

Using the estimate (5.19) in (5.15) we obtain the following result: let u(x, t) be the

solution of (5.1) with initial condition (5.3), where u0(x) is given by (5.16); then

, , ,X1 ̂  1 + V + e{x~a,)] 2 + ed~x+at

\u{x,t)\< —  = - . (5.20)

When a — 0 in (5.20) we recover Murray's result [9].
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